植物生态学报 ›› 2018, Vol. 42 ›› Issue (12): 1179-1191.DOI: 10.17521/cjpe.2018.0176
张振振1,*(),赵平2,赵秀华2,张锦秀1,朱丽薇2,欧阳磊2,张笑颜1
收稿日期:
2018-07-30
修回日期:
2018-10-23
出版日期:
2018-12-20
发布日期:
2019-04-04
通讯作者:
张振振
基金资助:
ZHANG Zhen-Zhen1,*(),ZHAO Ping2,ZHAO Xiu-Hua2,ZHANG Jin-Xiu1,ZHU Li-Wei2,OUYANG Lei2,ZHANG Xiao-Yan1
Received:
2018-07-30
Revised:
2018-10-23
Online:
2018-12-20
Published:
2019-04-04
Contact:
Zhen-Zhen ZHANG
Supported by:
摘要:
精确模拟冠层气孔导度(GS)对于评估区域蒸散具有重要意义。该研究选择两种常见的人工阔叶树种尾叶桉(Eucalyptus urophylla, 外来种)和木荷(Schima superba, 本地种)作为研究对象, 利用K?stner法和修订的Penman-Monteith公式计算冠层平均气孔导度(分别定义为GS1和GS2)。研究还分析了环境因子对冠层脱耦联系数(Ω)的影响, 并用其来评价两种方法模拟的冠层气孔导度的合理性。结果表明, 两个树种冠层气孔导度均与气象条件耦合较好(尾叶桉: Ω = 0.10 ± 0.03, 木荷: Ω = 0.17 ± 0.03)。主成分分析显示, 光合有效辐射(PAR)以及水汽压亏缺(D)显著影响Ω的大小, 而风速(u)的影响较小。单因素分析则发现各环境因子与Ω之间的相关性并不显著。边界线分析表明D和PAR的增加使得Ω最终趋向于一个与树种有关的稳定值(木荷≈ 0.20, 尾叶桉≈ 0.05), 而Ω随u的增加呈幂指数下降。与木荷相比, 尾叶桉具有更高的气孔导度(尾叶桉和木荷的GS2年平均值分别为(33.42 ± 9.37) mmol·m -2·s -1和(23.40 ± 2.03) mmol·m -2·s -1), 并且尾叶桉和木荷的GS1与GS2的线性拟合斜率分别为0.92 (R 2 ≈ 0.70)和0.98 (R 2 ≈ 0.76) , 表明GS1比GS2高估了冠层气孔导度。另外, GS1和GS2对水汽压亏缺的敏感性与参比气孔导度(GSiref, D = 1 kPa时的气孔导度)的比值Pi与Ω紧密相关。根据统计, 尾叶桉和木荷的GS1估计值在Ω = 0.05-0.15 (83.1%的数据)和0.10-0.20 (47.8%的数据)之间时是相对可靠的。
张振振, 赵平, 赵秀华, 张锦秀, 朱丽薇, 欧阳磊, 张笑颜. 环境因子对常绿阔叶树种脱耦联系数及冠层气孔导度估算的影响. 植物生态学报, 2018, 42(12): 1179-1191. DOI: 10.17521/cjpe.2018.0176
ZHANG Zhen-Zhen, ZHAO Ping, ZHAO Xiu-Hua, ZHANG Jin-Xiu, ZHU Li-Wei, OUYANG Lei, ZHANG Xiao-Yan. Impact of environmental factors on the decoupling coefficient and the estimation of canopy stomatal conductance for ever-green broad-leaved tree species. Chinese Journal of Plant Ecology, 2018, 42(12): 1179-1191. DOI: 10.17521/cjpe.2018.0176
树种 Species | 密度 Density | n | DBH | H | As | LAI | l | Al | Ac |
---|---|---|---|---|---|---|---|---|---|
木荷 S. superba | 603 | 21 | 15.5 (1.3)a | 12.7 (0.5)a | 0.018 (0.002)a | 4.3 (0.1)a | 9.1 (0.4)a | 66.6 (10.2)a | 20.7 (2.9)a |
尾叶桉 E. urophylla | 1 375 | 15 | 10.1 (0.6)b | 11.5 (0.8)a | 0.007 (0.001)b | 1.5 (0.1)b | 10.9 (0.2)b | 21.0 (2.7)b | 4.0 (0.2)b |
表1 木荷和为尾叶桉林区参数
