植物生态学报 ›› 2018, Vol. 42 ›› Issue (3): 307-316.DOI: 10.17521/cjpe.2015.1086
出版日期:
2018-03-20
发布日期:
2017-06-16
通讯作者:
盛建东
基金资助:
ZHANG Jing,LIU Yun-Hua,SHENG Jian-Dong*(),CHAI Qiang,LI Rui-Xia,ZHAO Dan
Online:
2018-03-20
Published:
2017-06-16
Contact:
Jian-Dong SHENG
Supported by:
摘要:
灌木在维持干旱半干旱区生态系统稳定性方面发挥着重要的作用。该研究调查了新疆北部草地典型灌木物种, 并分析了这些灌木叶、枝、茎的碳(C)、氮(N)含量特征, 可为新疆草地植被碳氮储量的准确估算以及碳氮循环过程提供基础数据。结果表明: 北疆地区草地的典型灌木有白刺(Nitraria spp.)、刺旋花(Convolvulus tragacanthoides)、红砂(Reaumuria soongarica)、假木贼(Anabasis spp.)、 锦鸡儿(Caragana spp.)、麻黄(Ephedra spp.)、沙拐枣(Calligonum mongolicum)、梭梭(Haloxylon spp.)、金丝桃叶绣线菊(Spiraea hypericifolia)、驼绒藜(Krascheninnikovia spp.)、小蓬(Nanophyton erinaceum)、盐爪爪(Kalidium spp.)、猪毛菜(Salsola spp.)等, 归属于蔷薇科、豆科、麻黄科、柽柳科、蒺藜科、蓼科、旋花科、藜科。北疆草地典型灌木各器官C含量为茎(45.76 ± 3.43)% >枝(44.27 ± 4.51)% >叶(39.15 ± 5.91)%, N含量为叶(2.21 ± 0.59)% >枝(1.55 ± 0.44)% >茎(1.34 ± 0.35)%, C:N为茎(36.74 ± 10.80) >枝(31.07 ± 10.43) >叶(18.94 ± 5.82)。灌木地上部分C含量为(43.77 ± 4.43)%, N含量为(1.56 ± 0.45)%, C:N为(31.78 ± 10.12); C含量变异程度较小, 变异系数为10%, N含量的变异系数为27%, C:N的变异系数为32%。灌木同一器官的C、N含量及C:N在不同科间有显著差异, 蔷薇科各器官的C含量显著大于其他科(p < 0.05); 豆科叶和茎的N含量显著大于其他科(p < 0.05), 麻黄科枝的N含量显著大于其他科(p < 0.05); 旋花科叶和枝的C:N显著大于其他科(p < 0.05), 蔷薇科茎的C:N显著大于其他科(p < 0.05)。
张静, 刘耘华, 盛建东, 柴强, 李瑞霞, 赵丹. 新疆北部草地典型灌木的碳氮特征. 植物生态学报, 2018, 42(3): 307-316. DOI: 10.17521/cjpe.2015.1086
ZHANG Jing, LIU Yun-Hua, SHENG Jian-Dong, CHAI Qiang, LI Rui-Xia, ZHAO Dan. Carbon and nitrogen traits of typical shrubs in grassland of northern Xinjiang, China. Chinese Journal of Plant Ecology, 2018, 42(3): 307-316. DOI: 10.17521/cjpe.2015.1086
器官 Organ | 碳含量 C content (%) | 氮含量 N content (%) | C:N |
---|---|---|---|
叶 Leaves | 39.15 ± 5.91c | 2.21 ± 0.59a | 18.94 ± 5.82c |
枝 Branches | 44.27 ± 4.51b | 1.55 ± 0.44b | 31.07 ± 10.43b |
茎 Stems | 45.81 ± 3.18a | 1.34 ± 0.35c | 36.77 ± 10.78a |
表1 C、N在灌木叶、枝、茎器官中的含量(平均值±标准偏差)
Table 1 The C and N contents in leaves, branches and stems of shrubs (mean ± SD)
器官 Organ | 碳含量 C content (%) | 氮含量 N content (%) | C:N |
---|---|---|---|
叶 Leaves | 39.15 ± 5.91c | 2.21 ± 0.59a | 18.94 ± 5.82c |
枝 Branches | 44.27 ± 4.51b | 1.55 ± 0.44b | 31.07 ± 10.43b |
茎 Stems | 45.81 ± 3.18a | 1.34 ± 0.35c | 36.77 ± 10.78a |
图1 叶、枝、茎中C、N含量及C:N的频数分布图。
Fig. 1 Frequency distributions of the C and N contents and C:N in leaves, branches and stem. CV, coefficient of variation; SD, standard deviation.
