植物生态学报 ›› 2017, Vol. 41 ›› Issue (9): 1020-1032.DOI: 10.17521/cjpe.2016.0366
• 综述 • 上一篇
收稿日期:
2016-11-29
修回日期:
2017-05-31
出版日期:
2017-09-10
发布日期:
2017-10-23
通讯作者:
王传宽
基金资助:
Dan-Dan LUO, Chuan-Kuan WANG*(), Ying JIN
Received:
2016-11-29
Revised:
2017-05-31
Online:
2017-09-10
Published:
2017-10-23
Contact:
Chuan-Kuan WANG
摘要:
水分是植物存活、生长和分布过程中的必需资源, 阐明植物对干旱的应对和调节机制, 是植物生理生态学和全球变化生态学的重要研究命题。植物对不同气候与土壤水分条件的长期适应会形成由一整套相关联的性状组成的水分调节策略, 其中等水和非等水调节行为是两种典型的水分调节对策。区分并阐明植物的水分调节对策及其机制, 不但在干旱地区植物育种、植被修复等实践中有广泛的应用前景, 而且可为构建更精确的植被动态模型和预测气候变化情景下植被分布提供科学基础。该文首先阐述了等水和非等水调节行为的定义及3种定量分类方法: (1)基于气孔导度与叶水势的关系; (2)基于气孔导度与水汽压亏缺的关系; (3)基于黎明前叶水势与中午叶水势的关系。之后, 从水力和碳经济性状两个方面比较分析了两种水分调节对策植物的种间差异。综合分析植物水分调节机制发现, 水力信号与化学信号的相互作用是植物水分调节行为的主控因素。最后提出3个亟待开展研究的问题: (1)针对不同地区开展植物水分关系相关性状的测定, 寻求可靠且普适的植物水分调节对策分类方法。(2)探索植物水分调节对策与水力、形态、结构、功能等性状之间的关联性, 为改进植被动态模型提供可靠的参数。(3)加深理解不同时空尺度上植物水分调节过程, 揭示植物对环境胁迫(尤其是干旱)的响应和适应机制。
罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为. 植物生态学报, 2017, 41(9): 1020-1032. DOI: 10.17521/cjpe.2016.0366
Dan-Dan LUO, Chuan-Kuan WANG, Ying JIN. Plant water-regulation strategies: Isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 2017, 41(9): 1020-1032. DOI: 10.17521/cjpe.2016.0366
性状 Trait | 等水调节 Isohydric regulation | 非等水调节 Anisohydric regulation | 是否存在争议 Challenged or not | |
---|---|---|---|---|
水力性状 Hydraulics | 生长策略 Growth strategy | 保守型 Conservative behaviour | 冒险型 Risk-taking behaviour | N |
最小叶水势 Minimum leaf water potential | 相对恒定(高) Constant (High) | 低 Low | N | |
气孔导度 Stomatal conductance | 低 Low | 相对恒定(高) Constant (High) | Y ( | |
导水率 Hydraulic conductance | 低 Low | 高 High | N | |
耐旱性 Drought tolerance | 弱 Weak | 强 Strong | Y ( | |
木质部脆弱性 Xylem vulnerability | 小 Small | 大 Large | N | |
水力安全阈值 Safety margin | 大 Large | 小 Small | N | |
栓塞恢复力 Embolism recovery ability | 弱 Weak | 强 Strong | Y ( | |
纹孔膜 Pit membrane | 厚; 总面积小 Thick; Smaller total area | 薄; 总面积大 Thin; Larger total area | - | |
碳经济性状 Carbon economics | 光合速率 Photosynthetic rate | 小 Small | 大 Large | Y ( |
呼吸速率 Respiratory rate | 小 Small | 大 Large | N | |
内在水分利用效率 Intrinsic water use efficiency | 高 High | 低 Low | Y ( | |
非结构性碳水化合物 Nonstructural carbohydrate | 低 Low | 高 High | Y ( | |
比叶质量 Leaf mass per area | 大 Large | 小 Small | - | |
叶寿命 Leaf lifespan | 长 Long | 短 Short | - |
表1 等水与非等水调节对策植物的性状对比
Table 1 Contrasting plant traits between isohydric and anisohydric regulation strategies
性状 Trait | 等水调节 Isohydric regulation | 非等水调节 Anisohydric regulation | 是否存在争议 Challenged or not | |
---|---|---|---|---|
水力性状 Hydraulics | 生长策略 Growth strategy | 保守型 Conservative behaviour | 冒险型 Risk-taking behaviour | N |
最小叶水势 Minimum leaf water potential | 相对恒定(高) Constant (High) | 低 Low | N | |
气孔导度 Stomatal conductance | 低 Low | 相对恒定(高) Constant (High) | Y ( | |
导水率 Hydraulic conductance | 低 Low | 高 High | N | |
耐旱性 Drought tolerance | 弱 Weak | 强 Strong | Y ( | |
木质部脆弱性 Xylem vulnerability | 小 Small | 大 Large | N | |
水力安全阈值 Safety margin | 大 Large | 小 Small | N | |
栓塞恢复力 Embolism recovery ability | 弱 Weak | 强 Strong | Y ( | |
纹孔膜 Pit membrane | 厚; 总面积小 Thick; Smaller total area | 薄; 总面积大 Thin; Larger total area | - | |
碳经济性状 Carbon economics | 光合速率 Photosynthetic rate | 小 Small | 大 Large | Y ( |
呼吸速率 Respiratory rate | 小 Small | 大 Large | N | |
内在水分利用效率 Intrinsic water use efficiency | 高 High | 低 Low | Y ( | |
非结构性碳水化合物 Nonstructural carbohydrate | 低 Low | 高 High | Y ( | |
比叶质量 Leaf mass per area | 大 Large | 小 Small | - | |
叶寿命 Leaf lifespan | 长 Long | 短 Short | - |
缩写或符号 Acronym or symbol | 术语 Term |
---|---|
AAO | 脱落醛氧化酶 Abscisic aldehyde oxidase |
ABA | 脱落酸 Abscisic acid |
AN | 净CO2同化量 Net CO2 assimilation |
AQPs | 水通道蛋白 Aquaporins |