Table 1 Stand parameters of Schima superba and Eucalyptus urophylla
树种 Species | 密度 Density | n | DBH | H | As | LAI | l | Al | Ac |
---|---|---|---|---|---|---|---|---|---|
木荷 S. superba | 603 | 21 | 15.5 (1.3)a | 12.7 (0.5)a | 0.018 (0.002)a | 4.3 (0.1)a | 9.1 (0.4)a | 66.6 (10.2)a | 20.7 (2.9)a |
尾叶桉 E. urophylla | 1 375 | 15 | 10.1 (0.6)b | 11.5 (0.8)a | 0.007 (0.001)b | 1.5 (0.1)b | 10.9 (0.2)b | 21.0 (2.7)b | 4.0 (0.2)b |
图1 研究期间的气象条件。A, 光合有效辐射(PAR)。B, 水汽压亏缺(D)。C, 空气温度(Ta)。D, 土壤含水量(SWC)。
Fig. 1 Meteorological conditions during study periods. A, Photosynthetic photon flux density (PAR). B, Vapor pressure deficit (D). C, Daily mean air temperature (Ta). D, Soil water content (SWC).
图3 尾叶桉林和木荷林光合有效辐射(PAR)、水汽压亏缺(D)和脱耦联系数(Ω)日变化(平均值±标准误差)。
Fig. 3 Diurnal course of photosynthetically active radiation (PAR, μmol m-2·s-1) (A, B), vapor pressure deficit (D, kPa) (C, D), and decoupling coefficient (Ω) (E, F) for Eucalyptus urophylla and Schima superba stands (mean ± SE) respectively.
图4 尾叶桉林和木荷林中脱耦联系数(Ω)和光合有效辐射(PAR)(A, D)、水汽压亏缺(D) (B, E)及风速(C, F)之间的关系。图中仅显示了边界线数据区域。
Fig. 4 Relationships between decoupling coefficient (Ω) and (A, D) photosynthetically active radiation (PAR,) as well as (B, E) vapor pressure deficit (D), (C, F) wind speed in Eucalyptus urophylla and Schima superba stands. Only boundary line data area shown in the figure.
图5 使用修订的Penman-Monteith公式估算的冠层气孔导度及相关的脱耦联系数(Ω)。
Fig. 5 Decoupling coefficient (Ω) in relation to canopy stomatal conductance estimated with the inverse Penman-Monteith equation (GS2).
图6 根据K?stner公式(GS1, ○)和Penman-Monteith逆公式(GS2, △)估计的尾叶桉林(A-D)和木荷林(E-H)冠层气孔导度(GS)的日变化。
Fig. 6 Daily variation of canopy stomatal conductance (GS) estimated from the K?stner equation (GS1, ○) and the inverse Penman-?Monteith equation (GS2, △) for Eucalyptus urophylla (A-D) and Schima superba (E-H).
图7 尾叶桉和木荷利用K?stner法计算的气孔导度(GS1)和利用Penman-Monteith公式计算的气孔导度(GS2)之间的关系。
Fig. 7 Relationship between stomatal conductance estimated from the K?stner equation (GS1) and the inverse Penman-Monteith equation (GS2) for Eucalyptus urophylla and Schima superba.