物种 Species | 科 Family | 器官 Organ | n | 碳含量 C content (%) | CV | 氮含量 N content (%) | CV | C:N | CV |
---|---|---|---|---|---|---|---|---|---|
白刺 | 蒺藜科 | 叶 Leaves | 12 | 38.40 ± 4.07 | 11 | 2.42 ± 0.47 | 20 | 16.40 ± 3.57 | 22 |
Nitraria spp. | Zygophyllaceae | 枝 Branches | 12 | 44.29 ± 2.97 | 7 | 1.56 ± 0.28 | 18 | 29.59 ± 7.34 | 25 |
茎 Stems | 14 | 45.82 ± 2.07 | 5 | 1.36 ± 0.22 | 17 | 34.66 ± 6.29 | 18 | ||
灌木地上部分 Shrub aboveground | 43.95 ± 3.49 | 8 | 1.57 ± 0.40 | 19 | 30.85 ± 7.86 | 22 | |||
刺旋花 | 旋花科 | 叶 Leaves | 11 | 40.48 ± 6.52 | 16 | 1.57 ± 0.48 | 30 | 27.82 ± 8.63 | 31 |
Convolvulus | Convolvulaceae | 枝 Branches | 9 | 43.22 ± 4.16 | 10 | 1.14 ± 0.30 | 26 | 39.99 ± 10.00 | 25 |
ragacanthoides | 茎 Stems | 13 | 44.10 ± 2.24 | 5 | 1.27 ± 0.17 | 14 | 35.31 ± 5.54 | 16 | |
灌木地上部分 Shrub aboveground | 42.18 ± 5.85 | 14 | 1.33 ± 0.31 | 23 | 33.55 ± 8.56 | 26 | |||
红砂 | 柽柳科 | 叶 Leaves | 79 | 34.67 ± 3.39 | 10 | 2.42 ± 0.52 | 22 | 14.92 ± 3.24 | 22 |
Reaumuria | Tamaricaceae | 枝 Branches | 79 | 44.61 ± 1.80 | 4 | 1.74 ± 0.36 | 20 | 26.90 ± 6.65 | 25 |
songarica | 茎 Stems | 76 | 45.76 ± 2.40 | 5 | 1.37 ± 0.20 | 15 | 34.35 ± 6.43 | 19 | |
灌木地上部分 Shrub aboveground | 42.84 ± 2.97 | 7 | 1.73 ± 0.38 | 21 | 27.60 ± 6.48 | 23 | |||
假木贼 | 藜科 | 叶 Leaves | 15 | 35.57 ± 2.78 | 8 | 1.76 ± 0.33 | 19 | 20.76 ± 3.92 | 19 |
Anabasis spp. | Chenopodiaceae | 枝 Branches | 37 | 38.08 ± 4.19 | 11 | 1.61 ± 0.42 | 26 | 25.16 ± 6.70 | 27 |
茎 Stems | 25 | 40.15 ± 2.70 | 7 | 1.54 ± 0.42 | 27 | 27.50 ± 6.19 | 23 | ||
灌木地上部分 Shrub aboveground | 38.05 ± 2.48 | 7 | 1.63 ± 0.39 | 24 | 24.72 ± 4.66 | 19 | |||
锦鸡儿 | 豆科 | 叶 Leaves | 70 | 44.34 ± 2.99 | 7 | 2.66 ± 0.48 | 18 | 17.24 ± 3.77 | 22 |
Caragana spp. | Leguminosae | 枝 Branches | 71 | 46.71 ± 2.64 | 6 | 1.80 ± 0.48 | 27 | 27.72 ± 7.17 | 26 |
茎 Stems | 66 | 47.14 ± 2.48 | 5 | 1.62 ± 0.29 | 18 | 30.26 ± 6.58 | 22 | ||
灌木地上部分 Shrub aboveground | 46.44 ± 2.63 | 6 | 1.91 ± 0.45 | 23 | 26.76 ± 6.96 | 26 | |||
麻黄 | 麻黄科 | 枝 Branches | 29 | 45.68 ± 3.43 | 8 | 1.89 ± 0.48 | 25 | 25.81 ± 7.26 | 28 |
Ephedra spp. | Ephedraceae | 茎 Stems | 28 | 44.99 ± 4.33 | 10 | 1.52 ± 0.44 | 29 | 32.20 ± 9.40 | 29 |
灌木地上部分 Shrub aboveground | 45.11 ± 2.94 | 7 | 1.75 ± 0.41 | 23 | 27.84 ± 7.16 | 26 | |||
沙拐枣 | 蓼科 | 枝 Branches | 11 | 43.56 ± 4.53 | 10 | 1.34 ± 0.16 | 12 | 33.17 ± 6.79 | 20 |
Calligonum | Polygonaceae | 茎 Stems | 17 | 46.76 ± 2.60 | 6 | 1.18 ± 0.18 | 15 | 40.41 ± 5.28 | 13 |
mongolicum | 灌木地上部分 Shrub aboveground | 46.46 ± 2.75 | 6 | 1.21 ± 0.16 | 13 | 39.19 ± 4.38 | 17 | ||
梭梭 | 藜科 | 叶 Leaves | 63 | 35.73 ± 4.09 | 11 | 2.17 ± 0.50 | 23 | 17.66 ± 5.76 | 33 |
Haloxylon spp. | Chenopodiaceae | 枝 Branches | 95 | 42.80 ± 3.81 | 9 | 1.58 ± 0.43 | 27 | 29.52 ± 9.57 | 32 |
茎 Stems | 95 | 45.57 ± 2.71 | 6 | 1.31 ± 0.36 | 27 | 36.96 ± 9.40 | 25 | ||
灌木地上部分 Shrub aboveground | 42.95 ± 3.02 | 7 | 1.54 ± 0.40 | 26 | 28.05 ± 8.24 | 27 | |||
金丝桃叶绣线菊 | 蔷薇科 | 叶 Leaves | 58 | 46.60 ± 2.86 | 6 | 2.07 ± 0.40 | 19 | 23.24 ± 4.41 | 19 |
Spiraea | Rosaceae | 枝 Branches | 62 | 47.66 ± 2.91 | 6 | 1.25 ± 0.23 | 18 | 39.27 ± 6.52 | 17 |
hypericifolia | 茎 Stems | 62 | 47.57 ± 2.37 | 5 | 1.11 ± 0.19 | 17 | 43.56 ± 5.26 | 12 | |
灌木地上部分 Shrub aboveground | 47.43 ± 2.31 | 5 | 1.21 ± 0.17 | 14 | 35.97 ± 4.48 | 15 | |||
驼绒藜 | 藜科 | 叶 Leaves | 60 | 38.89 ± 2.93 | 8 | 1.97 ± 0.66 | 33 | 21.72 ± 6.70 | 31 |
Krascheninnikovia spp. | Chenopodiaceae | 枝 Branches | 61 | 46.14 ± 2.17 | 5 | 1.24 ± 0.4 | 32 | 41.48 ± 14.56 | 35 |
茎 Stems | 61 | 46.32 ± 4.50 | 10 | 1.10 ± 0.37 | 34 | 47.14 ± 17.06 | 36 | ||
