植物生态学报 ›› 2013, Vol. 37 ›› Issue (12): 1101-1113.DOI: 10.3724/SP.J.1258.2013.00113
唐钢梁1,2,3, 李向义1,3,*(), 林丽莎1,3, 李磊1,2,3, 鲁建荣1,2,3
收稿日期:
2013-06-03
接受日期:
2013-10-08
出版日期:
2013-06-03
发布日期:
2013-12-04
通讯作者:
李向义
作者简介:
* E-mail: lixy@ms.xjb.ac.cn基金资助:
TANG Gang-Liang1,2,3, LI Xiang-Yi1,3,*(), LIN Li-Sha1,3, LI Lei1,2,3, LU Jian-Rong1,2,3
Received:
2013-06-03
Accepted:
2013-10-08
Online:
2013-06-03
Published:
2013-12-04
Contact:
LI Xiang-Yi
摘要:
随着气候条件的改变, 人口和载畜量的日益增加, 塔克拉玛干沙漠南缘策勒绿洲主要植物种群花花柴(Karelinia caspia)和骆驼刺(Alhagi sparsifolia)正遭受日益严重的虫噬、放牧等机械损伤的影响, 干扰因子对花花柴和骆驼刺的影响日趋明显。以塔克拉玛干南缘沙漠策勒绿洲主要建群种花花柴和骆驼刺为材料, 测量了韧皮部环割处理10天后, 光合色素含量和光系统II (PSII)叶绿素荧光的变化。结果表明: (1)在韧皮部半割处理下, 花花柴、骆驼刺的光合色素含量和叶绿素荧光变化都不明显。(2)在韧皮部全割处理下, 花花柴、骆驼刺的光合色素含量和叶绿素荧光各参数变化较大, 在该处理下, 两种植物光合原初反应被抑制, PSII结构和功能遭到损害, 活性降低, 光合器官对光能的吸收、传递、转化和电子捕获等过程被抑制。(3)韧皮部全割对花花柴和骆驼刺各生理状况产生较大影响, 相比而言, 环割对花花柴的影响更为持久。对于单个植株而言, 机械损伤对花花柴的破坏损伤更为显著。(4)在环割对花花柴和骆驼刺光合速率的影响中, 存在着依赖于碳水化合物(carbohydrate-dependent)的机制。
唐钢梁, 李向义, 林丽莎, 李磊, 鲁建荣. 短期环割对塔克拉玛干沙漠南缘两种荒漠植物的生理影响. 植物生态学报, 2013, 37(12): 1101-1113. DOI: 10.3724/SP.J.1258.2013.00113
TANG Gang-Liang, LI Xiang-Yi, LIN Li-Sha, LI Lei, LU Jian-Rong. Effects of short-term phloem girdling on physiology in two desert plants in the southern edge of the Taklimakan Desert. Chinese Journal of Plant Ecology, 2013, 37(12): 1101-1113. DOI: 10.3724/SP.J.1258.2013.00113
图1 韧皮部环割对花花柴和骆驼刺叶片光合色素含量的影响(平均值±标准偏差)。Car, 类胡萝卜素; Chl, 叶绿素。CK, 对照组; FG, 韧皮部全割; SG, 韧皮部半割。不同字母表示差异达到显著水平(p < 0.05)。
Fig. 1 Effects on photosynthetic pigments in leaves of Karelinia caspia and Alhagi sparsifolia by phloem girdling (mean ± SD). Car, carotenoid; Chl, chlorophyll. CK, control; FG, full-girdling; SG, semi-girdling. Different letters indicate significant difference (p < 0.05).
