植物生态学报 ›› 2014, Vol. 38 ›› Issue (9): 941-948.DOI: 10.3724/SP.J.1258.2014.00088
所属专题: 生态化学计量
收稿日期:
2014-02-24
接受日期:
2014-07-25
出版日期:
2014-02-24
发布日期:
2014-09-22
通讯作者:
周玉梅
基金资助:
JIANG Xiao-Jie1,HU Yan-Ling2,HAN Jian-Qiu1,ZHOU Yu-Mei1,*()
Received:
2014-02-24
Accepted:
2014-07-25
Online:
2014-02-24
Published:
2014-09-22
Contact:
ZHOU Yu-Mei
摘要:
为探讨苔原植被对气候变暖的响应模式, 采用开顶箱增温法, 研究了3个生长季增温对长白山苔原3种代表植物——牛皮杜鹃(Rhododendron aureum)、笃斯越桔(Vaccinium uliginosum)和东亚仙女木(Dryas octopetala var. asiatica)的叶片及土壤碳(C)、氮(N)、磷(P)含量及其比值的影响。结果表明: 增温使土壤N和P的含量分别增加5.88%和4.83%, C含量降低13.19%; 增温和对照(不增温)条件下, 植物叶片的C、N、P含量及其比值在生长季有明显的变化。增温使笃斯越桔和东亚仙女木叶片的P含量分别增加10.34%和12.87%, 牛皮杜鹃则降低了16.26%, 增温并没有明显改变3种植物叶片的C、N含量, 但牛皮杜鹃和东亚仙女木叶片的C:N值在增温条件下呈现增加趋势。增温使土壤可利用的N、P含量增加。增温对3种植物的C:N值, 牛皮杜鹃、笃斯越桔的P含量, 以及东亚仙女木的C:P值都产生了显著的影响。结果表明增温增加了长白山苔原P元素对植物生长的限制, 且3种植物叶片的C、N、P化学计量学特性对增温的响应模式和尺度没有表现出一致性。
江肖洁,胡艳玲,韩建秋,周玉梅. 增温对苔原土壤和典型植物叶片碳、氮、磷化学计量学特征的影响. 植物生态学报, 2014, 38(9): 941-948. DOI: 10.3724/SP.J.1258.2014.00088
JIANG Xiao-Jie,HU Yan-Ling,HAN Jian-Qiu,ZHOU Yu-Mei. Effects of warming on carbon, nitrogen and phosphorus stoichiometry in tundra soil and leaves of typical plants. Chinese Journal of Plant Ecology, 2014, 38(9): 941-948. DOI: 10.3724/SP.J.1258.2014.00088
开顶箱 Open-top chamber | 对照样地 Control plot | 差值 Difference | |
---|---|---|---|
空气温度 Air temperature (°C) | 24.13 | 22.72 | +1.41 |
空气相对湿度 Air relative humidity (%) | 86.56 | 85.37 | +1.19 |
地下5 cm土壤温度 Soil temperature at 5 cm depth (°C) | 22.66 | 20.92 | +1.74 |
地下10 cm土壤温度 Soil temperature at 10 cm depth (°C) | 21.74 | 19.96 | +1.78 |
表1 生长季增温与对照条件下空气温度、空气相对湿度、地下5 cm和10 cm土壤温度
Table 1 Air temperature, air relative humidity, soil temperature at 5 cm and 10 cm depths in the open-top chambers and control plots during growing season
开顶箱 Open-top chamber | 对照样地 Control plot | 差值 Difference | |
---|---|---|---|
空气温度 Air temperature (°C) | 24.13 | 22.72 | +1.41 |
空气相对湿度 Air relative humidity (%) | 86.56 | 85.37 | +1.19 |
地下5 cm土壤温度 Soil temperature at 5 cm depth (°C) | 22.66 | 20.92 | +1.74 |
地下10 cm土壤温度 Soil temperature at 10 cm depth (°C) | 21.74 | 19.96 | +1.78 |
开顶箱 Open-top chamber | 对照样地 Control plot | |
---|---|---|
总碳含量 Total carbon content (%) | 6.14 ± 3.12A | 6.95 ± 2.07B |