灌木地上部分 Shrub aboveground | 45.55 ± 2.40 | 5 | 1.32 ± 0.49 | 37 | 41.11 ± 14.45 | 35 | |||
小蓬 | 藜科 | 叶 Leaves | 19 | 31.97 ± 5.37 | 17 | 1.64 ± 0.41 | 25 | 20.12 ± 3.89 | 19 |
Nanophyton | Chenopodiaceae | 枝 Branches | 19 | 35.00 ± 7.40 | 21 | 1.40 ± 0.28 | 20 | 25.90 ± 8.40 | 32 |
erinaceum | 茎 Stems | 20 | 43.09 ± 4.02 | 9 | 1.44 ± 0.30 | 21 | 31.77 ± 10.56 | 33 | |
灌木地上部分 Shrub aboveground | 35.82 ± 6.75 | 19 | 1.42 ± 0.30 | 21 | 27.14 ± 10.71 | 29 | |||
盐爪爪 | 藜科 | 叶 Leaves | 7 | 33.36 ± 5.48 | 16 | 2.42 ± 0.78 | 32 | 15.46 ± 6.81 | 44 |
Kalidium spp. | Chenopodiaceae | 枝 Branches | 7 | 42.11 ± 4.10 | 10 | 1.58 ± 0.28 | 17 | 27.28 ± 5.34 | 20 |
茎 Stems | 6 | 44.23 ± 2.66 | 6 | 1.37 ± 0.10 | 7 | 32.33 ± 2.22 | 7 | ||
灌木地上部分 Shrub aboveground | 37.90 ± 7.91 | 11 | 1.83 ± 0.59 | 19 | 23.88 ± 8.75 | 37 | |||
猪毛菜 | 藜科 | 叶 Leaves | 9 | 40.66 ± 5.29 | 13 | 2.05 ± 0.13 | 7 | 19.99 ± 3.71 | 19 |
Salsola spp. | Chenopodiaceae | 枝 Branches | 9 | 45.72 ± 2.70 | 6 | 1.62 ± 0.24 | 15 | 28.92 ± 6.08 | 21 |
茎 Stems | 5 | 46.84 ± 2.49 | 5 | 1.36 ± 0.03 | 2 | 34.38 ± 2.39 | 7 | ||
灌木地上部分 Shrub aboveground | 43.86 ± 4.38 | 10 | 1.58 ± 0.21 | 13 | 29.84 ± 5.54 | 19 | |||
物种 Species | 科 Family | 器官 Organ | n | 碳含量 C content (%) | CV | 氮含量 N content (%) | CV | C:N | CV |
平均值 | 叶 Leaves | 39.15 ± 5.91 | 15 | 2.21 ± 0.59 | 27 | 18.94 ± 5.82 | 31 | ||
Mean | 枝 Branches | 44.27 ± 4.51 | 10 | 1.55 ± 0.44 | 28 | 31.07 ± 10.43 | 34 | ||
茎 Stems | 45.81 ± 3.43 | 7 | 1.34 ± 0.35 | 26 | 36.77 ± 10.78 | 29 | |||
灌木地上部分 Shrub aboveground | 43.77 ± 4.43 | 10 | 1.56 ± 0.45 | 27 | 31.78 ± 10.12 | 32 |
表2 北疆草地典型灌木叶、枝、茎C、N含量(平均值±标准偏差)
Table 2 The contents of C and N in leaves, branches and stems in typical shrubs in the grassland of northern Xinjiang (mean ± SD)
物种 Species | 科 Family | 器官 Organ | n | 碳含量 C content (%) | CV | 氮含量 N content (%) | CV | C:N | CV |
---|---|---|---|---|---|---|---|---|---|
白刺 | 蒺藜科 | 叶 Leaves | 12 | 38.40 ± 4.07 | 11 | 2.42 ± 0.47 | 20 | 16.40 ± 3.57 | 22 |
Nitraria spp. | Zygophyllaceae | 枝 Branches | 12 | 44.29 ± 2.97 | 7 | 1.56 ± 0.28 | 18 | 29.59 ± 7.34 | 25 |
茎 Stems | 14 | 45.82 ± 2.07 | 5 | 1.36 ± 0.22 | 17 | 34.66 ± 6.29 | 18 | ||
灌木地上部分 Shrub aboveground | 43.95 ± 3.49 | 8 | 1.57 ± 0.40 | 19 | 30.85 ± 7.86 | 22 | |||
刺旋花 | 旋花科 | 叶 Leaves | 11 | 40.48 ± 6.52 | 16 | 1.57 ± 0.48 | 30 | 27.82 ± 8.63 | 31 |
Convolvulus | Convolvulaceae | 枝 Branches | 9 | 43.22 ± 4.16 | 10 | 1.14 ± 0.30 | 26 | 39.99 ± 10.00 | 25 |
ragacanthoides | 茎 Stems | 13 | 44.10 ± 2.24 | 5 | 1.27 ± 0.17 | 14 | 35.31 ± 5.54 | 16 | |
灌木地上部分 Shrub aboveground | 42.18 ± 5.85 | 14 | 1.33 ± 0.31 | 23 | 33.55 ± 8.56 | 26 | |||
红砂 | 柽柳科 | 叶 Leaves | 79 | 34.67 ± 3.39 | 10 | 2.42 ± 0.52 | 22 | 14.92 ± 3.24 | 22 |
Reaumuria | Tamaricaceae | 枝 Branches | 79 | 44.61 ± 1.80 | 4 | 1.74 ± 0.36 | 20 | 26.90 ± 6.65 | 25 |
songarica | 茎 Stems | 76 | 45.76 ± 2.40 | 5 | 1.37 ± 0.20 | 15 | 34.35 ± 6.43 | 19 | |
灌木地上部分 Shrub aboveground | 42.84 ± 2.97 | 7 | 1.73 ± 0.38 | 21 | 27.60 ± 6.48 | 23 | |||
假木贼 | 藜科 | 叶 Leaves | 15 | 35.57 ± 2.78 | 8 | 1.76 ± 0.33 | 19 | 20.76 ± 3.92 | 19 |
Anabasis spp. | Chenopodiaceae | 枝 Branches | 37 | 38.08 ± 4.19 | 11 | 1.61 ± 0.42 | 26 | 25.16 ± 6.70 | 27 |
茎 Stems | 25 | 40.15 ± 2.70 | 7 | 1.54 ± 0.42 | 27 | 27.50 ± 6.19 | 23 | ||
灌木地上部分 Shrub aboveground | 38.05 ± 2.48 | 7 | 1.63 ± 0.39 | 24 | 24.72 ± 4.66 | 19 | |||
锦鸡儿 | 豆科 | 叶 Leaves | 70 | 44.34 ± 2.99 | 7 | 2.66 ± 0.48 | 18 | 17.24 ± 3.77 | 22 |
Caragana spp. | Leguminosae | 枝 Branches | 71 | 46.71 ± 2.64 | 6 | 1.80 ± 0.48 | 27 | 27.72 ± 7.17 | 26 |