Gs | 气孔导度 Stomatal conductance |
Tr | 蒸腾速率 Transpiration rate |
K | 水力导度 Hydraulic conductance |
Kleaf | 叶水力导度 Leaf hydraulic conductance |
Kplant | 植株导水率 Whole-plant hydraulic conductivity |
LMA | 比叶质量 Leaf dry mass per area |
MCSU | 钼辅因子硫化酶 Molybdate cofactor sulfurase |
NCED | 9-顺式-环氧类胡萝卜素加双氧酶蛋白 9-cis-epoxycarotenoid dioxygenase |
NSC | 非结构性碳水化合物 Nonstructural carbohydrate |
P50 | 木质部失去50%导水率所对应的水势 The water potential inducing 50% loss of hydraulic conductivity |
P88 | 木质部失去88%导水率所对应的水势 The water potential inducing 88% loss of hydraulic conductivity |
Pe | 栓塞临界值 Embolism threshold |
TIP | 液泡膜内在蛋白 Tonoplast-intrinsic protein |
VPD | 水汽压亏缺 Vapor pressure deficit |
WUE | 水分利用效率 Water use efficiency |
WUEi | 内在水分利用效率 Intrinsic water use efficiency |
ZEP | 玉米黄质环氧酶 Zeaxanthin epoxidase |
ΨL | 叶水势 Leaf water potential |
ΨMD | 中午叶水势 Midday leaf water potential |
ΨPD | 黎明前叶水势 Predawn leaf water potential |
ΨS | 土壤水势 Soil water potential |
术语及其缩写或符号
Appendix I Terms and their acronyms or symbol
缩写或符号 Acronym or symbol | 术语 Term |
---|---|
AAO | 脱落醛氧化酶 Abscisic aldehyde oxidase |
ABA | 脱落酸 Abscisic acid |
AN | 净CO2同化量 Net CO2 assimilation |
AQPs | 水通道蛋白 Aquaporins |
Gs | 气孔导度 Stomatal conductance |
Tr | 蒸腾速率 Transpiration rate |
K | 水力导度 Hydraulic conductance |
Kleaf | 叶水力导度 Leaf hydraulic conductance |
Kplant | 植株导水率 Whole-plant hydraulic conductivity |
LMA | 比叶质量 Leaf dry mass per area |
MCSU | 钼辅因子硫化酶 Molybdate cofactor sulfurase |
NCED | 9-顺式-环氧类胡萝卜素加双氧酶蛋白 9-cis-epoxycarotenoid dioxygenase |
NSC | 非结构性碳水化合物 Nonstructural carbohydrate |
P50 | 木质部失去50%导水率所对应的水势 The water potential inducing 50% loss of hydraulic conductivity |
P88 | 木质部失去88%导水率所对应的水势 The water potential inducing 88% loss of hydraulic conductivity |
Pe | 栓塞临界值 Embolism threshold |
TIP | 液泡膜内在蛋白 Tonoplast-intrinsic protein |
VPD | 水汽压亏缺 Vapor pressure deficit |
WUE | 水分利用效率 Water use efficiency |
WUEi | 内在水分利用效率 Intrinsic water use efficiency |
ZEP | 玉米黄质环氧酶 Zeaxanthin epoxidase |
ΨL | 叶水势 Leaf water potential |
ΨMD | 中午叶水势 Midday leaf water potential |
ΨPD | 黎明前叶水势 Predawn leaf water potential |
ΨS | 土壤水势 Soil water potential |
[1] | Ache P, Bauer H, Kollist H, Al-Rasheid KA, Lautner S, Hartung W, Hedrich R (2010). Stomatal action directly feeds back on leaf turgor: New insights into the regulation of the plant water status from non-invasive pressure probe measurements.The Plant Journal, 62, 1072-1082. |
[2] | Attia Z, Domec JC, Oren R, Way DA, Moshelion M (2015). Growth and physiological responses of isohydric and anisohydric poplars to drought.Journal of Experimental Botany, 66, 4373-4381. |
[3] | Bartlett MK, Scoffoni C, Sack L (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: A global meta-analysis.Ecology Letters, 15, 393-405. |
[4] | Blackman CJ, Brodribb TJ, Jordan GJ (2010). Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms.New Phytologist, 188, 1113-1123. |
[5] | Borel C, Audran C, Frey A, Marion-Poll A, Tardieu F, Simonneau T (2001). N. plumbaginifolia zeaxanthin epoxidase transgenic lines have unaltered baseline ABA accumulations in roots and xylem sap, but contrasting sensitivities of ABA accumulation to water deficit.Journal of Experimental Botany, 52, 427-434. |
[6] | Braga NDS, Vitória AP, Souza GM, Barros CF, Freitas L (2016). Weak relationships between leaf phenology and isohydric and anisohydric behavior in lowland wet tropical forest trees.Biotropica, 48, 453-464. |
[7] | Brodribb TJ, Holbrook NM (2004). Stomatal protection against hydraulic failure: A comparison of coexisting ferns and angiosperms.New Phytologist, 162, 663-670. |
