植物生态学报 ›› 2012, Vol. 36 ›› Issue (4): 281-291.DOI: 10.3724/SP.J.1258.2012.00281
收稿日期:
2012-02-10
接受日期:
2012-03-13
出版日期:
2012-02-10
发布日期:
2012-03-28
通讯作者:
杨冬梅
YANG Dong-Mei1,*(),ZHAN Feng2,ZHANG Hong-Wei3
Received:
2012-02-10
Accepted:
2012-03-13
Online:
2012-02-10
Published:
2012-03-28
Contact:
YANG Dong-Mei
摘要:
权衡关系是生活史对策理论的基础, 叶大小-数量的权衡关系对理解叶大小进化具有重要的意义。该研究以单叶面积和单叶片干重表示叶大小, 用小枝干重和小枝茎干重表示小枝大小, 采用标准化主轴估计(standardized major axis estimation, SMA)和系统独立比较分析(phylogenetically independent contrast analysis, PIC)的方法, 对浙江省清凉峰自然保护区3个不同海拔落叶阔叶木本植物当年生小枝内的叶大小与数量间的关系进行研究。结果显示, 无论叶大小和小枝大小是用面积或干重表示, 在每个海拔, 叶大小与出叶强度均存在显著的等速负相关关系, 表明在落叶阔叶木本植物中发现的叶大小与出叶强度之间的权衡关系在不同生境物种中是普遍存在的, 植物在叶大小方面的种间变化, 可能不是自然选择的直接产物, 而是叶片数量变化权衡关系的一个副产物。不同海拔间的比较显示, 高海拔物种的叶面积或干重与出叶强度相关关系的y轴截距比中、低海拔物种小, 表明在出叶强度一定的情况下, 高海拔物种比低海拔物种具有更小的叶大小。与高海拔物种相比, 中海拔物种的共同斜率沿共同主轴有一个向上的位移, 表明中海拔物种比高海拔物种具有更大的叶大小, 但出叶强度更小。这些结果表明生境对叶大小-数量的权衡关系具有显著的影响, 中海拔生境具有更适宜植物生长的气候及养分条件, 而高海拔的低温等不利影响使得叶片变小。
杨冬梅,占峰,张宏伟. 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系. 植物生态学报, 2012, 36(4): 281-291. DOI: 10.3724/SP.J.1258.2012.00281
YANG Dong-Mei,ZHAN Feng,ZHANG Hong-Wei. Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China. Chinese Journal of Plant Ecology, 2012, 36(4): 281-291. DOI: 10.3724/SP.J.1258.2012.00281
图1 叶面积与基于枝干重(A)和基于茎干重(B)出叶强度的种间关系。
Fig. 1 Cross-species relationships between leaf area and leafing intensity based on twig mass (A) and leafing intensity based on stem mass (B).
指标 Index (y-x) | 海拔 Altitude | 样本量 Number of samples | 决定系数 R2 | 斜率(95%置信区间) Slope (95% confidence interval) |
---|---|---|---|---|
单叶面积-基于枝干重的出叶强度 Individual leaf area-leafing intensity based on twig mass | 低海拔 L | 32 | 0.924 | -1.004 (-1.113, -0.906) |
中海拔 M | 29 | 0.887 | -0.971 (-1.108, -0.851) | |
高海拔 H | 19 | 0.676 | -0.854 (-1.139, -0.641) | |
单叶面积-基于茎干重的出叶强度 Individual leaf area-leafing intensity based on stem mass | 低海拔 L | 32 | 0.431 | -0.968 (-1.278, -0.734) |
中海拔 M | 29 | 0.306 | -0.784 (-1.084, -0.568) | |
高海拔 H | 19 | 0.385 | -0.752 (-1.116, -0.508) | |
单叶片干重-基于枝干重的出叶强度 Individual lamina mass-leafing intensity based on twig mass | 低海拔 L | 32 | 0.988 | -1.012 (-1.054, -0.972) |
中海拔 M | 29 | 0.986 | -1.025 (-1.075, -0.978) | |
高海拔 H | 19 | 0.958 | -1.046 (-1.161, -0.943) | |
单叶片干重-基于茎干重的出叶强度 Individual leaf area-leafing intensity based on stem mass | 低海拔 L | 32 | 0.494 | -0.976 (-1.269, -0.751) |
中海拔 M | 29 | 0.289 | -0.829 (-1.149, -0.597) | |
高海拔 H | 19 | 0.309 | -0.921 (-1.392, -0.609) |
表1 清凉峰不同海拔间小枝功能性状的标准化主轴估计(回归关系均达极显著水平p < 0.01)