图2 韧皮部环割对花花柴和骆驼刺PSII原初光化学效率和初始荧光参数的影响(平均值±标准偏差)。不同字母表示差异达到显著水平(p < 0.05)。CK、FG、SG同图1。Fo, 初始荧光; Fm, 最大荧光; Fv, 可变荧光; Fv/Fo, PSII潜在活性; Fv/Fm, PSII最大光化学量子产量; Mo, 荧光诱导曲线初始斜率。
Fig. 2 Effects on PSII photochemical efficiency and initial fluorescence parameters in Karelinia caspia and Alhagi sparsifolia by phloem girdling (mean ± SD). Different letters indicate significant difference (p < 0.05). CK, FG, SG see Fig.1. Fo, initial fluorescence; Fm, maximum fluorescence; Fv, variable fluorescence; Fv/Fo, PSII potential activity; Fv/Fm, PSII maximum quantum yield; Mo, initial slope of the fluorescence induction curve.
种 Species | 参数 Parameter | 处理 Treatment | ||||
---|---|---|---|---|---|---|
CK | PS | 增幅 Amplification (%) | PF | 增幅 Amplification (%) | ||
花花柴 K. caspia | ABS/RC | 2.38 ± 0.20 | 2.39 ± 0.20 | 0.48 | 2.64 ± 0.31* | 11.09 |
ETo/RC | 1.17 ± 0.06 | 1.15 ± 0.09 | -1.68 | 1.14 ± 0.08 | -2.07 | |
TRo/RC | 1.89 ± 0.14 | 1.90 ± 0.14 | 0.44 | 1.97 ± 0.16 | 4.05 | |
DIo/RC | 0.49 ± 0.08 | 0.49 ± 0.08 | 0.63 | 0.67 ± 0.15** | 38.54 | |
φpo | 0.80 ± 0.02 | 0.80 ± 0.02 | -0.06 | 0.75 ± 0.03** | -6.08 | |
ψo | 0.62 ± 0.04 | 0.60 ± 0.03 | -2.36 | 0.58 ± 0.05* | -5.82 | |
ΦEo | 0.49 ± 0.05 | 0.48 ± 0.04 | -2.43 | 0.44 ± 0.05** | -11.44 | |
RC/CS | 717.19 ± 215.54 | 725.14 ± 184.65 | 1.11 | 606.83 ± 153.19 | -15.39 | |
PIABS | 2.93 ± 1.22 | 2.64 ± 0.75 | -10.10 | 1.78 ± 0.88** | -39.42 | |
骆驼刺 A. sparsifolia | ABS/RC | 2.89 ± 0.15 | 2.96 ± 0.15 | 2.44 | 3.57 ± 0.49** | 23.69 |
ETo/RC | 1.18 ± 0.18 | 1.13 ± 0.16 | -4.33 | 1.21 ± 0.14 | 2.55 | |
TRo/RC | 2.35 ± 0.12 | 2.38 ± 0.11 | 1.03 | 2.64 ± 0.11** | 12.26 | |
DIo/RC | 0.53 ± 0.06 | 0.58 ± 0.07 | 8.62 | 0.93 ± 0.29** | 73.93 | |
φpo | 0.81 ± 0.02 | 0.80 ± 0.02 | -1.34 | 0.74 ± 0.05** | -8.59 | |
ψo | 0.50 ± 0.06 | 0.48 ± 0.06 | -5.30 | 0.46 ± 0.06 | -8.15 | |
ΦEo | 0.41 ± 0.06 | 0.38 ± 0.05 | -6.69 | 0.34 ± 0.06** | -15.91 | |
RC/CS | 773.89 ± 38.80 | 750.21 ± 74.53 | -3.06 | 585.32 ± 136.85** | -24.37 | |
PIABS | 1.64 ± 0.57 | 1.32 ± 0.43 | -19.78 | 0.81 ± 0.42** | -50.69 |
表1 环割处理后花花柴和骆驼刺叶片主要叶绿素荧光参数的变化(平均值±标准误差)
Table 1 Changes in main chlorophyll fluorescence parameters in leaves of Karelinia caspia and Alhagi sparsifolia with girdling treatments (mean ± SE)
种 Species | 参数 Parameter | 处理 Treatment | ||||
---|---|---|---|---|---|---|
CK | PS | 增幅 Amplification (%) | PF | 增幅 Amplification (%) | ||
