植物生态学报 ›› 2007, Vol. 31 ›› Issue (2): 320-325.DOI: 10.17521/cjpe.2007.0037
收稿日期:
2006-03-24
接受日期:
2006-08-30
出版日期:
2007-03-24
发布日期:
2007-03-30
通讯作者:
王华田
作者简介:
* E-mail: wanght@sdau.edu.cn
ZHAO Wen-Fei(), WANG Hua-Tian(
), QI Li-Yun, ZHANG Ying-Hui
Received:
2006-03-24
Accepted:
2006-08-30
Online:
2007-03-24
Published:
2007-03-30
Contact:
WANG Hua-Tian
About author:
First author contact:The first author E-mail: wenfeizhao@163.com
摘要:
利用热扩散式边材液流茎流探针(TDP)和微型自动气象站组成的测定系统,对泰山林科院林场麻栎(Quercus acutissima)人工林树干不同高度边材液流及其相关环境因子进行了连续观测,对影响边材液流的主要环境因子进行了相关性和滞后效应分析。结果表明:同一立木,树干上位边材液流流速上升快,高峰期持续时间短,但高峰流速较高,最大流速在0.002 cm·s-1以上;树干下位边材液流流速上升、下降慢,液流高峰期持续时间较长,最大流速不超过0.001 cm·s-1。太阳净辐射是麻栎边材液流最主要的影响因子,且成正相关,空气温度、空气相对湿度对边材液流的影响较小,空气温度与麻栎边材液流的影响成正相关,相对湿度与边材液流速率成负相关。边材液流与主要环境因子日周期波动在时间上存在延迟效应,延迟效应因树干高度和环境因子而变。树干上、中和下部边材液流与太阳净辐射变化的滞后时间分为80、20和30 min,与空气温度的滞后时间分别为60、130和110 min,与空气相对湿度的滞后时间分别为170、160和90 min。
赵文飞, 王华田, 亓立云, 张迎辉. 春季麻栎树干边材木质部液流垂直变化及其滞后效应. 植物生态学报, 2007, 31(2): 320-325. DOI: 10.17521/cjpe.2007.0037
ZHAO Wen-Fei, WANG Hua-Tian, QI Li-Yun, ZHANG Ying-Hui. SPATIAL VARIATION OF SAP FLOW OF QUERCUS ACUTISSIMA AND ITS LAG EFFECT DURING SPRING. Chinese Journal of Plant Ecology, 2007, 31(2): 320-325. DOI: 10.17521/cjpe.2007.0037
图2 麻栎(Quercus acutissima)林内太阳辐射、净辐射(a)和风速(b)连日变化(5月30日~6月3日)
Fig.2 Diurnal fluctuation of total and net solar radiation (Rs) (a), and wind speed (b) in Quercus acutissima plantation (May 30-June 3)
日期 Date | 峰值出现时间 Peak time (点钟 O'clock) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
树干下部 Lower trunk (1.3 m) | 树干中部 Mid-trunk (4.5 m) | 树干上部 Upper trunk (8.0 m) | 太阳净辐射 Net solar radiation (TBB) | 空气温度 Air temperature (TPa) | 空气湿度 Air humidity (RHa) | |||||||||||
May 30 | 13:00 | 9:00 | 14:00 | 12:00 | 15:00 | 0:30 | ||||||||||
May 31 | 11:30 | 10:30 | 11:30 | 11:20 | 13:40 | 19:00 | ||||||||||
June 1 | 12:00 | 12:00 | 16:00 | 12:40 | 13:40 | 5:30 | ||||||||||
June 2 | 11:30 | 9:30 | 15:30 | 11:50 | 13:00 | 10:00 | ||||||||||
June 3 | 12:30 | 9:30 | 16:00 | 12:10 | 15:40 | 24:00 |
表1 麻栎(Quercus acutissima)树干不同位点边材液流液流速率及主要环境因子的峰值动态
Table 1 The peaks and time of mean sap flow velocity and main environmental factors in different height of Quercus acutissima trunk
日期 Date | 峰值出现时间 Peak time (点钟 O'clock) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
树干下部 Lower trunk (1.3 m) | 树干中部 Mid-trunk (4.5 m) | 树干上部 Upper trunk (8.0 m) | 太阳净辐射 Net solar radiation (TBB) | 空气温度 Air temperature (TPa) | 空气湿度 Air humidity (RHa) | |||||||||||
May 30 | 13:00 | 9:00 | 14:00 | 12:00 | 15:00 | 0:30 | ||||||||||
May 31 | 11:30 | 10:30 | 11:30 | 11:20 | 13:40 | 19:00 | ||||||||||
June 1 | 12:00 | 12:00 | 16:00 | 12:40 | 13:40 | 5:30 | ||||||||||
June 2 | 11:30 | 9:30 | 15:30 | 11:50 | 13:00 | 10:00 | ||||||||||