总氮含量 Total nitrogen content (%) | 0.40 ± 0.09A | 0.37 ± 0.03B |
总磷含量 Total phosphorus content (%) | 0.56 ± 0.11A | 0.54 ± 0.03B |
表2 增温与对照条件下土壤碳(C)、氮(N)、磷(P)含量(平均值±标准偏差)
Table 2 Contents of carbon (C), nitrogen (N) and phosphorus (P) of soil in open-top chambers and control plots (mean ± SD)
开顶箱 Open-top chamber | 对照样地 Control plot | |
---|---|---|
总碳含量 Total carbon content (%) | 6.14 ± 3.12A | 6.95 ± 2.07B |
总氮含量 Total nitrogen content (%) | 0.40 ± 0.09A | 0.37 ± 0.03B |
总磷含量 Total phosphorus content (%) | 0.56 ± 0.11A | 0.54 ± 0.03B |
变异来源 Source of variation | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
牛皮杜鹃 Rhododendron aureum | ||||||
增温 Warming (W) | ns | ns | * | * | ns | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
笃斯越桔 Vaccinium uliginosum | ||||||
增温 Warming (W) | ns | ns | * | * | ns | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
东亚仙女木 Dryas octopetala var. asiatica | ||||||
增温 Warming (W) | ns | ns | ns | * | * | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
表3 双因素方差法分析增温、月份对牛皮杜鹃、笃斯越桔和东亚仙女木叶片碳(C)、氮(N)、磷(P)含量及其比值的影响
Table 3 Effects of warming and month on carbon (C), nitrogen (N) and phosphorus (P) contents and their ratios in leaves of Rhododendron aureum, Vaccinium uliginosum and Dryas octopetala var. asiatica using two-way ANOVA
变异来源 Source of variation | C | N | P | C:N | C:P | N:P |
---|---|---|---|---|---|---|
牛皮杜鹃 Rhododendron aureum | ||||||
增温 Warming (W) | ns | ns | * | * | ns | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
笃斯越桔 Vaccinium uliginosum | ||||||
增温 Warming (W) | ns | ns | * | * | ns | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
东亚仙女木 Dryas octopetala var. asiatica | ||||||
增温 Warming (W) | ns | ns | ns | * | * | ns |
月份 Month (M) | ** | ** | ** | ** | ** | ** |
增温×月份 W × M | ns | ns | ** | ns | * | * |
图1 生长季增温与对照条件下牛皮杜鹃、笃斯越桔和东亚仙女木叶片碳(C)、氮(N)、磷(P)含量(平均值±标准偏差)。不同字母表示每个月份不同处理间差异显著(p < 0.05)。
Fig. 1 Carbon (C), nitrogen (N) and phosphorus (P) contents in leaves of Vaccinium uliginosum, Rhododendron aureum, and Dryas octopetala var. asiatica grown in open top chambers (OTC) and control plots during growing season (mean ± SD). Different letters indicate significant difference between OTC and control in the same month at the level of 0.05.