图8 冠层气孔导度(GS)对水汽压亏缺的敏感性(-m)与水汽压亏缺(D) = 1 kPa时的GS (GSref)之间的比例变化。数值来自一个月数据子集的边界线拟合。对于每种方法组合, 线是最小二乘拟合(p < 0.001)。GS1: 直线和空心圆, GS2: 点划线和星号。
Fig. 8 Proportional increase of sensitivity of tree crown-level stomatal conductance (GS) to vapor pressure deficit (-m) with the conductance at vapor pressure deficit (D) = 1 kPa (GSref). Values are from boundary line fits of one month subsets of data. Lines are the least-square fit (p < 0.001) for each method combination. GS1, line and open circle; GS2, dash dot and asterisk
变量 Variables | 缩写 Abbreviations | 单位 Units |
---|---|---|
冠层气孔导度 Canopy stomatal conductance | GS | mmol·m-2·s-1 |
冠层脱耦联系数 Canopy decoupling coefficient | Ω | 无纲量 No dimension |
光合有效辐射 Photosynthetically active radiation | PAR | μmol·m-2·s-1 |
水汽压亏缺 Water vapor deficit | D | kPa |
风速 Wind speed | u | m·s-1 |
水汽导度 Water vapor conductance | GT | mmol·m-2·s-1 |
冠层导度 Canopy conductance | gc | mmol·m-2·s-1 |
空气动力学导度 Aerodynamic conductance | ga | mmol·m-2·s-1 |
树木蒸腾速率 Tree transpiration rates | E | g·m-2·s-1 |
叶面积指数 Leaf area index | LAI | m2·m-2 |
胸径 Diameter at breast height | DBH | cm |
树高 Tree height | H | m |
边材面积 Sap wood area | AS | m2 |
总叶面积 Total leaf area | Al | m2 |
气动阻力 Stomatal resistance | ra | s·m-1 |
土壤含水量 Soil water content | SWC | m3·m-3 |
表2 文中常用变量及其缩写
Table 2 Common variables and their abbreviations
变量 Variables | 缩写 Abbreviations | 单位 Units |
---|---|---|
冠层气孔导度 Canopy stomatal conductance | GS | mmol·m-2·s-1 |
冠层脱耦联系数 Canopy decoupling coefficient | Ω | 无纲量 No dimension |
光合有效辐射 Photosynthetically active radiation | PAR | μmol·m-2·s-1 |
水汽压亏缺 Water vapor deficit | D | kPa |
风速 Wind speed | u | m·s-1 |
水汽导度 Water vapor conductance | GT | mmol·m-2·s-1 |
冠层导度 Canopy conductance | gc | mmol·m-2·s-1 |
空气动力学导度 Aerodynamic conductance | ga | mmol·m-2·s-1 |
树木蒸腾速率 Tree transpiration rates | E | g·m-2·s-1 |
叶面积指数 Leaf area index | LAI | m2·m-2 |
胸径 Diameter at breast height | DBH | cm |
树高 Tree height | H | m |
边材面积 Sap wood area | AS | m2 |
总叶面积 Total leaf area | Al | m2 |
气动阻力 Stomatal resistance | ra | s·m-1 |
土壤含水量 Soil water content | SWC | m3·m-3 |
树种 Species | Ω区间 Ω interval | Pi |
---|---|---|
0.00-0.05 | - | |
0.05-0.10 | 0.57 (0.06) | |
尾叶桉 E. urophylla | 0.10-0.15 | 0.58 (0.06) |
0.15-0.20 | 1.04 (0.16)** | |
0.20-0.25 | 8.32 (7.62)** | |
0.25-0.3 | 1.43(5.02)** | |
0.00-0.05 | - | |
0.05-0.10 | 0.75 (0.13)** | |
木荷 S. superba | 0.10-0.15 | 0.61 (0.10) |
0.15-0.20 | 0.58 (0.08) | |
0.20-0.25 | 0.70 (0.13)** | |
0.25-0.30 | 1.21 (0.40)** |
表3 不同冠层脱耦联系数(Ω)区间范围尾叶桉和木荷的冠层气孔导度对水汽压亏缺的敏感性(-m)和参比气孔导度(GSiref)之间的比例(Pi)
Table 3 The proportion between the ratio of the sensitivity of canopy stomatal conductance to vapor pressure deficit (-m) and stomatal conductance at vapor pressure deficit = 1 kPa (GSiref) (Pi) for Ecalyptus urophylla and Schima superba at each canopy decoupling coefficient (Ω) interval
树种 Species | Ω区间 Ω interval | Pi |
---|---|---|
0.00-0.05 | - | |
0.05-0.10 | 0.57 (0.06) | |