Table 1 Summary of standardized major axis estimation regression parameters for the scaling relationships between functional traits in plant twigs of different altitudes of Qingliang Mountain. All the relationships were highly significant (p < 0.01)
指标 Index (y-x) | 海拔 Altitude | 样本量 Number of samples | 决定系数 R2 | 斜率(95%置信区间) Slope (95% confidence interval) |
---|---|---|---|---|
单叶面积-基于枝干重的出叶强度 Individual leaf area-leafing intensity based on twig mass | 低海拔 L | 32 | 0.924 | -1.004 (-1.113, -0.906) |
中海拔 M | 29 | 0.887 | -0.971 (-1.108, -0.851) | |
高海拔 H | 19 | 0.676 | -0.854 (-1.139, -0.641) | |
单叶面积-基于茎干重的出叶强度 Individual leaf area-leafing intensity based on stem mass | 低海拔 L | 32 | 0.431 | -0.968 (-1.278, -0.734) |
中海拔 M | 29 | 0.306 | -0.784 (-1.084, -0.568) | |
高海拔 H | 19 | 0.385 | -0.752 (-1.116, -0.508) | |
单叶片干重-基于枝干重的出叶强度 Individual lamina mass-leafing intensity based on twig mass | 低海拔 L | 32 | 0.988 | -1.012 (-1.054, -0.972) |
中海拔 M | 29 | 0.986 | -1.025 (-1.075, -0.978) | |
高海拔 H | 19 | 0.958 | -1.046 (-1.161, -0.943) | |
单叶片干重-基于茎干重的出叶强度 Individual leaf area-leafing intensity based on stem mass | 低海拔 L | 32 | 0.494 | -0.976 (-1.269, -0.751) |
中海拔 M | 29 | 0.289 | -0.829 (-1.149, -0.597) | |
高海拔 H | 19 | 0.309 | -0.921 (-1.392, -0.609) |
指标 Index (y-x) | 回归系数 Regression coefficient | 回归截距 y-intercept | 决定系数 R2 |
---|---|---|---|
单叶面积-基于枝干重的出叶强度 Individual leaf area-leafing intensity based on twig mass | -0.957 | 0.016 | 0.919 |
单叶面积-基于茎干重的出叶强度 Individual leaf area-leafing intensity based on stem mass | -0.658 | 0.052 | 0.543 |
单叶片干重-基于枝干重的出叶强度 Individual lamina mass-leafing intensity based on twig mass | -1.008 | 0.005 | 0.991 |
单叶片干重-基于茎干重的出叶强度 Individual leaf area-leafing intensity based on stem mass | -0.684 | 0.043 | 0.570 |
表2 清凉峰低海拔落叶物种的系统独立比较(n = 32)
Table 2 Regression coefficients between the functional traits of correlated evolutionary divergence for the deciduous species at low altitude of Qingliang Mountain (n = 32)
指标 Index (y-x) | 回归系数 Regression coefficient | 回归截距 y-intercept | 决定系数 R2 |
---|---|---|---|
单叶面积-基于枝干重的出叶强度 Individual leaf area-leafing intensity based on twig mass | -0.957 | 0.016 | 0.919 |
单叶面积-基于茎干重的出叶强度 Individual leaf area-leafing intensity based on stem mass | -0.658 | 0.052 | 0.543 |
单叶片干重-基于枝干重的出叶强度 Individual lamina mass-leafing intensity based on twig mass | -1.008 | 0.005 | 0.991 |
单叶片干重-基于茎干重的出叶强度 Individual leaf area-leafing intensity based on stem mass | -0.684 | 0.043 | 0.570 |
图2 清凉峰不同海拔落叶物种的单叶面积(平均值±标准误差)。不同字母表示不同海拔间叶面积差异显著(p < 0.05)。
Fig. 2 Individual leaf area of deciduous species at different altitudes of Qingliang Mountain (mean ± SE). Significant differences among different altitudes are denoted by lower case letters above the bars (p < 0.05).