June 3 | 12:30 | 9:30 | 16:00 | 12:10 | 15:40 | 24:00 |
滞后时间 Lag time (min) | 树干下部 Lower trunk (1.3 m) | 树干中部 Mid-trunk (4.5 m) | 树干上部 Upper trunk (8.0 m) | ||||||
---|---|---|---|---|---|---|---|---|---|
流速与 净辐射 V vs TBB | 流速与气温 V vs TPa | 流速与 空气湿度 V vs RHa | 流速与 净辐射 V vs TBB | 流速与气温 V vs TPa | 流速与 空气湿度 V vs RHa | 流速与 净辐射 V vs TBB | 流速与气温 V vs TPa | 流速与 空气湿度 V vs RHa | |
-100 | 0.878 | 0.487 | -0.165 | 0.810 | 0.409 | -0.159 | 0.936 | 0.613 | -0.243 |
-90 | 0.893 | 0.520 | -0.182 | 0.825 | 0.442 | -0.174 | 0.941 | 0.641 | -0.258 |
-80 | 0.906 | 0.553 | -0.198 | 0.839 | 0.475 | -0.189 | 0.944 | 0.668 | -0.273 |
-70 | 0.915 | 0.584 | -0.214 | 0.851 | 0.506 | -0.204 | 0.943 | 0.693 | -0.288 |
-60 | 0.922 | 0.615 | -0.230 | 0.862 | 0.537 | -0.219 | 0.939 | 0.717 | -0.302 |
-50 | 0.927 | 0.644 | -0.245 | 0.871 | 0.567 | -0.234 | 0.932 | 0.740 | -0.316 |
-40 | 0.929 | 0.671 | -0.260 | 0.878 | 0.596 | -0.249 | 0.922 | 0.761 | -0.328 |
-30 | 0.930 | 0.697 | -0.274 | 0.884 | 0.623 | -0.263 | 0.908 | 0.780 | -0.340 |
-20 | 0.928 | 0.722 | -0.288 | 0.887 | 0.650 | -0.278 | 0.891 | 0.798 | -0.351 |
-10 | 0.924 | 0.745 | -0.301 | 0.886 | 0.676 | -0.213 | 0.872 | 0.813 | -0.361 |
0 | 0.918 | 0.766 | -0.313 | 0.884 | 0.700 | -0.305 | 0.851 | 0.827 | -0.371 |
10 | 0.909 | 0.785 | -0.324 | 0.879 | 0.722 | -0.317 | 0.827 | 0.838 | -0.378 |
20 | 0.897 | 0.801 | -0.334 | 0.872 | 0.741 | -0.329 | 0.803 | 0.847 | -0.384 |
30 | 0.884 | 0.816 | -0.343 | 0.864 | 0.760 | -0.339 | 0.778 | 0.854 | -0.390 |
40 | 0.868 | 0.829 | -0.351 | 0.854 | 0.776 | -0.349 | 0.751 | 0.859 | -0.394 |
50 | 0.850 | 0.840 | -0.358 | 0.841 | 0.791 | -0.357 | 0.724 | 0.863 | -0.398 |
60 | 0.830 | 0.850 | -0.365 | 0.827 | 0.803 | -0.365 | 0.695 | 0.864 | -0.401 |
70 | 0.809 | 0.857 | -0.371 | 0.812 | 0.814 | -0.372 | 0.665 | 0.864 | -0.403 |
80 | 0.785 | 0.863 | -0.376 | 0.794 | 0.824 | -0.378 | 0.633 | 0.862 | -0.405 |
90 | 0.760 | 0.866 | -0.381 | 0.774 | 0.831 | -0.383 | 0.600 | 0.857 | -0.406 |
100 | 0.733 | 0.868 | -0.385 | 0.752 | 0.837 | -0.388 | 0.565 | 0.851 | -0.406 |
110 | 0.704 | 0.869 | -0.388 | 0.728 | 0.841 | -0.392 | 0.530 | 0.843 | -0.405 |
120 | 0.673 | 0.868 | -0.391 | 0.703 | 0.843 | -0.395 | 0.494 | 0.833 | -0.405 |
130 | 0.642 | 0.865 | -0.394 | 0.676 | 0.844 | -0.397 | 0.457 | 0.823 | -0.404 |
140 | 0.609 | 0.861 | -0.395 | 0.648 | 0.843 | -0.399 | 0.420 | 0.810 | -0.402 |
150 | 0.575 | 0.855 | -0.397 | 0.619 | 0.840 | -0.400 | 0.382 | 0.795 | -0.400 |
160 | 0.540 | 0.847 | -0.398 | 0.588 | 0.836 | -0.401 | 0.344 | 0.780 | -0.398 |
170 | 0.505 | 0.838 | -0.398 | 0.557 | 0.830 | -0.402 | 0.305 | 0.764 | -0.395 |
180 | 0.468 | 0.828 | -0.329 | 0.525 | 0.823 | -0.401 | 0.265 | 0.746 | -0.401 |
表2 树干不同高度边材液流对环境因子滞后效应分析
Table 2 Analysis of the lagging effect between sap flow and environmental factors