月份 Month | C:N | C:P | N:P | ||||||
---|---|---|---|---|---|---|---|---|---|
开顶箱 Open-top chamber | 对照样地 Control plot | 开顶箱 Open-top chamber | 对照样地 Control plot | 开顶箱 Open-top chamber | 对照样地 Control plot | ||||
牛皮杜鹃 Rhododendron aureum | 7 | 20.02 ± 0.23A | 9.11 ± 0.92B | 513.78 ± 8.41A | 346.75 ± 1.19B | 27.57 ± 1.19A | 38.45 ± 4.00B | ||
8 | 32.16 ± 2.69A | 27.73 ± 0.20B | 326.42 ± 19.08A | 281.95 ± 11.56B | 11.14 ± 0.50A | 10.54 ± 0.40B | |||
9 | 27.14 ± 0.17A | 22.68 ± 0.91B | 246.72 ± 1.32A | 223.45 ± 0.14B | 9.09 ± 0.03A | 10.20 ± 0.19B | |||
笃斯越桔 Vaccinium Uliginosum | 7 | 14.79 ± 0.72A | 21.31 ± 0.30B | 424.96 ± 17.46A | 457.97 ± 11.19B | 33.63 ± 1.43A | 20.70 ± 0.07B | ||
8 | 37.60 ± 0.81A | 32.28 ± 0.13B | 344.74 ± 7.67A | 376.66 ± 1.67B | 9.53 ± 0.49A | 11.86 ± 0.16B | |||
9 | 20.21 ± 1.19A | 24.57 ± 0.08B | 460.24 ± 18.50A | 530.88 ± 41.74B | 20.66 ± 1.66A | 23.52 ± 0.60B | |||
东亚仙女木 Dryas octopetala var. asiatica | 7 | 16.66 ± 0.10A | 13.70 ± 0.10B | 309.90 ± 4.85A | 375.65 ± 0.68B | 19.36 ± 1.15A | 27.42 ± 0.05B | ||
8 | 27.43 ± 0.38A | 26.20 ± 0.32B | 207.67 ± 3.59A | 263.74 ± 3.10B | 7.57 ± 0.14A | 10.18 ± 0.05B | |||
9 | 28.49 ± 1.02A | 22.60 ± 0.60B | 365.14 ± 0.03A | 317.03 ± 11.65B | 12.13 ± 0.24A | 15.80 ± 0.86B |
表4 生长季增温与对照条件下牛皮杜鹃、笃斯越桔和东亚仙女木叶片C:N、C:P、N:P比值(平均值±标准偏差)
Table 4 C:N, C:P, and N:P ratios in Vaccinium uliginosum, Rhododendron aureum, and Dryas octopetala var. asiatica grown in open top chambers and control plots during growing season (mean ± SD)
月份 Month | C:N | C:P | N:P | ||||||
---|---|---|---|---|---|---|---|---|---|
开顶箱 Open-top chamber | 对照样地 Control plot | 开顶箱 Open-top chamber | 对照样地 Control plot | 开顶箱 Open-top chamber | 对照样地 Control plot | ||||
牛皮杜鹃 Rhododendron aureum | 7 | 20.02 ± 0.23A | 9.11 ± 0.92B | 513.78 ± 8.41A | 346.75 ± 1.19B | 27.57 ± 1.19A | 38.45 ± 4.00B | ||
8 | 32.16 ± 2.69A | 27.73 ± 0.20B | 326.42 ± 19.08A | 281.95 ± 11.56B | 11.14 ± 0.50A | 10.54 ± 0.40B | |||
9 | 27.14 ± 0.17A | 22.68 ± 0.91B | 246.72 ± 1.32A | 223.45 ± 0.14B | 9.09 ± 0.03A | 10.20 ± 0.19B | |||
笃斯越桔 Vaccinium Uliginosum | 7 | 14.79 ± 0.72A | 21.31 ± 0.30B | 424.96 ± 17.46A | 457.97 ± 11.19B | 33.63 ± 1.43A | 20.70 ± 0.07B | ||
8 | 37.60 ± 0.81A | 32.28 ± 0.13B | 344.74 ± 7.67A | 376.66 ± 1.67B | 9.53 ± 0.49A | 11.86 ± 0.16B | |||
9 | 20.21 ± 1.19A | 24.57 ± 0.08B | 460.24 ± 18.50A | 530.88 ± 41.74B | 20.66 ± 1.66A | 23.52 ± 0.60B | |||
东亚仙女木 Dryas octopetala var. asiatica | 7 | 16.66 ± 0.10A | 13.70 ± 0.10B | 309.90 ± 4.85A | 375.65 ± 0.68B | 19.36 ± 1.15A | 27.42 ± 0.05B | ||
8 | 27.43 ± 0.38A | 26.20 ± 0.32B | 207.67 ± 3.59A | 263.74 ± 3.10B | 7.57 ± 0.14A | 10.18 ± 0.05B | |||
9 | 28.49 ± 1.02A | 22.60 ± 0.60B | 365.14 ± 0.03A | 317.03 ± 11.65B | 12.13 ± 0.24A | 15.80 ± 0.86B |
[1] | Aerts R, Chapin III FS (1999). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] | Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jónsdóttir IS, Laine E, Lévesque E, Marion GM, Molau U, Mølgaard P, Nordenhäll U, Raszhivin V, Robinson CH, Starr G, Stenström A, Stenström M, Toland Ø, Turner PL, Walker LJ, Webber JM, Wookey PA (1999). Responses of tundra plants to experimental warming: meta-analysis of the international tundra experiment. Ecological Monographs, 69, 491-511. |