花花柴 K. caspia | ABS/RC | 2.38 ± 0.20 | 2.39 ± 0.20 | 0.48 | 2.64 ± 0.31* | 11.09 |
ETo/RC | 1.17 ± 0.06 | 1.15 ± 0.09 | -1.68 | 1.14 ± 0.08 | -2.07 | |
TRo/RC | 1.89 ± 0.14 | 1.90 ± 0.14 | 0.44 | 1.97 ± 0.16 | 4.05 | |
DIo/RC | 0.49 ± 0.08 | 0.49 ± 0.08 | 0.63 | 0.67 ± 0.15** | 38.54 | |
φpo | 0.80 ± 0.02 | 0.80 ± 0.02 | -0.06 | 0.75 ± 0.03** | -6.08 | |
ψo | 0.62 ± 0.04 | 0.60 ± 0.03 | -2.36 | 0.58 ± 0.05* | -5.82 | |
ΦEo | 0.49 ± 0.05 | 0.48 ± 0.04 | -2.43 | 0.44 ± 0.05** | -11.44 | |
RC/CS | 717.19 ± 215.54 | 725.14 ± 184.65 | 1.11 | 606.83 ± 153.19 | -15.39 | |
PIABS | 2.93 ± 1.22 | 2.64 ± 0.75 | -10.10 | 1.78 ± 0.88** | -39.42 | |
骆驼刺 A. sparsifolia | ABS/RC | 2.89 ± 0.15 | 2.96 ± 0.15 | 2.44 | 3.57 ± 0.49** | 23.69 |
ETo/RC | 1.18 ± 0.18 | 1.13 ± 0.16 | -4.33 | 1.21 ± 0.14 | 2.55 | |
TRo/RC | 2.35 ± 0.12 | 2.38 ± 0.11 | 1.03 | 2.64 ± 0.11** | 12.26 | |
DIo/RC | 0.53 ± 0.06 | 0.58 ± 0.07 | 8.62 | 0.93 ± 0.29** | 73.93 | |
φpo | 0.81 ± 0.02 | 0.80 ± 0.02 | -1.34 | 0.74 ± 0.05** | -8.59 | |
ψo | 0.50 ± 0.06 | 0.48 ± 0.06 | -5.30 | 0.46 ± 0.06 | -8.15 | |
ΦEo | 0.41 ± 0.06 | 0.38 ± 0.05 | -6.69 | 0.34 ± 0.06** | -15.91 | |
RC/CS | 773.89 ± 38.80 | 750.21 ± 74.53 | -3.06 | 585.32 ± 136.85** | -24.37 | |
PIABS | 1.64 ± 0.57 | 1.32 ± 0.43 | -19.78 | 0.81 ± 0.42** | -50.69 |
[1] |
Appenroth K, Stöckel J, Srivastava A, Strasser RJ (2001). Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environmental Pollution, 115, 49-64.
URL PMID |
[2] | Asada K (2000). The water-water cycle as alternative photon and electron sinks. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 355, 1419-1431. |
[3] | Azcón-Bieto J (1983). Inhibition of photosynthesis by carbohydrates in wheat leaves. Plant Physiology, 73, 681-686. |
[4] |
Björkman O, Demmig B (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489-504.
URL PMID |
[5] | Booker J, Chatfield S, Leyser O (2003). Auxin acts in xylem-associated or medullary cells to mediate apical dominance. The Plant Cell Online, 15, 495-507. |
[6] | Briantais J, Vernotte C, Picaud M, Krause GH (1980). Chlorophyll fluorescence as a probe for the determina- tion of the photo-induced proton gradient in isolated chloroplasts. Biochimica et Biophysica Acta Bioene- rgetics, 591, 198-202. |
[7] |
Burton GW, Ingold KU (1984). Beta-carotene: an unusual type of lipid antioxidant. Science, 224, 569-573.