滞后时间 Lag time (min) | 树干下部 Lower trunk (1.3 m) | 树干中部 Mid-trunk (4.5 m) | 树干上部 Upper trunk (8.0 m) | ||||||
---|---|---|---|---|---|---|---|---|---|
流速与 净辐射 V vs TBB | 流速与气温 V vs TPa | 流速与 空气湿度 V vs RHa | 流速与 净辐射 V vs TBB | 流速与气温 V vs TPa | 流速与 空气湿度 V vs RHa | 流速与 净辐射 V vs TBB | 流速与气温 V vs TPa | 流速与 空气湿度 V vs RHa | |
-100 | 0.878 | 0.487 | -0.165 | 0.810 | 0.409 | -0.159 | 0.936 | 0.613 | -0.243 |
-90 | 0.893 | 0.520 | -0.182 | 0.825 | 0.442 | -0.174 | 0.941 | 0.641 | -0.258 |
-80 | 0.906 | 0.553 | -0.198 | 0.839 | 0.475 | -0.189 | 0.944 | 0.668 | -0.273 |
-70 | 0.915 | 0.584 | -0.214 | 0.851 | 0.506 | -0.204 | 0.943 | 0.693 | -0.288 |
-60 | 0.922 | 0.615 | -0.230 | 0.862 | 0.537 | -0.219 | 0.939 | 0.717 | -0.302 |
-50 | 0.927 | 0.644 | -0.245 | 0.871 | 0.567 | -0.234 | 0.932 | 0.740 | -0.316 |
-40 | 0.929 | 0.671 | -0.260 | 0.878 | 0.596 | -0.249 | 0.922 | 0.761 | -0.328 |
-30 | 0.930 | 0.697 | -0.274 | 0.884 | 0.623 | -0.263 | 0.908 | 0.780 | -0.340 |
-20 | 0.928 | 0.722 | -0.288 | 0.887 | 0.650 | -0.278 | 0.891 | 0.798 | -0.351 |
-10 | 0.924 | 0.745 | -0.301 | 0.886 | 0.676 | -0.213 | 0.872 | 0.813 | -0.361 |
0 | 0.918 | 0.766 | -0.313 | 0.884 | 0.700 | -0.305 | 0.851 | 0.827 | -0.371 |
10 | 0.909 | 0.785 | -0.324 | 0.879 | 0.722 | -0.317 | 0.827 | 0.838 | -0.378 |
20 | 0.897 | 0.801 | -0.334 | 0.872 | 0.741 | -0.329 | 0.803 | 0.847 | -0.384 |
30 | 0.884 | 0.816 | -0.343 | 0.864 | 0.760 | -0.339 | 0.778 | 0.854 | -0.390 |
40 | 0.868 | 0.829 | -0.351 | 0.854 | 0.776 | -0.349 | 0.751 | 0.859 | -0.394 |
50 | 0.850 | 0.840 | -0.358 | 0.841 | 0.791 | -0.357 | 0.724 | 0.863 | -0.398 |
60 | 0.830 | 0.850 | -0.365 | 0.827 | 0.803 | -0.365 | 0.695 | 0.864 | -0.401 |
70 | 0.809 | 0.857 | -0.371 | 0.812 | 0.814 | -0.372 | 0.665 | 0.864 | -0.403 |
80 | 0.785 | 0.863 | -0.376 | 0.794 | 0.824 | -0.378 | 0.633 | 0.862 | -0.405 |
90 | 0.760 | 0.866 | -0.381 | 0.774 | 0.831 | -0.383 | 0.600 | 0.857 | -0.406 |
100 | 0.733 | 0.868 | -0.385 | 0.752 | 0.837 | -0.388 | 0.565 | 0.851 | -0.406 |
110 | 0.704 | 0.869 | -0.388 | 0.728 | 0.841 | -0.392 | 0.530 | 0.843 | -0.405 |
120 | 0.673 | 0.868 | -0.391 | 0.703 | 0.843 | -0.395 | 0.494 | 0.833 | -0.405 |
130 | 0.642 | 0.865 | -0.394 | 0.676 | 0.844 | -0.397 | 0.457 | 0.823 | -0.404 |
140 | 0.609 | 0.861 | -0.395 | 0.648 | 0.843 | -0.399 | 0.420 | 0.810 | -0.402 |
150 | 0.575 | 0.855 | -0.397 | 0.619 | 0.840 | -0.400 | 0.382 | 0.795 | -0.400 |
160 | 0.540 | 0.847 | -0.398 | 0.588 | 0.836 | -0.401 | 0.344 | 0.780 | -0.398 |
170 | 0.505 | 0.838 | -0.398 | 0.557 | 0.830 | -0.402 | 0.305 | 0.764 | -0.395 |
180 | 0.468 | 0.828 | -0.329 | 0.525 | 0.823 | -0.401 | 0.265 | 0.746 | -0.401 |
图3 空气温度(a)、相对湿度(b)、风速(c)、太阳净辐射(d)与树干(8.0 m)边材液流流速分布效应图