[8] | Brodribb TJ, Jordan GJ (2008). Internal coordination between hydraulics and stomatal control in leaves.Plant, Cell & Environment, 31, 1557-1564. |
[9] | Bucci S, Scholz F, Goldstein G, Meinzer F, Sternberg L (2003). Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: Factors and mechanisms contributing to the refilling of embolized vessels.Plant, Cell & Environment, 26, 1633-1645. |
[10] | Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Campanello P, Scholz FG (2005). Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plants in Neotropical savanna trees.Trees, 19, 296-304. |
[11] | Chaves MM, Zarrouk O, Francisco R, Costa J, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010). Grapevine under deficit irrigation: Hints from physiological and molecular data.Annals Botany, 105, 661-676. |
[12] | Chen YT, Xu ZZ (2014). Review on research of leaf economics spectrum.Chinese Journal of Plant Ecology, 38, 1135-1153. (in Chinese with English abstract)[陈莹婷, 许振柱 (2014). 植物叶经济谱的研究进展. 植物生态学报, 38, 1135-1153.] |
[13] | Cocozza C, Cherubini P, Regier N, Saurer M, Frey B, Tognetti R (2010). Early effects of water deficit on two parental clones ofPopulus nigra grown under different environmental conditions. Functional Plant Biology, 37, 244-254. |
[14] | Conesa MR, Rosa JMDL, Domingo R, Bañon S, Pérez-Pastor A (2016). Changes induced by water stress on water relations, stomatal behaviour and morphology of table grapes (cv. Crimson Seedless) grown in pots.Scientia Horticulturae, 202, 9-16. |
[15] | Domec JC, Johnson DM (2012). Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior ofVitis vinifera L. cultivars? Tree Physiology, 32, 245-248. |
[16] | Domec JC, Palmroth S, Ward E, Maier CA, Thérézien M, Oren R (2009). Acclimation of leaf hydraulic conductance and stomatal conductance ofPinus taeda(loblolly pine) to long-term growth in elevated CO2 32, 1500-1512. |
[17] | Fan JZ, Wang D, Hu YL, Jing PP, Wang PP, Chen JQ (2016). Optimal stomatal behavior theory for simulating stomatal conductance.Chinese Journal of Plant Ecology, 40, 631-642. (in Chinese with English Abstract)[范嘉智, 王丹, 胡亚林, 景盼盼, 王朋朋, 陈吉泉 (2016). 最优气孔行为理论和气孔导度模拟. 植物生态学报, 40, 631-642.] |
[18] | Fisher RA, Williams M, Do Vale LR, Da Costa AL, Meir P (2006). Evidence from Amazonian forests is consistent with isohydric control of leaf water potential.Plant, Cell & Environment, 29, 151-165. |
[19] | Flexas J, Ribas-Carbo M, Bota J, Galmes J, Henkle M, Martinez-Canellas S, Medrano H (2006). Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration.New Phytologist, 172, 73-82. |
[20] | Franks PJ, Drake PL, Froend RH (2007). Anisohydric but isohydrodynamic: Seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance.Plant, Cell & Environment, 30, 19-30. |
[21] | Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, Berger A, Sechet J, To A, North HM, Marion-Poll A (2012). Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members.The Plant Journal, 70, 501-512. |
[22] | Gallé A, Csiszar J, Benyo D, Laskay G, Leviczky T, Erdei L, Tari I (2013). Isohydric and anisohydric strategies of wheat genotypes under osmotic stress: Biosynthesis and function of ABA in stress responses.Journal of Plant Physioogy, 170, 1389-1399. |
[23] | Gallé A, Feller U (2007). Changes of photosynthetic traits in beech saplings (Fagus sylvatica) under severe drought stress and during recovery. Physiologia Plantarum, 131, 412-421. |
[24] | Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions.Chinese Journal of Plant Ecology, 39, 300-308. (in Chinese with English Abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.] |