图3 叶片干重与基于小枝干重(A)和茎干重(B)出叶强度的种间关系。
Fig. 3 Cross-species relationships between lamina mass and leafing intensity based on twig mass (A) and leafing intensity based on stem mass (B).
[1] |
Ackerly DD, Donoghue MJ (1998). Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in maples ( Acer). The American Naturalist, 152, 767-791.
DOI URL |
[2] |
Ackerly DD, Reich PB (1999). Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. American Journal of Botany, 86, 1272-1281.
URL PMID |
[3] |
Barthélémy D, Caraglio Y (2007). Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Annuals of Botany, 99, 375-407.
DOI URL |
[4] | Bell AD (1993). Plant Form: an Illustrated Guide to Flowering Plant Morphology. Oxford University Press, New York. |
[5] |
Bond WJ, Midgley J (1988). Allometry and sexual differences in leaf size. The American Naturalist, 131, 901-910.
DOI URL |
[6] |
Bonsall MB, Jansen VAA, Hassell MP (2004). Life history trade-offs assemble ecological guilds. American Association for the Advancement of Science, 306, 111-114.
DOI URL |
[7] |
Bonser SP, Aarssen LW (1996). Meristem allocation: a new classification theory for adaptive strategies in herbaceous plants. Oikos, 77, 347-352.
DOI URL |
[8] |
Brouat C, Gibernau M, Amsellem L, McKey D (1998). Corner’s rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry. New Phytologist, 139, 459-470.
DOI URL |
[9] | Cavender-Bares J, Holbrook NM (2001). Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with contrasting habitats. Plant, Cell & Environment, 24, 1243-1256. |
[10] |
Chapin FS III (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11, 233-260.
DOI URL |
[11] |
Cornelissen JHC (1999). A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia, 118, 248-255.
DOI URL PMID |
[12] |
Corner EJH (1949). The durian theory or the origin of the modern tree. Annals of Botany, 13, 367-414.
DOI URL |
[13] |
Dombroskie SL, Aarssen LW (2010). Within-genus size distributions in angiosperms: small is better. Perspectives in Plant Ecology, Evolution and Systematics, 12, 283-293.
DOI URL |
[14] | Falster DS, Warton DI, Wright IJ (2006). User’s Guide to SMATR: Standardised Major Axis Tests & Routines Version 2.0. http://www.bio.mq.edu.au/ecology/SMATR/.Cited March 11,2012. |
[15] |
Falster DS, Westoby M (2003). Leaf size and angle vary widely across species: What consequences for light interception? New Phytologist, 158, 509-525.
DOI URL |
[16] | Field C, Mooney HA (1986). The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ ed. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK. 25-55. |
[17] |
Fonseca CR, Overton JMC, Collins B, Westoby M (2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977.
DOI URL |
[18] | Givnish TJ (1978a). On the adaptive significance of leaf height in forest herbs, with particular reference to tropical trees. In: Tomlinson PB, Zimmermann MH eds. Tropical Trees as Living Systems. Cambridge University Press, Cambridge, UK. 351-380. |
[19] | Givnish TJ (1978b). Ecological aspects of plant morphology: leaf form in relation to environment. Acta Biotheoretica, 27, 83-142. |
[20] | Givnish TJ (1979 375-407. |
[21] | Givnish TJ (1984). Leaf and canopy adaptations in tropical forests. In: Medina E, Mooney HA, Vázquez-Yánez C eds. Physiological Ecology of Plants of the Wet Tropics. Junk Press, The Hague. 51-84. |
[22] |
Givnish TJ, Vermeij GJ (1976). Sizes and shapes of liane leaves. The American Naturalist, 110, 743-778.
DOI URL |
[23] | Gleason HA, Cronquist A (1991). Manual of Vascular Plants of Northeastern United States and Adjacent Canada. The New York Botanical Garden, Bronx. |
[24] |
Heuret P, Meredieu C, Coudurier T, Courdier F, Barthélémy D (2006). Ontogenetic trends in the morphological features of main stem annual shoots of Pinus pinaster( Pinaceae). American Journal of Botany, 93, 1577-1587.
DOI URL |
[25] | Huang CL (黄成林) (1992). Florogeographical analysis of Mount Qingliangfeng Natural Reserve in Tianmu Mountains. Journal of Zhejiang Forestry College (浙江林学院学报) 9, 277-282. (in Chinese with English abstract) |
[26] |
King DA (1998). Influence of leaf size on tree architecture: first branch height and crown dimensions in tropical rain forest trees. Trees-Structure and Function, 12, 438-445.