Fig.3 The scatter-plot between sap flow in the height 8.0 m of the trunk and air temperature (TPa) (a),relative humidity (RHa) (b),wind speed (Ws) (c), net solar radiation (TBB) (d)
[1] | Alarcón JJ, Domingo R, Green MJ, Sánchez-Blano, Rodríguez P, Torrecillas A (2000). Sap flow as an indicator of transpiration and the water status of young apricot trees. Plant and Soil, 227,77-85. |
[2] | Chang XX (常学向), Zhao WZ (赵文智) (2004). Sap flow of Gansu poplar in farmland shelter forest during the growing season in desert oasis. Acta Ecologica Sinica (生态学报), 24,1436-1441. (in Chinese with English abstract) |
[3] | Dünish O, Morais RR (2002). Regulation of xylem sap flow in an evenergreen,a semi-deciduous,and a deciduous Meliaceae species from the Amazon. Trees, 16,404-416. |
[4] | Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3,309-319. |
[5] | Li HT (李海涛), Chen LZ (陈灵芝) (1998). A study on the volume and velocity of stem-sapflow of Betula dahurica and Acer mono forests by the heat-pulse technique. Journal of Beijing Forestry University(北京林业大学学报), 20(1),1-6. (in Chinese with English abstract) |
[6] | Ma LY (马李一), Sun PS (孙鹏森), Ma LY (马履一) (2001). Sap wood area calculation and water use scaling up from individual trees to stands of Chinese pine and black locust. Journal of Beijing Forestry University(北京林业大学学报), 23(4),1-5. (in Chinese with English abstract) |
[7] | Ma LY (马履一), Wang HT (王华田) (2002). Spatial and chronic fluctuation of sapwood flow and its relevant variables of Pinus tubulaeformis. Journal of Beijing Forestry University (北京林业大学学报), 24(3),23-27. (in Chinese with English abstract) |
[8] | Marshall DC (1958). Measurement of sap flow in conifers by heat transport. Plant Physiology, 33,385-396. |
[9] | Nakai T, Abe H (2005). The relationship between sap flow rate and diurnal change of tangential strain on inner bark in Cryptomeria japonica saplings. Journal of Wood Science, 51,441-447. |
[10] | Sun PS (孙鹏森) (2000). Layout and Different Scale Water Use Characteristic of Water Conservation Tree in North Beijing Mountain Area (京北水源保护林格局及不同尺度树种耗水特性研究). PhD dissertation, Beijing Forestry University, 97-112. (in Chinese with English abstract) |
[11] | Swanson RH (1994). Water transpired by trees is indicated by heat pulse velocity. Agricultural Meteorology, 72,113-132. |
[12] | Tognetti R, Raschi A (1996). Comparison of sap flow, cavitation and water status of Quercus petraea and Quercus cerris trees with special reference to computer tomography. Plant, Cell and Environment, 19,928-938. |
[13] | Vertessy RA, Benyon R, O'Sullivan SK, Gribben PR (1995). Relationship between diameter, sapwood area, leaf area and transpiration in a young mountain ash forest. Tree Physiology, 15,559-568. |