[25] | Guóth A, Tari I, Gallé Á, Csiszár J, Pécsváradi A, Cseuz L, Erdei L (2009). Comparison of the drought stress responses of tolerant and sensitive wheat cultivars during grain filling: Changes in flag leaf photosynthetic activity, ABA levels, and grain yield.Journal of Plant Growth Regulation, 28, 167-176. |
[26] | Guyot G, Scoffoni C, Sack L (2012). Combined impacts of irradiance and dehydration on leaf hydraulic conductance: Insights into vulnerability and stomatal control.Plant, Cell & Environment, 35, 857-871. |
[27] | Hacke UG, Sperry JS, Wheeler JK, Castro L (2006). Scaling of angiosperm xylem structure with safety and efficiency.Tree Physiology, 26, 689-701. |
[28] | Holloway-Phillips M, Brodribb TJ (2011). Minimum hydraulic safety leads to maximum water-use efficiency in a forage grass.Plant, Cell & Environment, 34, 302-313. |
[29] | Hölttä T, Cochard HN, Nikinmaa E, Mencuccini M (2009). Capacitive effect of cavitation in xylem conduits: Results from a dynamic model.Plant, Cell & Environment, 32, 10-21. |
[30] | Jin Y, Wang CK (2015). Trade-offs between plant leaf hydraulic and economic traits.Chinese Journal of Plant Ecology, 39, 1021-1032. (in Chinese with English Abstract)[金鹰, 王传宽 (2015). 植物叶片水力与经济性状权衡关系的研究进展. 植物生态学报, 39, 1021-1032.] |
[31] | Jin Y, Wang CK, Zhou ZH, Li ZM (2016). Co-ordinated performance of leaf hydraulics and economics in 10 Chinese temperate tree species.Functional Plant Biology, 43, 1082-1090. |
[32] | Klein T, Niu S (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours.Functional Ecology, 28, 1313-1320. |
[33] | Lachenbruch B, Mcculloh KA (2014). Traits, properties, and performance: How woody plants combine hydraulic and mechanical functions in a cell, tissue, or whole plant.New Phytologist, 204, 747-764. |
[34] | Li G, Santoni V, Maurel C (2014). Plant aquaporins: Roles in plant physiology.Biochimica et Biophysica Acta, 1840, 1574-1582. |
[35] | Li R, Dang W, Cai J, Zhang SX, Jiang ZM (2016). Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees. Chinese Journal of Plant Ecology, 40, 255-263. (in Chinese with English abstract)[李荣, 党维, 蔡靖, 张硕新, 姜在民 (2016). 6个耐旱树种木质部结构与栓塞脆弱性的关系. 植物生态学报, 40, 255-263.] |
[36] | Li R, Jiang ZM, Zhang SX, Cai J (2015). A review of new research progress on the vulnerability of xylem embolism of woody plants.Chinese Journal of Plant Ecology, 39, 838-848. (in Chinese with English Abstract)[李荣, 姜在民, 张硕新, 蔡靖 (2015). 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 39, 838-848.] |
[37] | Lovisolo C, Hartung W, Schubert A (2002). Whole-plant hydraulic conductance and root-to-shoot flow of abscisic acid are independently affected by water stress in grapevines.Functional Plant Biology, 29, 1349-1356. |
[38] | Lovisolo C, Lavoie-Lamoureux A, Tramontini S, Ferrandino A (2016). Grapevine adaptations to water stress: New perspectives about soil/plant interactions.Theoretical and Experimental Plant Physiology, 28, 53-66. |
[39] | Lovisolo C, Perrone I, Carra A, Ferrandino A, Flexas J, Medrano H, Schubert A (2010). Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: A physiological and molecular update. Functional Plant Biology, 37, 98-116. |
[40] | Lovisolo C, Perrone I, Hartung W, Schubert A (2008a). An abscisic acid-related reduced transpiration promotes gradual embolism repair when grapevines are rehydrated after drought.New Phytologist, 180, 642-651. |
[41] | Lovisolo C, Tramontini S, Flexas J, Schubert A (2008b). Mercurial inhibition of root hydraulic conductance inVitis spp. rootstocks under water stress. Environmental & Experimental Botany, 63, 178-182. |
[42] | Martínez-Vilalta J, Poyatos R, Aguadé D, Retana J, Mencuccini M (2014). A new look at water transport regulation in plants.New Phytologist, 204, 105-115. |