DOI URL PMID |
[8] | Cai HC, Cui HX, Song WT, Gao LH (2006). Preliminary study on photosynthetic pigment content and color feature of cucumber initial bloom stage. Transactions of the Chinese Society of Agricultural Engineering, 22(9), 34-38. (in Chinese with English abstract) |
[ 蔡鸿昌, 崔海信, 宋卫堂, 高丽红 (2006). 黄瓜初花期叶片光合色素含量与颜色特征的初步研究. 农业工程学报, 22(9), 34-38.] | |
[9] | Chacko EK (1989). Mango flowering-still an enigma! Acta horticulturae, 291, 12-21. |
[10] | Chen D, Zhang Y, Lin YB, Zhu WX, Fu SL (2010). Changes in belowground carbon in Acacia crassicarpa and Eucalyptus urophylla plantations after tree girdling. Plant and Soil, 326, 123-135. |
[11] | Chen YZ, Li XP, Xia L, Guo JY (1995). The application of chlorophyll fluorescence technique in the study of responses of plants to environmental stresses. Journal of Tropical and Subtropical Botany, 3(4), 79-86. (in Chinese with English abstract) |
[ 陈贻竹, 李晓萍, 夏丽, 郭俊彦 (1995). 叶绿素荧光技术在植物环境胁迫研究中的应用. 热带亚热带植物学报, 3(4), 79-86.] | |
[12] | Cheng JF, Hu FH, Shen YG (2010). Effects of NaHSO3 on the growth and contents of photosynthetic pigments in Dunaliella salina. Journal of Tropical Oceanography, 29(3), 65-70. (in Chinese with English abstract) |
[ 程建峰, 胡芬红, 沈允钢 (2010). NaHSO3对盐生杜氏藻生长和光合色素含量的影响. 热带海洋学报, 29(3), 65-70.] | |
[13] | Costa ES, Bressan-Smith R, de Oliveira JG, Campostrini E, Pimentel C (2002). Photochemical efficiency in bean plants (Phaseolus vulgaris L. and Vigna unguiculata L. Walp) during recovery from high temperature stress. Brazilian Journal of Plant Physiology, 14, 105-110. |
[14] | Crofts AR, Baroli I, Kramer D, Taoka S (1993). Kinetics of electron transfer between QA and QB in wild type and herbicide-resistant mutants of Chlamydomonas reinhardtii. Zeitschrift fur Naturforschung Section C, Biosciences, 48, 259-266. |
[15] | Demmig-Adams B, Adams WW III (1992). Photoprotection and other responses of plants to high light stress. Annual Review of Plant Biology and Plant Molecular Biology, 43, 599-626. |
[16] | Demmig-Adams B, Adams WW III (1993). The xanthophyll cycle. In: Young AJ, Britton G eds. Carotenoids in Photosynthesis. Springer, Berlin. 206-251. |
[17] | Demmig-Adams B, Adams WW III (1996). Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta, 198, 460-470. |
[18] | Di Vaio C, Petito A, Buccheri M (2001). Effect of girdling on gas exchanges and leaf mineral content in the “Independence” nectarine. Journal of Plant Nutrition, 24, 1047-1060. |
[19] |
Eltom M, Trought M, Winefield C (2013). The effects of cane girdling before budbreak on shoot growth, leaf area and carbohydrate content of Vitis vinifera L. Sauvignon Blanc grapevines. Functional Plant Biology, 40, 749-757.