茎 Stems | 66 | 47.14 ± 2.48 | 5 | 1.62 ± 0.29 | 18 | 30.26 ± 6.58 | 22 | ||
灌木地上部分 Shrub aboveground | 46.44 ± 2.63 | 6 | 1.91 ± 0.45 | 23 | 26.76 ± 6.96 | 26 | |||
麻黄 | 麻黄科 | 枝 Branches | 29 | 45.68 ± 3.43 | 8 | 1.89 ± 0.48 | 25 | 25.81 ± 7.26 | 28 |
Ephedra spp. | Ephedraceae | 茎 Stems | 28 | 44.99 ± 4.33 | 10 | 1.52 ± 0.44 | 29 | 32.20 ± 9.40 | 29 |
灌木地上部分 Shrub aboveground | 45.11 ± 2.94 | 7 | 1.75 ± 0.41 | 23 | 27.84 ± 7.16 | 26 | |||
沙拐枣 | 蓼科 | 枝 Branches | 11 | 43.56 ± 4.53 | 10 | 1.34 ± 0.16 | 12 | 33.17 ± 6.79 | 20 |
Calligonum | Polygonaceae | 茎 Stems | 17 | 46.76 ± 2.60 | 6 | 1.18 ± 0.18 | 15 | 40.41 ± 5.28 | 13 |
mongolicum | 灌木地上部分 Shrub aboveground | 46.46 ± 2.75 | 6 | 1.21 ± 0.16 | 13 | 39.19 ± 4.38 | 17 | ||
梭梭 | 藜科 | 叶 Leaves | 63 | 35.73 ± 4.09 | 11 | 2.17 ± 0.50 | 23 | 17.66 ± 5.76 | 33 |
Haloxylon spp. | Chenopodiaceae | 枝 Branches | 95 | 42.80 ± 3.81 | 9 | 1.58 ± 0.43 | 27 | 29.52 ± 9.57 | 32 |
茎 Stems | 95 | 45.57 ± 2.71 | 6 | 1.31 ± 0.36 | 27 | 36.96 ± 9.40 | 25 | ||
灌木地上部分 Shrub aboveground | 42.95 ± 3.02 | 7 | 1.54 ± 0.40 | 26 | 28.05 ± 8.24 | 27 | |||
金丝桃叶绣线菊 | 蔷薇科 | 叶 Leaves | 58 | 46.60 ± 2.86 | 6 | 2.07 ± 0.40 | 19 | 23.24 ± 4.41 | 19 |
Spiraea | Rosaceae | 枝 Branches | 62 | 47.66 ± 2.91 | 6 | 1.25 ± 0.23 | 18 | 39.27 ± 6.52 | 17 |
hypericifolia | 茎 Stems | 62 | 47.57 ± 2.37 | 5 | 1.11 ± 0.19 | 17 | 43.56 ± 5.26 | 12 | |
灌木地上部分 Shrub aboveground | 47.43 ± 2.31 | 5 | 1.21 ± 0.17 | 14 | 35.97 ± 4.48 | 15 | |||
驼绒藜 | 藜科 | 叶 Leaves | 60 | 38.89 ± 2.93 | 8 | 1.97 ± 0.66 | 33 | 21.72 ± 6.70 | 31 |
Krascheninnikovia spp. | Chenopodiaceae | 枝 Branches | 61 | 46.14 ± 2.17 | 5 | 1.24 ± 0.4 | 32 | 41.48 ± 14.56 | 35 |
茎 Stems | 61 | 46.32 ± 4.50 | 10 | 1.10 ± 0.37 | 34 | 47.14 ± 17.06 | 36 | ||
灌木地上部分 Shrub aboveground | 45.55 ± 2.40 | 5 | 1.32 ± 0.49 | 37 | 41.11 ± 14.45 | 35 | |||
小蓬 | 藜科 | 叶 Leaves | 19 | 31.97 ± 5.37 | 17 | 1.64 ± 0.41 | 25 | 20.12 ± 3.89 | 19 |
Nanophyton | Chenopodiaceae | 枝 Branches | 19 | 35.00 ± 7.40 | 21 | 1.40 ± 0.28 | 20 | 25.90 ± 8.40 | 32 |
erinaceum | 茎 Stems | 20 | 43.09 ± 4.02 | 9 | 1.44 ± 0.30 | 21 | 31.77 ± 10.56 | 33 | |
灌木地上部分 Shrub aboveground | 35.82 ± 6.75 | 19 | 1.42 ± 0.30 | 21 | 27.14 ± 10.71 | 29 | |||
盐爪爪 | 藜科 | 叶 Leaves | 7 | 33.36 ± 5.48 | 16 | 2.42 ± 0.78 | 32 | 15.46 ± 6.81 | 44 |
Kalidium spp. | Chenopodiaceae | 枝 Branches | 7 | 42.11 ± 4.10 | 10 | 1.58 ± 0.28 | 17 | 27.28 ± 5.34 | 20 |
茎 Stems | 6 | 44.23 ± 2.66 | 6 | 1.37 ± 0.10 | 7 | 32.33 ± 2.22 | 7 | ||
灌木地上部分 Shrub aboveground | 37.90 ± 7.91 | 11 | 1.83 ± 0.59 | 19 | 23.88 ± 8.75 | 37 | |||
猪毛菜 | 藜科 | 叶 Leaves | 9 | 40.66 ± 5.29 | 13 | 2.05 ± 0.13 | 7 | 19.99 ± 3.71 | 19 |
Salsola spp. | Chenopodiaceae | 枝 Branches | 9 | 45.72 ± 2.70 | 6 | 1.62 ± 0.24 | 15 | 28.92 ± 6.08 | 21 |
茎 Stems | 5 | 46.84 ± 2.49 | 5 | 1.36 ± 0.03 | 2 | 34.38 ± 2.39 | 7 | ||
灌木地上部分 Shrub aboveground | 43.86 ± 4.38 | 10 | 1.58 ± 0.21 | 13 | 29.84 ± 5.54 | 19 | |||
物种 Species | 科 Family | 器官 Organ | n | 碳含量 C content (%) | CV | 氮含量 N content (%) | CV | C:N | CV |
平均值 | 叶 Leaves | 39.15 ± 5.91 | 15 | 2.21 ± 0.59 | 27 | 18.94 ± 5.82 | 31 | ||
Mean | 枝 Branches | 44.27 ± 4.51 | 10 | 1.55 ± 0.44 | 28 | 31.07 ± 10.43 | 34 | ||
茎 Stems | 45.81 ± 3.43 | 7 | 1.34 ± 0.35 | 26 | 36.77 ± 10.78 | 29 | |||
灌木地上部分 Shrub aboveground | 43.77 ± 4.43 | 10 | 1.56 ± 0.45 | 27 | 31.78 ± 10.12 | 32 |
科 Family | n | 碳含量 C content (%) | CV | 氮含量 N content (%) | CV | C:N | CV |
---|---|---|---|---|---|---|---|