[14] | Wang HT (王华田), Ma LY (马履一) (2002). Measurement of whole tree's water consumption with thermal dissipation sap flow probe (TDP). Acta Phytoecologica Sinica(植物生态学报), 26,661-667. (in Chinese with English abstract) |
[15] | Wang HT (王华田), Ma LY (马履一), Xu JL (徐军亮) (2004). Water potential and its impact on sapwood flow velocity. Acta Phytoecologica Sinica (植物生态学报), 28,637-643. (in Chinese with English abstract) |
[16] | Wang HT (王华田), Ma LY (马履一), Sun PS (孙鹏森) (2002). Sap flow fluctuations of Pinus tabulaeformis and Platycladus orientalis in late autumn. Scientia Silvae Sinicae(林业科学), 38(5),31-37. (in Chinese with English abstract) |
[17] | Wu LP (吴丽萍), Wang XD (王学东), Wei QN (尉全恩), Shi F (史福), Chen ZX (陈正新), Zhu ZH (朱智宏), Zhang YE (张云娥) (2003). Study on spatial and temporal variability for stem-sap flow of Pinus sylvestris var. mongolica. Research of Soil and Water Conservation(水土保持研究), 10(4),66-68. (in Chinese with English abstract) |
[18] | Wullschleger SD, Meinzer FC, Vertessy RA (1998). A review of whole-plant water use studies in trees. Tree Physiology, 18(8/9),499-512. |
[19] | Xiao YH (肖以华), Chen BF (陈步峰), Chen JJ (陈嘉杰), Chen Y (陈勇), Li DW (李东文), Wu TG (吴统贵) (2005). A study on the stem sap flow of Acacia mangium.Forest Research(林业科学研究), 18,331-335. (in Chinese with English abstract) |
[20] | Xiong W (熊伟), Wang YH (王彦辉), Xu DY (徐德应) (2003). Regulations of water use for transpiration of Larix principi-rupprechtii plantation and its response on environmental factors in Southern Ningxia hilly area. Scientia Silvae Sinicae(林业科学), 39(2),1-7. (in Chinese with English abstract) |
[21] | Zhou GY (周国逸), Huang ZH (黄志宏), Morris J, Li ZA (李志安), Collopy J, Zhang NN (张宁南), Bai JY (白嘉雨) (2002). Radial variation in sap flux density as a funtion of sapwood thickness in two eucalyptus ( Eucalyptus urophylla) plantations. Acta Botanica Sinica(植物学报), 44,1418-1424. (in English with Chinese abstract). |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[3] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[4] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[5] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[6] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[7] | 缪丽娟, 张宇阳, 揣小伟, 包刚, 何昱, 朱敬雯. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10): 1375-1385. |
[8] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[9] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[10] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[11] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[12] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[13] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[14] | 罗明没, 陈悦, 杨刚, 胡斌, 李玮, 陈槐. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应[J]. 植物生态学报, 2021, 45(5): 552-561. |
[15] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19