DOI URL |
[27] |
Kleiman D, Aarssen LW (2007). The leaf size/number trade-off in trees. Journal of Ecology, 95, 376-382.
DOI URL |
[28] |
Leishman MR (2001). Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality. Oikos, 93, 294-302.
DOI URL |
[29] | Li T, Deng JM, Wang GX, Cheng DL, Yu ZL (2009). Isometric scaling relationship between leaf number and size within current-year shoots of woody species across contrasting habitats. Polish Journal of Ecology, 57, 659-667. |
[30] |
Mcculloh KA, Sperry JS (2005). Patterns in hydraulic architecture and their implications for transport efficiency. Tree Physiology, 25, 257-267.
DOI URL PMID |
[31] |
McDonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57.
DOI URL |
[32] |
Milla R (2009). The leafing intensity premium hypothesis tested across clades, growth forms and altitudes. Journal of Ecology, 97, 972-983.
DOI URL |
[33] |
Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos, 90, 517-524.
DOI URL |
[34] | Molles MC, Cahill JF (1999). Ecology: Concepts and Applications. McGraw-Hill, New York. 509. |
[35] |
Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171, 91-104.
DOI URL PMID |
[36] |
Niklas KJ (1988). The role of phyllotatic pattern as a “developmental constraint” on the interception of light by leaf surfaces. Evolution, 42, 1-16.
DOI URL PMID |
[37] |
Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896.
DOI URL PMID |
[38] |
Niklas KJ, Enquist BJ (2002). Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany, 89, 812-819.
DOI URL PMID |
[39] | Ogawa K (2008). The leaf mass/number trade-off of Kleiman and Aarssen implies constancy of leaf biomass, its density and carbon uptake in forest stands: scaling up from shoot to stand level. Journal of Ecology, 96, 188-191. |
[40] |
Parkhurst DF, Loucks OL (1972). Optimal leaf size in relation to environment. The Journal of Ecology, 60, 505-537.
DOI URL |
[41] |
Pickup M, Westoby M, Basden A (2005). Dry mass costs of deploying leaf area in relation to leaf size. Functional Ecology, 19, 88-97.
DOI URL |
[42] |
Pitman EJG (1939). A note on normal correlation. Biometrika, 31, 9-12.
DOI URL |
[43] |
Poorter HS, Pepin S, Rijkers T, de Jong Y, Evans JR, Körner C (2006). Construction costs, chemical composition and payback time of high- and low-irradiance leaves. Journal of Experimental Botany, 57, 355-371.
DOI URL PMID |
[44] |
Preston KA, Ackerly DD (2003). Hydraulic architecture and the evolution of shoot allometry in contrasting climates. American Journal of Botany, 90, 1502-1512.
DOI URL PMID |
[45] | Qian H (钱宏), Wang SL (汪思龙) (1988). Major forest vegetation types and their distributions in Qingliang Mountain Natural Reserve (JQNR) of Jixi County, Anhui Province. Journal of Ecology (生态学杂志) 7, 32-36. (in Chinese with English abstract) |
[46] |
Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin C, Bowman WD (1999). Generality of leaf trait relationships: a test across six biomes. Ecology, 80, 1955-1969.
DOI URL |
[47] |
Reich PB, Walters MB, Ellsworth DS (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392.
DOI URL |
[48] | Shao XP (邵小平) (2011). Vegetation types and vertical distribution zones spectrum analysis of Qingliang Mountain Natural Reserve in Anhui. Anhui Agricultural Science Bulletin (安徽农学通报) 17, 55-56. (in Chinese with English abstract). |
[49] | Song CS (宋朝枢) (1997). Scientific Survey of the Qingliang Mountain Natural Reserve in Zhejiang (浙江清凉峰自然保护区科学考察集). China Forestry Publishing House, Beijing. (in Chinese) |
[50] |
Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
DOI URL PMID |
[51] |
Walter A, Schurr U (2005). Dynamics of leaf and root growth: endogenous control versus environmental impact. Annuals of Botany, 95, 891-900.
DOI URL |
[52] |
Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174.
DOI URL |
[53] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
DOI URL PMID |
[54] |
Watson MA, Casper BB (1984). Morphogenetic constraints on patterns of carbon distribution in plants. Annual Review of Ecology and Systematics, 15, 233-258.