柽柳科 Tamaricaceae | 79 | 34.67 ± 3.39e | 10 | 2.42 ± 0.52b | 22 | 14.92 ± 3.24d | 22 |
豆科 Leguminosae | 70 | 44.34 ± 2.99b | 7 | 2.66 ± 0.48a | 18 | 17.24 ± 3.77cd | 22 |
蒺藜科 Zygophyllaceae | 12 | 38.40 ± 4.07cd | 11 | 2.42 ± 0.47b | 20 | 16.40 ± 3.57d | 22 |
藜科 Chenopodiaceae | 173 | 36.56 ± 4.56d | 12 | 2.01 ± 0.57c | 28 | 19.64 ± 6.02c | 31 |
蔷薇科 Rosaceae | 58 | 46.60 ± 2.86a | 6 | 2.07 ± 0.40c | 19 | 23.24 ± 4.41b | 19 |
旋花科 Convolvulaceae | 11 | 40.48 ± 6.52c | 16 | 1.57 ± 0.48d | 30 | 27.82 ± 8.63a | 31 |
平均值 Average | 39.15 ± 5.91 | 15 | 2.21 ± 0.59 | 27 | 18.94 ± 5.82 | 31 |
表3 不同科灌木叶C、N含量(平均值±标准偏差)
Table 3 Leaf C and N contents in different shrub families (mean ± SD)
科 Family | n | 碳含量 C content (%) | CV | 氮含量 N content (%) | CV | C:N | CV |
---|---|---|---|---|---|---|---|
柽柳科 Tamaricaceae | 79 | 34.67 ± 3.39e | 10 | 2.42 ± 0.52b | 22 | 14.92 ± 3.24d | 22 |
豆科 Leguminosae | 70 | 44.34 ± 2.99b | 7 | 2.66 ± 0.48a | 18 | 17.24 ± 3.77cd | 22 |
蒺藜科 Zygophyllaceae | 12 | 38.40 ± 4.07cd | 11 | 2.42 ± 0.47b | 20 | 16.40 ± 3.57d | 22 |
藜科 Chenopodiaceae | 173 | 36.56 ± 4.56d | 12 | 2.01 ± 0.57c | 28 | 19.64 ± 6.02c | 31 |
蔷薇科 Rosaceae | 58 | 46.60 ± 2.86a | 6 | 2.07 ± 0.40c | 19 | 23.24 ± 4.41b | 19 |
旋花科 Convolvulaceae | 11 | 40.48 ± 6.52c | 16 | 1.57 ± 0.48d | 30 | 27.82 ± 8.63a | 31 |
平均值 Average | 39.15 ± 5.91 | 15 | 2.21 ± 0.59 | 27 | 18.94 ± 5.82 | 31 |
科 Family | n | 碳含量 C content (%) | CV | 氮含量 N content (%) | CV | C:N | CV |
---|---|---|---|---|---|---|---|
柽柳科 Tamaricaceae | 79 | 44.61 ± 1.80bcd | 4 | 1.74 ± 0.36ab | 20 | 26.90 ± 6.65bc | 25 |
豆科 Leguminosae | 71 | 46.71 ± 2.64ab | 6 | 1.80 ± 0.48ab | 27 | 27.72 ± 7.17bc | 26 |
蒺藜科 Zygophyllaceae | 12 | 44.29 ± 2.97bcd | 7 | 1.56 ± 0.28bc | 18 | 29.59 ± 7.34bc | 25 |
藜科 Chenopodiaceae | 228 | 42.37 ± 5.19d | 12 | 1.48 ± 0.42cd | 29 | 31.62 ± 12.13bc | 38 |
蓼科 Polygonaceae | 11 | 43.56 ± 4.53cd | 10 | 1.34 ± 0.16cde | 12 | 33.17 ± 6.79b | 20 |
麻黄科 Ephedraceae | 29 | 45.68 ± 3.43abc | 8 | 1.89 ± 0.48a | 25 | 25.81 ± 7.26c | 28 |
蔷薇科 Rosaceae | 62 | 47.66 ± 2.91a | 6 | 1.25 ± 0.23de | 18 | 39.27 ± 6.52a | 17 |
旋花科 Convolvulaceae | 9 | 43.22 ± 4.16cd | 10 | 1.14 ± 0.30e | 26 | 39.99 ± 10.00a | 25 |
平均值 Average | 44.27 ± 4.51 | 10 | 1.34 ± 0.35 | 28 | 31.07 ± 10.43 | 34 |
表4 不同科灌木枝C、N含量(平均值±标准偏差)
Table 4 Branch C and N contents in different shrub families (mean ± SD)
科 Family | n | 碳含量 C content (%) | CV | 氮含量 N content (%) | CV | C:N | CV |
---|---|---|---|---|---|---|---|
柽柳科 Tamaricaceae | 79 | 44.61 ± 1.80bcd | 4 | 1.74 ± 0.36ab | 20 | 26.90 ± 6.65bc | 25 |
豆科 Leguminosae | 71 | 46.71 ± 2.64ab | 6 | 1.80 ± 0.48ab | 27 | 27.72 ± 7.17bc | 26 |
蒺藜科 Zygophyllaceae | 12 | 44.29 ± 2.97bcd | 7 | 1.56 ± 0.28bc | 18 | 29.59 ± 7.34bc | 25 |
藜科 Chenopodiaceae | 228 | 42.37 ± 5.19d | 12 | 1.48 ± 0.42cd | 29 | 31.62 ± 12.13bc | 38 |
蓼科 Polygonaceae | 11 | 43.56 ± 4.53cd | 10 | 1.34 ± 0.16cde | 12 | 33.17 ± 6.79b | 20 |
麻黄科 Ephedraceae | 29 | 45.68 ± 3.43abc | 8 | 1.89 ± 0.48a | 25 | 25.81 ± 7.26c | 28 |
蔷薇科 Rosaceae | 62 | 47.66 ± 2.91a | 6 | 1.25 ± 0.23de | 18 | 39.27 ± 6.52a | 17 |
旋花科 Convolvulaceae | 9 | 43.22 ± 4.16cd | 10 | 1.14 ± 0.30e | 26 | 39.99 ± 10.00a | 25 |
平均值 Average | 44.27 ± 4.51 | 10 | 1.34 ± 0.35 | 28 | 31.07 ± 10.43 | 34 |
科 Family | n | 碳含量 C content (%) | CV | 氮含量 N content (%) | CV | C:N | CV |
---|---|---|---|---|---|---|---|
柽柳科 Tamaricaceae | 76 | 45.76 ± 2.4bcd | 5 | 1.37 ± 0.2bc | 15 | 34.35 ± 6.43cd | 19 |
豆科 Leguminosae | 66 | 47.14 ± 2.48ab | 5 | 1.62 ± 0.29a | 18 | 30.26 ± 6.58d | 22 |