[3] | Bao SD (2008). Soil Agricultural Chemistry Analysis. 3rd edn. China Agriculture Press, Beijing. (in Chinese) |
[ 鲍士旦 (2008). 土壤农化分析. 第三版.中国农业出版社, 北京.] | |
[4] | Bliss LC (1962). Adaptations of arctic and alpine plants to environmental conditions. Arctic and Alpine Research, 15, 117-144. |
[5] | Borjigidai A, Hikosaka K, Hirose T (2009). Carbon balance in a monospecific stand of an annual herb chenopodium album at an elevated CO2 concentration. Plant Ecology, 203, 33-44. |
[6] | Callaghan TV, Jonasson S, Nichols H, Heywood RB, Wookey PA (1995). Arctic terrestrial ecosystems and environmental change. Philosophical Transactions of the Royal Society, 352, 259-276. |
[7] | Carrillo Y, Pendall E, Dijkstra FA, Morgan JA, Newcomb JM (2011). Response of soil organic matter pools to elevated CO2 and warming in a semi-arid grassland. Plant and Soil, 347, 339-350. |
[8] | Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999). Changing sources of nutrients during four million years of ecosystem development. Nature, 397, 491-497. |
[9] | Chapin III FS, Gaius R, Shaver GR, Giblin AE, Nadelhoffer KJ, Laundre JA (1995). Responses of arctic tundra to experimental and observed changes in climate. Ecology, 76, 694-711. |
[10] | Chapin III FS, Oechel WC (1983). Photosynthesis, respiration, and phosphate absorption by Carex aquatilis ecotypes along latitudinal and local environmental gradients. Eco- logy, 64, 743-751. |
[11] | Debevec EM, MacLean SF (1993). Design of greenhouses for the manipulation of temperature in tundra plant communities. Arctic and Alpine Research, 25, 56-62. |
[12] |
Dijkstra FA, Pendall E, Morgan JA, Blumenthal DM, Carrillo Y, LeCain DR, Follett RF, Williams DG (2012). Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytologist, 196, 807-815.
DOI URL PMID |
[13] | Drenovsky RE, Richards JH (2004). Critical N:P values: predicting nutrient deficiencies in desert shrubland. Plant and Soil, 259, 59-69. |
[14] |
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, McCauley E, Schulz KL, Siemann EH, Sterner RW (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
URL PMID |
[15] |
Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: What is the link with other resource economics traits? New Phytologist, 186, 879– 889.
URL PMID |
[16] | Gordon C, Wynn JM, Woodin SJ (2001). Impacts of increased nitrogen supply on high Arctic heath: the importance of bryophytes and phosphorus availability. New Phytologist, 149, 461-471. |
[17] | Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243-266. |
[18] |
Hansen AH, Jonasson S, Michelsen A, Julkunen-Tiitto R (2006). Long-term experimental warming, shading and nutrient addition affect the concentration of phenolic compounds in arctic-alpine deciduous and evergreen dwarf shrubs. Oecologia, 147, 1-11.