尾叶桉 E. urophylla | 0.10-0.15 | 0.58 (0.06) |
0.15-0.20 | 1.04 (0.16)** | |
0.20-0.25 | 8.32 (7.62)** | |
0.25-0.3 | 1.43(5.02)** | |
0.00-0.05 | - | |
0.05-0.10 | 0.75 (0.13)** | |
木荷 S. superba | 0.10-0.15 | 0.61 (0.10) |
0.15-0.20 | 0.58 (0.08) | |
0.20-0.25 | 0.70 (0.13)** | |
0.25-0.30 | 1.21 (0.40)** |
[1] | Anton H, Andrés I, James B ( 2008). Effect of Pinus radiata plantations on water balance in Chile. Hydrological Processes, 22, 142-148. |
[2] |
Aphalo P, Jarvis P ( 1991). Do stomata respond to relative humidity?Plant, Cell & Environment, 14, 127-132.
DOI URL |
[3] |
Barradas VL, Nicolás E, Torrecillas A, Alarcón JJ ( 2005). Transpiration and canopy conductance in young apricot ( Prunus armenica L.) trees subjected to different PAR levels and water stress. Agricultural Water Management, 77, 323-333.
DOI URL |
[4] |
Bladon KD, Silins U, Landh?usser SM, Lieffers VJ ( 2006). Differential transpiration by three boreal tree species in response to increased evaporative demand after variable retention harvesting. Agricultural and Forest Meteorology, 138, 104-119.
DOI URL |
[5] |
Blanken PD, Black TA, Yang PC, Neumann HH, Nesic Z, Staebler R, den Hartog G, Novak MD, Lee X ( 1997). Energy balance and canopy conductance of a boreal aspen forest: Partitioning overstory and understory components. Journal of Geophysical Research: Atmospheres, 102, 28915-28927.
DOI URL |
[6] |
Cabral OM, Rocha HR, Gash JH, Ligo MA, Freitas HC, Tatsch JD ( 2010). The energy and water balance of a Eucalyptus plantation in southeast Brazil. Journal of Hydrology, 388, 208-216.
DOI |
[7] |
Campbell-Clause J ( 1998). Stomatal response of grapevines to wind. Australian Journal of Experimental Agriculture, 38, 77-82.
DOI URL |
[8] |
Cienciala E, Ku?era J, Malmer A ( 2000). Tree sap flow and stand transpiration of two Acacia mangium plantations in Sabah, Borneo. Journal of Hydrology, 236, 109-120.
DOI URL PMID |
[9] |
Cienciala E, Kucera J, Ryan MG, Lindroth A ( 1998). Water flux in boreal forest during two hydrologically contrasting years: Species specific regulation of canopy conductance and transpiration. Annales des Sciences Forestieres, 55, 47-61.
DOI URL |
[10] |
Daudet FA, Le Roux X, Sinoquet H, Adam B ( 1999). Wind speed and leaf boundary layer conductance variation within tree crown: Consequences on leaf-to-atmosphere coupling and tree functions. Agricultural and Forest Meteorology, 97, 171-185.
DOI URL |
[11] |
Dixon M, Grace J ( 1984). Effect of wind on the transpiration of young trees. Annals of Botany, 53, 811-819.
DOI URL |
[12] | Dye P, Olbrich B ( 1993). Estimating transpiration from 6-year-old Eucalyptus grandis trees: Development of a canopy conductance model and comparison with independent sap flux measurements. Plant, Cell & Environment, 16, 45-53. |
[13] |
Ewers B, Gower S, Bond-lamberty B, Wang C ( 2005). Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests. Plant, Cell & Environment, 28, 660-678.