蒺藜科 Zygophyllaceae | 14 | 45.82 ± 2.07abcd | 5 | 1.36 ± 0.22bcd | 17 | 34.66 ± 6.29bcd | 18 |
藜科 Chenopodiaceae | 212 | 44.91 ± 3.94cd | 9 | 1.29 ± 0.38cde | 30 | 38.13 ± 13.43abc | 35 |
蓼科 Polygonaceae | 17 | 46.76 ± 2.60abc | 6 | 1.18 ± 0.18de | 15 | 40.41 ± 5.28ab | 13 |
麻黄科 Ephedraceae | 28 | 44.99 ± 4.33cd | 10 | 1.52 ± 0.44ab | 29 | 32.20 ± 9.40d | 29 |
蔷薇科 Rosaceae | 62 | 47.57 ± 2.37a | 5 | 1.11 ± 0.19e | 17 | 43.56 ± 5.26a | 12 |
旋花科 Convolvulaceae | 13 | 44.10 ± 2.24d | 5 | 1.27 ± 0.17cde | 14 | 35.31 ± 5.54bcd | 16 |
平均值 Average | 45.81 ± 3.43 | 7 | 1.34 ± 0.35 | 26 | 36.77 ± 10.78 | 29 |
表5 不同科灌木茎C、N含量(平均值±标准偏差)
Table 5 Stem C and N contents in different shrub families (mean ± SD)
科 Family | n | 碳含量 C content (%) | CV | 氮含量 N content (%) | CV | C:N | CV |
---|---|---|---|---|---|---|---|
柽柳科 Tamaricaceae | 76 | 45.76 ± 2.4bcd | 5 | 1.37 ± 0.2bc | 15 | 34.35 ± 6.43cd | 19 |
豆科 Leguminosae | 66 | 47.14 ± 2.48ab | 5 | 1.62 ± 0.29a | 18 | 30.26 ± 6.58d | 22 |
蒺藜科 Zygophyllaceae | 14 | 45.82 ± 2.07abcd | 5 | 1.36 ± 0.22bcd | 17 | 34.66 ± 6.29bcd | 18 |
藜科 Chenopodiaceae | 212 | 44.91 ± 3.94cd | 9 | 1.29 ± 0.38cde | 30 | 38.13 ± 13.43abc | 35 |
蓼科 Polygonaceae | 17 | 46.76 ± 2.60abc | 6 | 1.18 ± 0.18de | 15 | 40.41 ± 5.28ab | 13 |
麻黄科 Ephedraceae | 28 | 44.99 ± 4.33cd | 10 | 1.52 ± 0.44ab | 29 | 32.20 ± 9.40d | 29 |
蔷薇科 Rosaceae | 62 | 47.57 ± 2.37a | 5 | 1.11 ± 0.19e | 17 | 43.56 ± 5.26a | 12 |
旋花科 Convolvulaceae | 13 | 44.10 ± 2.24d | 5 | 1.27 ± 0.17cde | 14 | 35.31 ± 5.54bcd | 16 |
平均值 Average | 45.81 ± 3.43 | 7 | 1.34 ± 0.35 | 26 | 36.77 ± 10.78 | 29 |
科 Family | n | 碳含量 C content (%) | CV | 氮含量 N content (%) | CV | C:N | CV |
---|---|---|---|---|---|---|---|
柽柳科 Tamaricaceae | 76 | 42.84 ± 2.97d | 7 | 1.73 ± 0.38ab | 22 | 27.60 ± 6.48cd | 23 |
豆科 Leguminosae | 66 | 46.44 ± 2.63ab | 6 | 1.91 ± 0.45a | 23 | 26.76 ± 6.96d | 26 |
蒺藜科 Zygophyllaceae | 14 | 43.95 ± 3.49cd | 8 | 1.57 ± 0.40bc | 25 | 30.85 ± 7.86bcd | 25 |
藜科 Chenopodiaceae | 212 | 42.03 ± 4.80d | 11 | 1.50 ± 0.44cd | 29 | 32.24 ± 11.71bc | 36 |
蓼科 Polygonaceae | 17 | 46.46 ± 2.75ab | 6 | 1.21 ± 0.16e | 13 | 39.19 ± 4.38a | 11 |
麻黄科 Ephedraceae | 28 | 45.11 ± 2.94bc | 7 | 1.75 ± 0.41ab | 23 | 27.84 ± 7.16cd | 26 |
蔷薇科 Rosaceae | 62 | 47.43 ± 2.31a | 5 | 1.21 ± 0.17e | 14 | 40.97 ± 4.48a | 11 |
旋花科 Convolvulaceae | 13 | 42.18 ± 5.85d | 14 | 1.33 ± 0.31de | 23 | 33.55 ± 8.56b | 26 |
平均值 Average | 43.77 ± 4.43 | 10 | 1.56 ± 0.45 | 27 | 31.78 ± 10.12 | 32 |
表6 不同科灌木地上部分C、N含量(平均值±标准偏差)
Table 6 Shrub aboveground C and N contents in different shrub families (mean ± SD)
科 Family | n | 碳含量 C content (%) | CV | 氮含量 N content (%) | CV | C:N | CV |
---|---|---|---|---|---|---|---|
柽柳科 Tamaricaceae | 76 | 42.84 ± 2.97d | 7 | 1.73 ± 0.38ab | 22 | 27.60 ± 6.48cd | 23 |
豆科 Leguminosae | 66 | 46.44 ± 2.63ab | 6 | 1.91 ± 0.45a | 23 | 26.76 ± 6.96d | 26 |
蒺藜科 Zygophyllaceae | 14 | 43.95 ± 3.49cd | 8 | 1.57 ± 0.40bc | 25 | 30.85 ± 7.86bcd | 25 |
藜科 Chenopodiaceae | 212 | 42.03 ± 4.80d | 11 | 1.50 ± 0.44cd | 29 | 32.24 ± 11.71bc | 36 |
蓼科 Polygonaceae | 17 | 46.46 ± 2.75ab | 6 | 1.21 ± 0.16e | 13 | 39.19 ± 4.38a | 11 |
麻黄科 Ephedraceae | 28 | 45.11 ± 2.94bc | 7 | 1.75 ± 0.41ab | 23 | 27.84 ± 7.16cd | 26 |
蔷薇科 Rosaceae | 62 | 47.43 ± 2.31a | 5 | 1.21 ± 0.17e | 14 | 40.97 ± 4.48a | 11 |
旋花科 Convolvulaceae | 13 | 42.18 ± 5.85d | 14 | 1.33 ± 0.31de | 23 | 33.55 ± 8.56b | 26 |
平均值 Average | 43.77 ± 4.43 | 10 | 1.56 ± 0.45 | 27 | 31.78 ± 10.12 | 32 |
[1] |
Aerts R, Chapin FS III ( 1999). The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67.