DOI URL |
[55] |
Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
DOI URL |
[56] |
Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.
DOI URL PMID |
[57] |
Whitman T, Aarssen LW (2010). The leaf size/number trade-off in herbaceous angiosperms. Journal of Plant Ecology, 3, 49-58.
DOI URL |
[58] | Woodward FI (1987). Climate and Plant Distribution. Cambridge University Press, Cambridge, UK. 174. |
[59] |
Woodward FI, Lomas MR, Kelly CK (2004). Global climate and the distribution of plant biomes. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 359, 1465-1476.
DOI URL PMID |
[60] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller- Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99, 1003-1015.
DOI URL PMID |
[61] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH., Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westobyet M (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411-421.
DOI URL |
[62] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[63] |
Wright IJ, Westoby M, Reich PB (2002). Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 90, 534-543.
DOI URL |
[64] |
Xiang S, Liu YL, Fang F, Wu N, Sun SC (2009a). Stem architectural effect on leaf size, leaf number, and leaf mass fraction in plant twigs of woody species. International Journal of Plant Sciences, 170, 999-1008.
DOI URL |
[65] |
Xiang S, Wu N, Sun SC (2009b). Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis. Trees-Structure and Function, 23, 637-647.
DOI URL |
[66] |
Xiang S, Wu N, Sun SC (2010). Testing the generality of the “leafing intensity premium” hypothesis in temperate broad-leaved forests: a survey of variation in leaf size within and between habitats. Evolutionary Ecology, 24, 685-701.
DOI URL |
[67] |
Yagi T (2004). Within-tree variations in shoot differentiation patterns of 10 tall tree species in a Japanese cool- temperate forest. Canadian Journal of Botany, 82, 228-243.
DOI URL |
[68] |
Yagi T (2006). Relationships between shoot size and branching patterns in 10 broad-leaved tall tree species in a Japanese cool-temperate forest. Canadian Journal of Botany, 84, 1894-1907.
DOI URL |
[69] |
Yagi T, Kikuzawa K (1999). Patterns in size-related variations in current-year shoot structure in eight deciduous tree species. Journal of Plant Research, 112, 343-352.
DOI URL |
[70] |
Yang DM, Li GY, Sun SC (2008). The generality of leaf size versus number trade-off in temperate woody species. Annuals of Botany, 102, 623-629.
DOI URL |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[3] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[4] | 石荡, 郭传超, 蒋南林, 唐莹莹, 郑凤, 王瑾, 廖康, 刘立强. 新疆野杏天然更新幼株的个体特征及空间分布格局[J]. 植物生态学报, 2023, 47(4): 515-529. |
[5] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[6] | 汪晶晶, 王嘉浩, 黄致云, Vanessa Chiamaka OKECHUKW, 胡蝶, 祁珊珊, 戴志聪, 杜道林. 不同氮水平下内生固氮菌对入侵植物南美蟛蜞菊生长策略的影响[J]. 植物生态学报, 2023, 47(2): 195-205. |
[7] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[8] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[9] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
[10] | 孟庆静, 樊卫国. 刺梨的适钙类型及对高钙生境的适应性[J]. 植物生态学报, 2022, 46(12): 1562-1572. |
[11] | 钟雨辰, 王斌, 方中平, 徐小忠, 于明坚. 片段化景观中壳斗科植物种子捕食和扩散模式[J]. 植物生态学报, 2021, 45(2): 154-162. |
[12] | 李豪, 马如玉, 强波, 贺聪, 韩路, 王海珍. 胡杨当年生小枝茎构型对展叶效率的影响[J]. 植物生态学报, 2021, 45(11): 1251-1262. |
[13] | 李耀琪, 王志恒. 植物叶片形态的生态功能、地理分布与成因[J]. 植物生态学报, 2021, 45(10): 1154-1172. |
[14] | 韩大勇, 张维, 努尔买买提•依力亚斯, 杨允菲. 植物种群更新的补充限制[J]. 植物生态学报, 2021, 45(1): 1-12. |
[15] | 曹嘉瑜, 刘建峰, 袁泉, 徐德宇, 樊海东, 陈海燕, 谭斌, 刘立斌, 叶铎, 倪健. 森林与灌丛的灌木性状揭示不同的生活策略[J]. 植物生态学报, 2020, 44(7): 715-729. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19