URL PMID |
[19] | Harpole WS, Nqai JT, Cleland EE, Seabloom EW, Borer ET, Bracken ME, Elser JJ, Gruner DS, Hillebrand H, Shurn JB, Smith JE (2011). Nutrition co-limitation of primary producer communities. Ecology Letter, 14, 852-862. |
[20] |
He JS, Wang L, Flynn DFB, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen: phosphorus stoichiometry across Chinese grassland biomes. Oecologia, 155, 301-310.
DOI URL PMID |
[21] | Hobbie SE (1996). Temperature and plant species control over litter decomposition in Alaskan tundra. Ecological Monographs, 66, 503-522. |
[22] | Hobbie SE, Chapin III FS (1998). The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology, 79, 1526-1544. |
[23] | Idso SB, Kimball BA, Anderson MG, Mauney JR (1987). Effects of atmospheric CO2 enrichment on plant growth: the interactive role of air temperature. Agriculture, Ecosystems & Environment, 20, 1-10. |
[24] | IPCC (Intergovernmental Panel on Climate Change) (2013). Climate change 2013: the physical science basis. Contribution of working group 1. In: Stocker T, Qin DH, Plattner GK eds. Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. 1535. |
[25] | Jiang GM (2005). Plant Ecophsiology. Higher Education Press, Beijing. (in Chinese) |
[ 蒋高明 (2005). 植物生理生态学. 高等教育出版社, 北京.] | |
[26] | Kaarlejärvi E, Baxter R, Hofgaard A, Hytteborn H, Khitun O, Molau U, Sjögersten S, Wookey P, Olofsson J (2012). Effects of warming on shrub abundance and chemistry drive ecosystem-level changes in a forest-tundra ecotone. Ecosystems, 15, 1219-1233. |
[27] | Keyser AR, Kimball JS, Nemani RR, Running SW (2000). Simulating the effects of climate change on the carbon balance of North American high latitude forests. Global Change Biology, 6, 185-195. |
[28] | Klanderud K, Totland Ø (2005). Simulated climate change altered dominance hierarchies and diversity of an alpine biodiversity hotspot. Ecology, 86, 2047-2054. |
[29] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450. |
[30] | Körner C (1999). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. 2nd edn. Springer-Verlag, Berlin. |
[31] | Kudo G, Nordehäll U, Molau U (1999). Effects of snow melt timing on leaf traits, leaf production, and shoot growth of alpine plants: comparisons along a snow melt gradient in northern Sweden. Ecoscience, 6, 439-450. |
[32] | Marion GM, Bockheim JG, Brown J (1997a). Arctic soils and the ITEX experiment. Global Change Biology, 3, 33-43. |
[33] | Marion GM, Hastings SJ, Oberbauer SF, Oechel WC (1989). Soil-plant element relationships in a tundra ecosystem. Holarctic Ecology, 12, 296-303. |
[34] | Marion GM, Henry GHR, Freckman DW, Johnstone J, Jones G, Jones MH, Lévesque E, Molau U, Mølgaard P, Parsons AN, Svoboda J, Virginia RA (1997b). Open-top designs for manipulating field temperature in high-latitude ecosystems. Global Change Biology, 3, 20-32. |
[35] | Nadelhoffer KJ, Giblin AE, Shaver GR. Laundre JA (1991). Effects of temperature and organic matter quality on C, N, and P mineralization in soils from six arctic ecosystems. Ecology, 72, 242-253. |
[36] | Nybakken L, Sandvik SM, Klanderud K (2011). Experimental warming had little effect on carbon-based secondary compounds, carbon and nitrogen in selected alpine and lichens. Environmental and Experimental Botany, 72, 368-376. |
[37] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
URL PMID |
[38] |
Richardson SJ, Peltzer DA, Allen RB, McGlone MS, Parfitt RL (2004). Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia, 139, 267-276.