DOI URL |
[2] |
Archer S, Schimel DS, Holland EA ( 1995). Mechanisms of shrubland expansion: Land use, climate, or CO2. Climatic Change, 29(1), 91-99.
DOI URL |
[3] |
Barth RC, Klemmedson JO ( 1978). Shrub-induced spatial patterns of dry matter, nitrogen, and organic carbon. Soil Science Society of America Journal, 42, 804-809.
DOI URL |
[4] |
Boutton TW, Archer SR, Midwood AJ, Zitzer SF, Bol R ( 1998). δ 13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma, 82, 5-41.
DOI URL |
[5] |
Brantley ST, Young DR ( 2010). Shrub expansion stimulates soil C and N storage along a coastal soil chronosequence. Global Change Biology, 16, 2052-2061.
DOI URL |
[6] |
Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ ( 2004). Phylogenetic variation in the shoot mineral concentration of angiosperms. Journal of Experimental Botany, 55, 321-336.
DOI URL |
[7] |
Chapin FS III, Bloom AJ, Field CB, Waring RH ( 1987). Plant responses to multiple environmental factors. BioScience, 37, 49-57.
DOI URL |
[8] | Department of Animal Husbandry and Veterinary the General Station of Animal Husbandry and Veterinary, Ministry of Agriculture of the People’s Republic of China ( 1996). Grassland Resources of China. Chinese Science and Technology Press, Beijing. |
中华人民共和国农业部畜牧兽医司, 全国畜牧兽医总站( 1996). 中国草地资源. 中国科学技术出版社, 北京. | |
[9] |
Eldridge DJ, Bowker MA, Maestre FT, Roger E, Reynolds JF, Whitford WG ( 2011). Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 14, 709-722.
DOI URL PMID |
[10] |
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW ( 2000a ). Nutritional constraints in terrestrial land freshwater food webs. Nature, 408, 578-580.
DOI URL |
[11] |
Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW ( 2000b ). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550.
DOI URL |
[12] | Field C, Mooney HA ( 1992). Grasslands and Grassland Sciences in Northern China. National Academy Press, Washington. 341. |
[13] |
Gao W ( 2010). The Study of Carbon-Nitrogen Dynamics and the Ecological Effects of Nitrogen Addition for Degraded Grassland Ecosystem Carbon―Ecological Effects of Nitrogen and Nitrogen Added Variation. PhD dissertation, Inner Mongolia University, Hohhot. 5-26.
DOI URL |
高伟 ( 2010). 退化草地生态系统碳氮变化规律及氮添加的生态效应研究. 博士学位论文, 内蒙古大学, 呼和浩特. 5-26.
DOI URL |
|
[14] |
Glasener KM, Wagger MG, MacKown CT, Volk RJ ( 2002). Contributions of shoot and root nitrogen-15 labeled legume nitrogen sources to a sequence of three cereal crops. Soil Science Society of America Journal, 66, 523-530.
DOI URL |
[15] |
Goodale CL, Davidson EA ( 2002). Carbon cycle: Uncertain sinks in the shrubs. Nature, 418, 593-594.
DOI URL |
[16] |
Grover HD, Musick HB ( 1990). Shrubland encroachment in southern New Mexico, U.S.A.: An analysis of desertification processes in the American southwest. Climate Change, 17, 305-330.
DOI URL |
[17] |
Han WX, Fang JY, Guo DL, Zhang Y ( 2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL PMID |
[18] |
He JS, Han XG ( 2010). Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. Chinese Journal of Plant Ecology, 34, 2-6.
DOI URL |
贺金生, 韩兴国 ( 2010). 生态化学计量学: 探索从个体到生态系统的统一化理论. 植物生态学报, 34, 2-6.
DOI URL |
|
[19] |
He JS, Wang L, Flynn DFB, Wang X, Ma W, Fang J ( 2008). Leaf nitrogen: Phosphorus stoichiometry across Chinese grassland Biomes. Oecologia, 155, 301-310.
DOI URL |
[20] | He YT, Liu WZ, Dang GD, Zhang QF ( 2008). Study on content of C and N contents of 30 plant species in subalpine meadow of Qinling Mountains. Pratacultural Science, 25(10), 1-5. |
何亚婷, 刘文治, 党高弟, 张全发 ( 2008). 秦岭亚高山草甸30种草本植物的碳、氮分布研究. 草业科学, 25(10), 1-5. | |
[21] |
Herbert DA, Williams M, Rastetter EB ( 2003). A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 65(1), 121-150.
DOI URL |
[22] | Hou XY ( 1982). A Brief Description of Vegetation Maps People’s Republic of China. Map Press, Beijing. 1542-1548. |
侯学煜 ( 1982). 中华人民共和国植被图简要说明. 地图出版社, 北京. 1542-1548. | |
[23] |
Jackson RB, Schenk HJ, Jobbágy EG, Canadell J, Colello GD, Dickinson RE, Field CB, Friedlingstein P, Heimann M, Hibbard K, Kicklighter DW, Kleidon A, Neilson RP, Parton WJ, Sala OE, Sykes MT ( 2000). Belowground consequences of vegetation change and their treatment in models. Ecological Applications, 10, 470-483.
DOI URL |
[24] |
Knapp AK, Briggs JM, Collins SL, Archer SR, Bret-Harte MS, Ewers BE, Peters DP, Young DR, Shaver GR, Pendall E, Cleary MB ( 2008). Shrub encroachment in North American grasslands: Shifts in growth form dominance rapidly alters control of ecosystem carbon inputs. Global Change Biology, 14, 615-623.
DOI URL |
[25] |
Li QH, Jiang ZP, Zhang JB, Zhao YM ( 2006). The progress and perspective of research on the ecological characteristics and benefits of shrub. Journal of Arid Land Resources and Environment, 20(2), 159-164.
DOI URL |
李清河, 江泽平, 张景波, 赵英铭 ( 2006). 灌木的生态特性与生态效能的研究与进展. 干旱区资源与环境, 20(2), 159-164.