URL PMID |
[20] | Force L, Critchley C, van Rensen JJ (2003). New fluorescence parameters for monitoring photosynthesis in plants. Photosynthesis Research, 78, 17-33. |
[21] | Foyer CH (1988). Feedback inhibition of photosynthesis through source-sink regulation in leaves. Plant Physiology and Biochemistry, 26, 483-492. |
[22] | Glad C, Regnard JL, Querou Y, Brun O, Morot-Gaudry JF (1992). Phloem sap exudates as a criterion for sink strength appreciation in Vitis vinifera cv. Pinot noir grapevines. Vitis, 31, 131-138. |
[23] | Goldschmidt EE, Huber SC (1992). Regulation of photosynthesis by end-product accumulation in leaves of plants storing starch, sucrose, and hexose sugars. Plant Physiology, 99, 1443-1448. |
[24] | Hao XY, Han X, Li P, Yang HB, Lin ED (2011). Effects of elevated atmospheric CO2 concentration on mung bean leaf photosynthesis and chlorophyll fluorescence parameters. Chinese Journal of Ecology, 22, 2776-2780. (in Chinese with English abstract) |
[ 郝兴宇, 韩雪, 李萍, 杨宏斌, 林而达 (2011). 大气CO2浓度升高对绿豆叶片光合作用及叶绿素荧光参数的影响. 应用生态学报, 22, 2776-2780.] | |
[25] | Holzwarth AR, Lenk D, Jahns P (2013). On the analysis of non-photochemical chlorophyll fluorescence quench- ing curves I. Theoretical considerations. Biochimica et Biophysica Acta-Bioenergetics, 1827, 786-792. |
[26] |
Högberg P, Nordgren A, Buchmann N, Taylor AF, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001). Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature, 411, 789-792.
URL PMID |
[27] | Huang CB, Zeng FJ, Lei JQ (2011). Effects of stubble height on aboveground growth and yield of Alhagi sparsifolia. Acta Agrectir Sinica, 19, 948-953. (in Chinese with English abstract) |
[ 黄彩变, 曾凡江, 雷加强 (2011). 留茬高度对骆驼刺生长发育和产草量的影响. 草地学报, 19, 948-953.] | |
[28] | Jeannette E, Reyss A, Grégory N, Gantet P, Prioul JL (2000). Carbohydrate metabolism in a heat-girdled maize source leaf. Plant, Cell & Environment, 23, 61-69. |
[29] | Jia L, An LZ (2004). Studies of desalting ability and desalting structure in Karelinia caspica. Acta Botanica Boreali-Occidentalia Sinica, 24, 510-515. (in Chinese with English abstract) |
[ 贾磊, 安黎哲 (2004). 花花柴脱盐能力及脱盐结构研究. 西北植物学报, 24, 510-515.] | |
[30] | Johnson P (1974). Effects of defoliation, girdling, and severing of sugar maple trees on root starch and sugar levels. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Upper Darby, USA. |
[31] | Kehr J (2006). Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. Journal of Experimental Botany, 57, 767-774. |
[32] | Klaus AA, Lysenko EA, Kholodova VP (2013). Maize plant growth and accumulation of photosynthetic pigments at short-and long-term exposure to cadmium. Russian Journal of Plant Physiology, 60, 250-259. |
[33] |
Koch KE (1996). Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 509-540.
URL PMID |
[34] | Krause GH, Weis E (1984). Chlorophyll fluorescence as a tool in plant physiology. Photosynthesis Research, 5, 139-157. |
[35] | Krause GH, Weis E (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42, 313-349. |
[36] | Kriedemann PE, Lenz F (1972). The response of vine leaf photosynthesis to shoot tip excision and stem cincturing. Vitis, 11, 193-197. |
[37] | Li CY, Weiss D, Goldschmidt EE (2003). Girdling affects carbohydrate-related gene expression in leaves, bark and roots of alternate-bearing citrus trees. Annals of Botany-London, 92, 137-143. |
[38] | Li HS (2003). Plant Physiological Biochemical Experiment Principles and Techniques. Higher Education Press, Beijing. 137. (in Chinese) |
[ 李合生 (2003). 植物生理生化试验原理和技术. 高等教育出版社, 北京. 137.] | |
[39] |
Li PM, Gao HY, Strasser RJ (2005). Application of the fast chlorophyll fluorescence induction dynamics analysis in photosynthesis study. Journal of Plant Physiology and Molecular Biology, 31, 559-566. (in Chinese with English abstract)
URL PMID |
[ 李鹏民, 高辉远, Strasser RJ (2005). 快速叶绿素荧光诱导动力学分析在光合作用研究中的应用. 植物生理与分子生物学学报, 31, 559-566.]