DOI URL |
[14] |
Ewers BE, Mackay DS, Samanta S ( 2007). Interannual consistency in canopy stomatal conductance control of leaf water potential across seven tree species. Tree Physiology, 27, 11-24.
DOI URL PMID |
[15] | Forrester DI, Theiveyanathan S, Collopy JJ, Marcar NE ( 2010). Enhanced water use efficiency in a mixed Eucalyptus globulus and Acacia mearnsii plantation. Forest Ecology and Management, 259, 1761-1770. |
[16] |
Granier A ( 1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI URL PMID |
[17] |
Granier A, Biron P, Bréda N, Pontailler J, Saugier B ( 1996). Transpiration of trees and forest stands: Short and long-term monitoring using sap flow methods. Global Change Biology, 2, 265-274.
DOI URL |
[18] |
Granier A, Loustau D ( 1994). Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data. Agricultural and Forest Meteorology, 71, 61-81.
DOI URL |
[19] |
Granier A , Loustau, D, Bréda, N ( 2000). A generic model of forest canopy conductance dependent on climate, soil water availability and leaf area index. Annals of Forest Science, 57, 755-765.
DOI URL |
[20] |
Gutiérrez M, Meinzer F, Grantz D ( 1994). Regulation of transpiration in coffee hedgerows: Covariation of environmental variables and apparent responses of stomata to wind and humidity. Plant, Cell & Environment, 17, 1305-1313.
DOI URL |
[21] |
Herbst M ( 1995). Stomatal behaviour in a beech canopy: An analysis of Bowen ratio measurements compared with porometer data. Plant, Cell & Environment, 18, 1010-1018.
DOI URL |
[22] |
Hutley LB, O’grady AP, Eamus D ( 2001). Monsoonal influences on evapotranspiration of savanna vegetation of northern Australia. Oecologia, 126, 434-443.
DOI URL PMID |
[23] |
Jarvis P ( 1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London B, 273, 593-610.
DOI URL |
[24] |
Jarvis P, McNaughton K ( 1986). Stomatal control of transpiration: Scaling up from leaf to region. Advances in Ecological Research, 15, 1-49.
DOI URL |
[25] | Jones H ( 1992). Plants and Microclimate. A Quantitative Approach to Environmental Plant Physiology. Cambridge University Press, Cambridge, UK. |
[26] |
Katsoulas N, Baille A, Kittas C ( 2007). Leaf boundary layer conductance in ventilated greenhouses: An experimental approach. Agricultural and Forest Meteorology, 144, 180-192.
DOI URL |
[27] |
Kelliher F, Leuning R, Schulze E ( 1993). Evaporation and canopy characteristics of coniferous forests and grasslands. Oecologia, 95, 153-163.
DOI URL PMID |
[28] |
Kim D, Oren R, Oishi AC, Hsieh CI, Phillips N, Novick KA, Stoy PC ( 2014). Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agricultural and Forest Meteorology, 187, 62-71.
DOI URL |
[29] |
Kim D, Oren R, Oishi AC, Hsieh CI, Phillips N, Novick KA, Stoy PC ( 2014). Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agricultural and Forest Meteorology, 187, 62-71.
DOI URL |
[30] |
Kim HS, Oren R, Hinckley TM ( 2008). Actual and potential transpiration and carbon assimilation in an irrigated poplar plantation. Tree Physiology, 28, 559-577.
DOI URL PMID |
[31] |
Komatsu H ( 2003). Values of the decoupling factor observed on forest canopies. Journal of Japan Society of Hydrology and Water Resources, 16, 423-438.
DOI URL |
[32] | Komatsu H, Onozawa Y, Kume T, Tsuruta K, Shinohara Y, Otsuki K ( 2012). Canopy conductance for a Moso bamboo ( Phyllostachys pubescens) forest in western Japan. Agricultural and Forest Meteorology, 156, 111-120. |
[33] |
Kumagai T, Saitoh TM, Sato Y, Morooka T, Manfroi OJ, Kuraji K, Suzuki M ( 2004). Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo: Dry spell effects. Journal of Hydrology, 287, 237-251.