DOI URL |
|
[26] |
Li XR ( 2000). Discussion on the characteristics of shrubby diversity of Ordos Plateau. Resources Science, 22(3), 54-59.
DOI URL |
李新荣 ( 2000). 试论鄂尔多斯高原灌木多样性的若干特点. 资源科学, 22(3), 54-59.
DOI URL |
|
[27] |
Ma QY, Chen XL, Wang J, Lin C, Kang FF, Cao WQ, Ma ZB, Li WY ( 2002). Carbon content rate in constructive species of main forest types in Northern China. Journal of Beijing Forestry University, 24(5-6), 96-100.
DOI URL |
马钦彦, 陈遐林, 王娟, 蔺琛, 康峰峰, 曹文强, 马志波, 李文宇 ( 2002). 华北主要森林类型建群种的含碳率分析. 北京林业大学学报, 24(5-6), 96-100.
DOI URL |
|
[28] |
Nepstad DC, de Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S ( 1994). The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372, 666-669.
DOI URL |
[29] |
Ni J ( 2002). Carbon storage in grasslands of China. Journal of Arid Environments, 50, 205-218.
DOI URL |
[30] |
Ni J ( 2004). Forage yield-based carbon storage in grasslands of China. Climatic Change, 67, 237-246.
DOI URL |
[31] |
Northup BK, Zitzer SF, Archer S, Mc Murtry CR, Boutton TW ( 2005). Above-ground biomass and carbon and nitrogen content of woody species in a subtropical thornscrub parkland. Journal of Arid Environments, 62, 23-43.
DOI URL |
[32] |
Reich PB, Oleksyn J ( 2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL PMID |
[33] |
Sabik H, Jeannot R, Rondeau B ( 2000). Multiresidue methods using solid-phase extraction techniques for monitoring priority pesticides, including triazines and degradation products, in ground and surface waters. Journal of Chromatography A, 885, 217-236.
DOI URL PMID |
[34] | Smith TM, Woodward FI, Shugart HH ( 1992). Grasslands and Grassland Sciences in Northern China. National Academy Press, Washington. 352-356. |
[35] |
Sun GJ, Zhang R, Zhou L ( 2003). Trends and advances in researches on plant functional diversity and functional groups. Acta Ecologica Sinica, 23, 1430-1435.
DOI URL |
孙国钧, 张荣, 周立 ( 2003). 植物功能多样性与功能群研究进展. 生态学报, 23, 1430-1435.
DOI URL |
|
[36] |
Tingey DT, Mckane RB, Olszyk DM, Johnson MG, Rygiewicz PT, Lee EH ( 2003). Elevated CO2 and temperature alter nitrogen allocation in Douglas-fir. Global Change Biology, 9, 1038-1050.
DOI URL |
[37] | Trewavas A ( 1992). Grasslands and Grassland Sciences in Northern China. National Academy Press, Washington. 159-162. |
[38] |
van Auken OW ( 2000). Shrub invasions of North American semiarid grasslands. Annual Review of Ecology and Systematics, 31, 197-215.
DOI URL |
[39] |
Woodell SRJ, Evenari M, Noy-Meir I, Goodall DW ( 1986). Hot deserts and arid shrublands A. Journal of Ecology, 74, 1215.
DOI URL |
[40] | Xu HC ( 2008). Botany. 2nd edn. China Forestry Publishing House, Beijing. 96-97. |
许鸿川 ( 2008). 植物学. 第2版. 中国林业出版社, 北京. 96-97. | |
[41] | Xu P, Alimujiang, Wang B ( 1993). Resources and Use of Grassland in Xinjiang. Xinjiang Science and Technology Health Press, ürü mqi. 1213-2151. |
许鹏, 阿里木江, 王博 ( 1993). 新疆草地资源及其利用. 新疆科技卫生出版社, 乌鲁木齐. 1213-2151. | |
[42] |
Xu ZZ, Zhou GS, Xiao CW, Wang YH ( 2004). Responses of two dominated desert shrubs to soil drought under doubled CO2 condition. Acta Ecologica Sinica, 24, 2186-2191.
DOI URL |
许振柱, 周广胜, 肖春旺, 王玉辉 ( 2004). CO2浓度倍增条件下土壤干旱对两种沙生灌木碳氮含量及其适应性的影响. 生态学报, 24, 2186-2191.
DOI URL |
|
[43] | Yang LD, Yang Y, Wang GX, Guo JY, Yang Y ( 2011). Short-term effects of warming on growth and stoichiometrical characteristics of Abies fabiri( Mast.) Craib seedling in Gongga Mountain. Acta Ecologica Sinica, 31, 3668-3676. |
羊留冬, 杨燕, 王根绪, 郭剑英, 杨阳 ( 2011). 短期增温对贡嘎山峨眉冷杉幼苗生长季及其CNP化学计量学特征的影响. 生态学报, 31, 3668-3676. | |
[44] | Yang YS, He ZM, Qiu RH, Luo XS ( 1999). Effects of different recover and restoration measures on plant diversity and soil fertility for serious degradation ecosystem. Acta Ecologica Sinica, 19, 490-494. |
杨玉盛, 何宗明, 邱仁辉, 罗学升 ( 1999). 严重退化生态系统不同恢复和重建措施的植物多样性与地力差异研究. 生态学报, 19, 490-494. |
[1] | 陈科宇 邢森 唐玉 孙佳慧 任世杰 张静 纪宝明. 不同草地型土壤丛枝菌根真菌群落特征及其驱动因素[J]. 植物生态学报, 2024, 48(5): 660-674. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[4] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[5] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. |
[6] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[7] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[8] | 缪丽娟, 张宇阳, 揣小伟, 包刚, 何昱, 朱敬雯. 亚洲旱区草地NDVI对气候变化的响应及滞后效应[J]. 植物生态学报, 2023, 47(10): 1375-1385. |
[9] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[10] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[11] | 董全民, 赵新全, 刘玉祯, 冯斌, 俞旸, 杨晓霞, 张春平, 曹铨, 刘文亭. 放牧方式影响高寒草地矮生嵩草种子大小与数量的关系[J]. 植物生态学报, 2022, 46(9): 1018-1026. |
[12] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[13] | 白悦, 刘晨, 黄月, 董亚楠, 王露. 科尔沁沙质草地植物群落高度空间异质性对不同放牧方式的响应[J]. 植物生态学报, 2022, 46(4): 394-404. |
[14] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[15] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19