PMID |
|
[40] | Löf M, Welander NT (1998). Evaluation of Granier’s sap flux sensor in young mango trees. Agronomie, 18, 461-471. |
[41] | MacDougal DT (1943). The effects of girdling on pines. American Journal of Botany, 30, 715-719. |
[42] |
Mathur S, Jajoo A, Mehta P, Bharti S (2011). Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves (Triticum aestivum). Plant Biology, 13, 1-6.
DOI URL PMID |
[43] | Noel A (1970). The girdled tree. The Botanical Review, 36, 162-195. |
[44] | Nordgren A, Ottosson Löfvenius M, Högberg MN, Mel- lander PE, Högberg P (2003). Tree root and soil het- erotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant, Cell & Environment, 26, 1287-1296. |
[45] | Papageorgiou G (1975). Chlorophyll fluorescence: an intrinsic probe of photosynthesis. Bioenergetics of Photosynthesis, 319-371. |
[46] |
Paul MJ, Foyer CH (2001). Sink regulation of photosynthesis. Journal of Experimental Botany, 52, 1383-1400.
URL PMID |
[47] |
Paul MJ, Pellny TK (2003). Carbon metabolite feedback regulation of leaf photosynthesis and development. Journal of Experimental Botany, 54, 539-547.
DOI URL PMID |
[48] | Quick WP, Stitt M (1989). An examination of factors contributing to non-photochemical quenching of chlorophyll fluorescence in barley leaves. Biochimica et Biophysica Acta Bioenergetics, 977, 287-296. |
[49] |
Robert HS, Friml J (2009). Auxin and other signals on the move in plants. Nature Chemical Biology, 5, 325-332.
DOI URL PMID |
[50] |
Roper TR, Williams LE (1989). Net CO2 assimilation and carbohydrate partitioning of grapevine leaves in response to trunk girdling and gibberellic acid application. Plant Physiology, 89, 1136-1140.
DOI URL PMID |
[51] | Salleo S, Gullo MAL, de Paoli D, Zippo M (1996). Xylem recovery from cavitation-induced embolism in young plants of Laurus nobilis: a possible mechanism. New Phytologist, 132, 47-56. |
[52] | Schaper H, Chacko EK (1993). Effect of irradiance, leaf age, chlorophyll content and branch-girdling on gas exchange of cashew (Anacardium occidentale L.) leaves. Journal of Horticultural Science, 68, 541-550. |
[53] | Schubert H, Andersson M, Snoeijs P (2006). Relationship between photosynthesis and non-photochemical quenching of chlorophyll fluorescence in two red algae with different carotenoid compositions. Marine Biology, 149, 1003-1013. |
[54] | Scott Denton LE, Rosenstiel TN, Monson RK (2006). Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. Global Change Biology, 12, 205-216. |
[55] | Strasser RJ, Srivastava A, Tsimilli-Michael M (2006). The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P eds. Probing Photosynthesi. Taylor and Francis Press, London. 445-483. |
[56] | Strasser RJ, Tsimilli-Michael M, Srivastava A (2004). Analysis of the chlorophyll a fluorescence transient. Advances in Photosynthesis and Respiration, 19, 321-362. |
[57] | Su H, Hu DQ, Lin ZF, Lin GZ, Kong GH, Peng CL (2002). Effect of air pollution on the chlorophyll fluorescence characters of two afforestation plants in Guangzhou. Acta Phytoecologica Sinica, 26, 599-604. |
[ 苏行, 胡迪琴, 林植芳, 林桂珠, 孔国辉, 彭长连 (2002). 广州市大气污染对两种绿化植物叶绿素荧光特性的影响. 植物生态学报, 26, 599-604.] | |
[58] |
Synková H, Wilhelmová N, Holá D, Haisel D, Šesták Z (1998). Comparison of chlorophyll fluorescence kinetics and photochemical activities of isolated chloroplasts in genetic analysis of Lycopersicon esculentum Mill. hybrids. Photosynthetica, 34, 427-438.