DOI URL |
[34] |
Kumagai T, Tateishi M, Shimizu T, Otsuki K ( 2008). Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agricultural and Forest Meteorology, 148, 1444-1455.
DOI URL |
[35] |
Law BE, Goldstein AH, Anthoni PM, Unsworth MH, Panek JA, Bauer MR, Fracheboud JM, Hultman N ( 2001). Carbon dioxide and water vapor exchange by young and old ponderosa pine ecosystems during a dry summer. Tree Physiology, 21, 299-308.
DOI URL PMID |
[36] |
Little C, Lara A, McPhee J, Urrutia R ( 2009). Revealing the impact of forest exotic plantations on water yield in large scale watersheds in South-Central Chile. Journal of Hydrology, 374, 162-170.
DOI URL |
[37] |
Lu P, Yunusa IAM, Walker RR, Müller WJ ( 2003). Regulation of canopy conductance and transpiration and their modelling in irrigated grapevines. Functional Plant Biology, 30, 689-698.
DOI URL |
[38] |
Magnani F, Leonardi S, Tognetti R, Grace J, Borghetti M ( 1998). Modelling the surface conductance of a broad-leaf canopy: Effects of partial decoupling from the atmosphere. Plant, Cell & Environment, 21, 867-879.
DOI URL |
[39] | Martin T, Brown KJ, Cermak J, Ceulemans R, Kucera J, Meinzer FC, Rombold JS, Sprugel DG, Hinckley TM ( 1997). Crown conductance and tree and stand transpiration in a second-growth Abies amabilis forest. Canadian Journal of Forest Research, 27, 2457-2464. |
[40] |
Maruyama A, Kuwagata T ( 2008). Diurnal and seasonal variation in bulk stomatal conductance of the rice canopy and its dependence on developmental stage. Agricultural and Forest Meteorology, 148, 1161-1173.
DOI URL |
[41] | McNaughton K, Jarvis PG ( 1983). Predicting effects of vegetation changes on transpiration and evaporation. In: Kozlowski TT ed. Water Deficits and Plant Growth. Academic Press, New York. 1-47. |
[42] | Mei TT, Zhao P, Wang Q, Cai XA, Yu MH, Zhu LW, Zou LL, Zeng XP ( 2010). Effects of tree diameter at breast height and soil moisture on transpiration of Schima superba based on sap flow pattern and normalization. Chinese Journal of Applied Ecology, 21, 2457-2464. |
[ 梅婷婷, 赵平, 王权, 蔡锡安, 余孟好, 朱丽薇, 邹绿柳, 曾小平 ( 2010). 基于液流格型特征值和标准化方法分析胸径和土壤水分对荷木液流的影响. 应用生态学报, 21, 2457-2464.] | |
[43] | Meinzer FC, Andrade JL, Goldstein G, Holbrook NM, Cavelier J, Jackson P ( 1997). Control of transpiration from the upper canopy of a tropical forest: The role of stomatal, boundary layer and hydraulic architecture components.. Plant, Cell & Environment, 20, 1242-1252. |
[44] |
Mielke MS, Oliva MA, de Barros NF, Penchel RM, Martinez CA, de Almeida AC ( 1999). Stomatal control of transpiration in the canopy of a clonal Eucalyptus grandis plantation. Trees, 13, 152-160.
DOI URL |
[45] | Monteith JL, Unsworth MH ( 2007). Principles of Environmental Physics. Academic Press, New York. |
[46] |
Motzer T, Munz N, Küppers M, Schmitt D, Anhuf D ( 2005). Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes. Tree Physiology, 25, 1283-1293.
DOI URL PMID |
[47] |
Nicolás E, Barradas VL, Ortu?o MF, Navarro A, Torrecillas A, Alarcón JJ ( 2008). Environmental and stomatal control of transpiration, canopy conductance and decoupling coefficient in young lemon trees under shading net. Environmental and Experimental Botany, 63, 200-206.