[43] | McAdam SA, Brodribb TJ (2012). Stomatal innovation and the rise of seed plants.Ecology Letters, 15, 1-8. |
[44] | McCulloh KA, Meinzer FC (2015). Further evidence that some plants can lose and regain hydraulic function daily.Tree Physiology, 35, 691-693. |
[45] | McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?New Phytologist, 178, 719-739. |
[46] | McDowell NG, Ryan MG, Zeppel MJ, Tissue DT (2013). Feature: Improving our knowledge of drought-induced forest mortality through experiments, observations, and modeling.New Phytologist, 200, 289-293. |
[47] | Meinzer F (2002). Co-ordination of vapour and liquid phase water transport properties in plants.Plant, Cell & Environment, 25, 265-274. |
[48] | Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009). Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance.Functional Ecology, 23, 922-930. |
[49] | Meinzer FC, McCulloh KA (2013). Xylem recovery from drought-induced embolism: Where is the hydraulic point of no return?Tree Physiology, 33, 331-334. |
[50] | Meinzer FC, Woodruff DR, Marias DE, McCulloh KA, Sevanto S (2014). Dynamics of leaf water relations components in co-occurring iso- and anisohydric conifer species.Plant, Cell & Environment, 37, 2577-2586. |
[51] | Mencuccini M, Minunno F, Salmon Y, Martinez-Vilalta J, Holtta T (2015). Coordination of physiological traits involved in drought-induced mortality of woody plants.New Phytologist, 208, 396-409. |
[52] | Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005). Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress.Environmental & Experimental Botany, 53, 205-214. |
[53] | Moshelion M, Halperin O, Wallach R, Oren R, Way DA (2015). Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: Crop water- use efficiency, growth and yield.Plant, Cell & Environment, 38, 1785-1793. |
[54] | Nardini A, Dimasi F, Klepsch M, Jansen S (2012). Ion-mediated enhancement of xylem hydraulic conductivity in fourAcer species: Relationships with ecological and anatomical features. Tree Physiology, 32, 1434-1441. |
[55] | Negin B, Moshelion M (2016). The evolution of the role of ABA in the regulation of water-use efficiency: From biochemical mechanisms to stomatal conductance.Plant Science, 251, 82-89. |
[56] | Ocheltree TW, Nippert JB, Prasad PV (2016). A safety vs efficiency trade-off identified in the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal conductance and precipitation.New Phytologist, 210, 97-107. |
[57] | Ogasa M, Miki NH, Murakami Y, Yoshikawa K (2013). Recovery performance in xylem hydraulic conductivity is correlated with cavitation resistance for temperate deciduous tree species.Tree Physiology, 33, 335-344. |
[58] | Oren R, Sperry J, Katul G, Pataki D, Ewers B, Phillips N, Schafer K (1999). Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit.Plant, Cell & Environment, 22, 1515-1526. |
[59] | Pantin F, Monnet F, Jannaud D, Costa JM, Renaud J, Muller B, Simonneau T, Genty B (2013). The dual effect of abscisic acid on stomata.New Phytologist, 197, 65-72. |
[60] | Pivovaroff AL, Pasquini SC, de Guzman ME, Alstad KP, Stemke JS, Santiago LS, Field K (2016). Multiple strategies for drought survival among woody plant species.Functional Ecology, 30, 517-526. |
[61] | Poni S, Bernizzoni F, Civardi S (2007). Response of “Sangiovese” grapevines to partial root-zone drying: Gas-exchange, growth and grape composition.Scientia Horticulturae, 114, 96-103. |
[62] | Pou A, Flexas J, Alsina MDM, Bota J, Carambula C, Herralde FD, Galmés J, Lovisolo C, Jiménez M, Ribas-Carbó M (2007). Is there an association between weight and dental caries among pediatric patients in an urban dental school? A correlation study.Physiologia Plantarum, 71, 1435-1440. |