DOI URL |
[59] | Taiz L, Zeiger E (2006). Plant Physiology. Sinauer Associate, Sunderland. 128-138. |
[60] |
Urban L, Alphonsout L (2007). Girdling decreases photosynthetic electron fluxes and induces sustained photoprotection in mango leaves. Tree Physiology, 27, 345-352.
DOI URL PMID |
[61] |
Urban L, Léchaudel M, Lu P (2004). Effect of fruit load and girdling on leaf photosynthesis in Mangifera indica L. Journal of Experimental Botany, 55, 2075-2085.
DOI URL PMID |
[62] |
Willekens H, van Camp W, van Montagu M, Inze D, Langebartels C, Sandermann H Jr (1994). Ozone, sul- fur dioxide, and ultraviolet B have similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifolia L. Plant Physiology, 106, 1007-1014.
DOI URL PMID |
[63] | Williams LE, Retzlaff WA, Yang WG, Biscay PJ, Ebisuda N (2000). Effect of girdling on leaf gas exchange, water status, and non-structural carbohydrates of field-grown Vitis vinifera L. (cv. Flame Seedless). American Journal of Enology and Viticulture, 51, 49-54. |
[64] | Wilson BF (1981). Apical control of diameter growth in white pine branches. Forest Science, 27, 95-101. |
[65] |
Wilson BF, Gartner BL (2002). Effects of phloem girdling in conifers on apical control of branches, growth allocation and air in wood. Tree Physiology, 22, 347-353.
DOI URL PMID |
[66] | Xue W, Li XY, Lin LS, Wang YJ, Li L (2011). Effects of short time heat stress on photosystem II, Rubisco activities and oxidative radicals in Alhagi sparsifolia. Chinese Journal of Plant Ecology, 35, 441-451. (in Chinese with English abstract) |
[ 薛伟, 李向义, 林丽莎, 王迎菊, 李磊 (2011). 短时间热胁迫对疏叶骆驼刺光系统II、Rubisco活性和活性氧化剂的影响. 植物生态学报, 35, 441-451.] | |
[67] | Yi YH, Fan DY, Xie ZQ, Chen FQ (2006). Effects of waterlogging on the gas exchange, chlorophyll fluorescence and water potential of Quercus variabilis and Pterocarya stenoptera. Journal of Plant Ecology (Chinese Version), 30, 960-968. (in Chinese with English abstract) |
[ 衣英华, 樊大勇, 谢宗强, 陈芳清 (2006). 模拟淹水对枫杨和栓皮栎气体交换, 叶绿素荧光和水势的影响. 植物生态学报, 30, 960-968.] | |
[68] | Yin HL, Tian CY (2013). Effects of nitrogen regulation on photosystem II chlorophyll fluorescence characteristics of functional leaves in sugar beet (Beta vulgaris) under salt environment. Chinese Journal of Plant Ecology, 37, 122-131. (in Chinese with English abstract) |
[ 尹海龙, 田长彦 (2013). 氮调控对盐环境下甜菜功能叶光系统II荧光特性的影响. 植物生态学报, 37, 122-131.] | |
[69] | You X, Gong JX, Ge ZW, Duan QW, An R, Chen DH, Zhang XS (2009). Light energy utilization and chlorophyll fluorescence in two crossbreed poplars. Chinese Journal of Plant Ecology, 33, 1148-1155. (in Chinese with English abstract) |
[ 尤鑫, 龚吉蕊, 葛之葳, 段庆伟, 安然, 陈冬花, 张新时 (2009). 两种杂交杨叶绿素荧光特性及光能利用. 植物生态学报, 33, 1148-1155.] | |
[70] | Zeng FJ, Liu B, He JX, Zhang XL, Liu Z, An GX, Zeng J (2010). Effect of irrigation on nitrogen characteristics of Alhagi sparsifolia seedlings. Acta Ecologica Sinica, 30, 2118-2127. (in Chinese with English abstract) |
[ 曾凡江, 刘波, 贺俊霞, 张晓蕾, 刘镇, 安桂香, 曾杰 (2010). 骆驼刺幼苗氮素特征对不同灌溉量的响应. 生态学报, 30, 2118-2127.] | |