DOI URL |
[48] |
Oren R, Ewers BE, Todd P, Phillips N, Katul G ( 1998). Water balance delineates the soil layer in which moisture affects canopy conductance. Ecological Applications, 8, 990-1002.
DOI URL |
[49] |
Oren R, Phillips N, Ewers BE, Pataki DE, Megonigal JP ( 1999 a). Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiology, 19, 337-347.
DOI URL PMID |
[50] |
Oren R, Sperry JS, Ewers BE, Pataki DE, Phillips N, Megonigal JP ( 2001). Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: Hydraulic and non-hydraulic effects. Oecologia, 126, 21-29.
DOI URL PMID |
[51] |
Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, Sch?fer KVR ( 1999 b). Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant, Cell & Environment, 22, 1515-1526.
DOI URL |
[52] |
Sch?fer KV, Oren R, Tenhunen J ( 2000). The effect of tree height on crown level stomatal conductance. Plant, Cell & Environment, 23, 365-375.
DOI URL |
[53] |
Taylor PJ, Nuberg IK, Hatton TJ ( 2001). Enhanced transpiration in response to wind effects at the edge of a blue gum (Eucalyptus globulus) plantation. Tree Physiology, 21, 403-408.
DOI URL PMID |
[54] |
Wallace J, Roberts J, Sivakumar M ( 1990). The estimation of transpiration from sparse dryland millet using stomatal conductance and vegetation area indices. Agricultural and Forest Meteorology, 51, 35-49.
DOI URL |
[55] |
Wei Z, Liu Y, Xu D, Cai J, Zhang B ( 2013). Application and comparison of winter wheat canopy resistance estimation models based on the scaling-up of leaf stomatal conductance. Chinese Science Bulletin, 58, 2909-2916.
DOI URL |
[56] |
Whitley R, Medlyn B, Zeppel M, Macinnis-Ng C, Eamus D ( 2009). Comparing the Penman-Monteith equation and a modified Jarvis-Stewart model with an artificial neural network to estimate stand-scale transpiration and canopy conductance. Journal of Hydrology, 373, 256-266.
DOI URL |
[57] |
Wullschleger SD, Wilson KB, Hanson PJ ( 2000). Environmental control of whole-plant transpiration, canopy conductance and estimates of the decoupling coefficient for large red maple trees. Agricultural and Forest Meteorology, 104, 157-168.
DOI URL |
[58] |
Zeppel M, Eamus D ( 2008). Coordination of leaf area, sapwood area and canopy conductance leads to species convergence of tree water use in a remnant evergreen woodland. Australian Journal of Botany, 56, 97-108.
DOI URL |
[59] |
Zhao P, Rao XQ, Ma L, Cai XA, Zeng XP ( 2006). Responses of canopy stomatal conductance of Acacia mangium forest to environmental driving factors. Journal of Applied Ecology, 17, 1149-1156.
DOI |
[ 赵平, 饶兴权, 马玲, 蔡锡安, 曾小平 ( 2006). 马占相思林冠层气孔导度对环境驱动因子的响应. 应用生态学报, 17, 1149-1156.]
DOI |
|
[60] |
Zhu LW, Zhao P, Cai XA, Zeng XP, Ni GY, Zhang JY, Zou LL, Mei TT, Yu MH ( 2012). Effects of sap velocity on the daytime increase of stem CO2 efflux from stems of Schima superba trees. Trees, 26, 535-542.
DOI URL |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[3] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[4] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[5] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[6] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[7] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[8] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[9] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[10] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[11] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[12] | 罗明没, 陈悦, 杨刚, 胡斌, 李玮, 陈槐. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应[J]. 植物生态学报, 2021, 45(5): 552-561. |
[13] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[14] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
[15] | 李媛媛, 张芸, 孔昭宸, 杨振京. 新疆阿尔泰红山嘴地区的表土孢粉与现代植被[J]. 植物生态学报, 2021, 45(2): 174-186. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 2888
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1237
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La