[63] | Pou A, Medrano H, Flexas J, Tyerman SD (2013). A putative role for TIP and PIP aquaporins in dynamics of leaf hydraulic and stomatal conductances in grapevine under water stress and re-watering.Plant, Cell & Environment, 36, 828-843. |
[64] | Pou A, Medrano H, Tomàs M, Martorell S, Ribas-Carbó M, Flexas J (2012). Anisohydric behaviour in grapevines results in better performance under moderate water stress and recovery than isohydric behaviour.Plant and Soil, 359, 335-349. |
[65] | Quero JL, Sterck FJ, Martínez-Vilalta J, Villar R (2011). Water-use strategies of six co-existing Mediterranean woody species during a summer drought.Oecologia, 166, 45-57. |
[66] | Reich PB, Luo YJL, John BB, Poorter H, Perry CH, Oleksyn J (2014). Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.Proceedings of the National Academy of Sciences of the United States of America, 111, 13721-13726. |
[67] | Rogiers SY, Greer DH, Hatfield JM, Hutton RJ, Clarke SJ, Hutchinson PA, Somers A (2012). Stomatal response of an anisohydric grapevine cultivar to evaporative demand, available soil moisture and abscisic acid.Tree Physiology, 32, 249-261. |
[68] | Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman F, Phillips RP (2015). The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought.Oecologia, 179, 641-654. |
[69] | Rose L, Rubarth MC, Hertel D, Leuschner C (2013). Management alters interspecific leaf trait relationships and traitbased species rankings in permanent meadows.Journal of Vegetation Science, 24, 239-250. |
[70] | Sade N, Moshelion M (2014). The dynamic isohydric-anisohydric behavior of plants upon fruit development: Taking a risk for the next generation.Tree Physiology, 34, 1199-1202. |
[71] | Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009). Improving plant stress tolerance and yield production: Is the tonoplast aquaporin SlTIP2;2 a key to isohydric to anisohydric conversion?New Phytologist, 181, 651-661. |
[72] | Salleo S, Nardini A, Pitt F, Gullo MAL (2000). Xylem cavitation and hydraulic control of stomatal conductance in laurel (Laurus nobilis L.). Plant, Cell & Environment, 23, 71-79. |
[73] | Schultz HR (2003). Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grownVitis vinifera L. cultivars during drought. Plant, Cell & Environment, 26, 1393-1405. |
[74] | Secchi F, Zwieniecki MA (2014). Down-regulation of plasma intrinsic protein1 aquaporin in poplar trees is detrimental to recovery from embolism.Plant Physiology, 164, 1789-1799. |
[75] | Soar CJ, Speirs J, Maffei S, Penrose A, McCarthy MG, Loveys B (2006). Grape vine varieties Shiraz and Grenache differ in their stomatal response to VPD: Apparent links with ABA physiology and gene expression in leaf tissue.Australian Journal of Grape and Wine Research, 12, 2-12. |
[76] | Sperry JS (2000). Hydraulic constraints on plant gas exchange.Agricultural & Forest Meteorology, 104, 13-23. |
[77] | Sperry JS, Hacke UG (2004). Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes.American Journal of Botany, 91, 369-385. |
[78] | Sperry JS, Tyree MT (1988). Mechanism of water stress-induced xylem embolism.Plant Physiology, 88, 581-587. |
[79] | Tardieu F, Simonneau T (1998). Variability among species of stomatal control under fluctuating soil water status and evaporative demand: Modelling isohydric and anisohydric behaviours.Journal of Experimental Botany, 49, 419-432. |
[80] | Thompson AJ, Mulholland BJ, Jackson AC, McKee JM, Hilton HW, Symonds RC, Sonneveld T, Burbidge A, Stevenson P, Taylor IB (2007). Regulation and manipulation of ABA biosynthesis in roots.Plant, Cell & Environment, 30, 67-78. |