[71] | Zhang SR (1999). A discussion on chlorophyll fluorescence kinetics parameters and their significance. Chinese Bulletin of Botany, 16, 444-448. (in Chinese with English abstract) |
[ 张守仁 (1999). 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 16, 444-448.] | |
[72] | Zhao HJ, Zhou Q, Yu ZW (2000). Chlorophyll fluoresence analysis technique and its application to photosynthesis of plant. Journal of He’nan Agricultural University, 34, 248-251. (in Chinese with English abstract) |
[ 赵会杰, 邹琦, 于振文 (2000). 叶绿素荧光分析技术及其在植物光合机理研究中的应用. 河南农业大学学报, 34, 248-251.] | |
[73] | Zhou R, Quebedeaux B (2003). Changes in photosynthesis and carbohydrate metabolism in mature apple leaves in response to whole plant source-sink manipulation. Journal of the American Society for Horticultural Science, 128, 113-119. |
[74] | Zhou S, Lin FP, Wang YK, Shen YB, Zhang RM, Gao RF, Gao Y (2012). Effects of mechanical damage of leaves on volatile organic compounds and chlorophyll fluorescence parameters in seedlings of Cinnamomum camphora. Chinese Journal of Plant Ecology, 36, 671-680. (in Chinese with English abstract) |
[ 周帅, 林富平, 王玉魁, 沈应柏, 张汝民, 高荣孚, 高岩 (2012). 樟树幼苗机械损伤叶片对挥发性有机化合物及叶绿素荧光参数的影响. 植物生态学报, 36, 671-680.] | |
[75] |
Zhou YH, Huang LF, Yu JQ (2004). Effects of sustained chilling and low light on gas exchange, chlorophyll fluorescence quenching and absorbed light allocation in cucumber leaves. Journal of Plant Physiology and Molecular Biology, 30, 153-160. (in Chinese with English abstract)
URL PMID |
[ 周艳虹, 黄黎锋, 喻景权 (2004). 持续低温弱光对黄瓜叶片气体交换, 叶绿素荧光猝灭和吸收光能分配的影响. 植物生理与分子生物学学报, 30, 153-160.]
PMID |
|
[76] | Zwieniecki MA, Holbrook NM (1998). Diurnal variation in xylem hydraulic conductivity in white ash (Fraxinus americana L.), red maple (Acer rubrum L.) and red spruce (Picea rubens Sarg.). Plant, Cell & Environment, 21, 1173-1180. |
[1] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[2] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[3] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[4] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[5] | 冼应男, 张瑛, 李宝珍, 罗沛, 肖润林, 吴金水. 绿狐尾藻光合色素组成及氮磷化学计量学特征对外源铵的响应[J]. 植物生态学报, 2022, 46(4): 451-460. |
[6] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[7] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[8] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[9] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[10] | 郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435. |
[11] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[12] | 蔡建国, 韦孟琪, 章毅, 魏云龙. 遮阴对绣球光合特性和叶绿素荧光参数的影响[J]. 植物生态学报, 2017, 41(5): 570-576. |
[13] | 翟占伟, 龚吉蕊, 罗亲普, 潘琰, 宝音陶格涛, 徐沙, 刘敏, 杨丽丽. 氮添加对内蒙古温带草原羊草光合特性的影响[J]. 植物生态学报, 2017, 41(2): 196-208. |
[14] | 樊大勇, 付增娟, 谢宗强, 李荣贵, 张淑敏. 调制式荧光影像新技术: 叶片内部最大光化学量子效率及其异质性的活体测定[J]. 植物生态学报, 2016, 40(9): 942-951. |
[15] | 刘畅, 孙鹏森, 刘世荣. 植物反射光谱对水分生理变化响应的研究进展[J]. 植物生态学报, 2016, 40(1): 80-91. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19