[81] | Trifilò P, Nardini A, Raimondo F, Gullo MAL, Salleo S (2011). Ion-mediated compensation for drought-induced loss of xylem hydraulic conductivity in field-growing plants ofLaurus nobilis. Functional Plant Biology, 38, 606-613. |
[82] | Tyree MT, Sperry JS (1988). Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answers from a model.Plant Physiology, 88, 574-580. |
[83] | Vandeleur RK, Mayo G, Shelden MC, Gilliham M, Kaiser BN, Tyerman SD (2009). The role of plasma membrane intrinsic protein aquaporins in water transport through roots: Diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine.Plant Physiology, 149, 445-460. |
[84] | Villagra M, Campanello PI, Bucci SJ, Goldstein G (2013). Functional relationships between leaf hydraulics and leaf economic traits in response to nutrient addition in subtropical tree species.Tree Physiology, 33, 1308-1318. |
[85] | Vogt UK (2001). Hydraulic vulnerability, vessel refilling, and seasonal courses of stem water potential ofSorbus aucuparia L. and Sambucus nigra L. Journal of Experimental Botany, 52, 1527-1536. |
[86] | Wang CS, Wang SP (2015). A review of research on responses of leaf traits to climate change.Chinese Journal of Plant 1)Ecology, 39, 206-216. (in Chinese with English abstract)[王常顺, 汪诗平 (2015) 植物叶片性状对气候变化的响应研究进展. 植物生态学报, 39, 206-216.] |
[87] | Wilkinson S, Davies WJ (2002). ABA-based chemical signalling: The co-ordination of responses to stress in plants.Plant, Cell & Environment, 25, 195-210. |
[88] | Wilkinson S, Davies WJ (2010). Drought, ozone, ABA and ethylene: New insights from cell to plant to community.Plant, Cell & Environment, 33, 510-525. |
[89] | Woodruff DR, Meinzer FC, Marias DE, Sevanto S, Jenkins MW, McDowell NG (2015). Linking nonstructural carbohydrate dynamics to gas exchange and leaf hydraulic behavior inPinus edulis and Juniperus monosperma. New Phytologist, 206, 411-421. |
[90] | Wright IJ, Reich PB, Cornelissen JH, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J (2005). Modulation of leaf economic traits and trait relationships by climate.Global Ecology & Biogeography, 14, 411-421. |
[91] | Zhang Y, Oren R, Kang S (2012). Spatiotemporal variation of crown-scale stomatal conductance in an aridVitis vinifera L. cv. Merlot vineyard: Direct effects of hydraulic properties and indirect effects of canopy leaf area. Tree Physiology, 32, 262-279. |
[92] | Zhang YQ, Wang CK (2008). Transpiration of boreal and temperate forests.Chinese Journal of Applied and Environmental Biology, 14, 838-845. (in Chinese with English abstract)[张彦群, 王传宽 (2008). 北方和温带森林生态系统的蒸腾耗水. 应用与环境生物学报, 14, 838-845.]附录I 术语及其缩写或符号 |
93 | Appendix I Terms and their acronyms or symbol |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[5] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[6] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[7] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[8] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[9] | 张雨鉴, 刘艳红. 林火干扰下的树木生理及主要影响因素[J]. 植物生态学报, 2024, 48(3): 269-286. |
[10] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[11] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[12] | 陈图强, 徐贵青, 刘深思, 李彦. 干旱胁迫下梭梭水力性状调整与非结构性碳水化合物动态[J]. 植物生态学报, 2023, 47(10): 1407-1421. |
[13] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[14] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[15] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 9246
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 9995
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La