DOI URL PMID |
[39] |
Rustad LE, Campbell JL, Marion GM, Norby RJ, Mitcell MJ, Hartley AE, Cornelissen JHC, Gurevitch J (2001). A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 126, 543-562.
DOI URL PMID |
[40] |
Sardans J, Peltzer DA, Robert BA, Allen MS, Roger LM, Parfitt RL (2004). Rapid development of phosphorus limitation in temperate rainforest along the Franz Josef soil chronosequence. Oecologia, 139, 267-276.
DOI URL PMID |
[41] |
Sardans J, Peñuelas J (2013). Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant and Soil, 365, 1-33.
DOI URL PMID |
[42] | Sardans J, Peñuelas J, Estiarte M (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 39, 223-235. |
[43] | Sun SC, Chen LZ (2001). Leaf nutrient dynamics and resorption efficiency of Quercus liaotungensis in the Dongling Mountain region. Acta Phytoecologica Sinica, 25, 76-82. (in Chinese with English abstract) |
[ 孙书存, 陈灵芝 (2001). 东灵山地区辽东栎叶养分的季节动态与回收效率. 植物生态学报, 25, 76-82.] | |
[44] | Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal of Applied Ecology, 40, 523-534. |
[45] |
Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jónsdóttir IS, Klein JA, Magnusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland Ø, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006). Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States of America, 103, 1342-1346.
DOI URL PMID |
[46] | Welker JM, Fahnestock JT, Sullivan PF, Chimner RA (2005). Leaf mineral nutrition of Arctic plants in response to warming and deeper snow in northern Alaska. Oikos, 109, 167-177. |
[47] | White A, Cannel MGR, Friend AD (1999). Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment. Global Environment Change, 9, 21-30. |
[48] | Xu ZF, Wan C (2010). Initial responses of soil CO2 efflux and C, N pools to experimental warming in two contrasting forest ecosystems, Eastern Tibetan Plateau, China. Plant and Soil, 336, 183-195. |
[49] | Yang MH (1981). The climate characteristics of Changbai Mountain and the north slope of vertical climatic zone. Acta Meteorologica Sinica, 39, 311-320. (in Chinese with English abstract) |
[ 杨美华 (1981). 长白山的气候特征及北坡垂直气候带. 气象学报, 39, 311-320.] |
[1] | 李小玲 朱道明 余玉蓉 吴浩 牟利 洪柳 刘雪飞 卜贵军 薛丹 吴林. 模拟氮沉降对鄂西南贫营养泥炭地两种藓类植物生长与分解的影响[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[2] | 罗来聪 赖晓琴 白健 李爱新 方海富 唐明 胡冬南 张令. 氮添加背景下土壤真菌和细菌对不同种源入侵植物 乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[3] | 夏璟钰 张扬建 郑周涛 赵广 赵然 朱艺旋 高洁 沈若楠 李文宇 郑家禾 张雨雪 朱军涛 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(预发表): 0-0. |
[4] | 姚萌 康荣华 王盎 马方园 李靳 台子晗 方运霆. 利用15N示踪技术研究乔木幼苗对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 0-0. |
[5] | 李变变 张凤华 赵亚光 孙秉楠. 不同刈割程度对油莎豆非结构性碳水化合物代谢以及生物量的影响[J]. 植物生态学报, 2023, 47(1): 0-0. |
[6] | 张慧 曾文静 龚新桃 马泽清. 亚热带典型树种根毛特征及其共生真菌关系[J]. 植物生态学报, 2023, 47(1): 0-0. |
[7] | 杨元合 张典业 魏斌 刘洋 冯雪徽 毛超 徐玮婕 贺美 王璐 郑志虎 王媛媛 陈蕾伊 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 0-0. |
[8] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[9] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[10] | 伍敏, 田雨, 樊大勇, 张祥雪. 干旱胁迫下毛白杨和元宝槭的水力学调控[J]. 植物生态学报, 2022, 46(9): 1086-1097. |
[11] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[12] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[13] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[14] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[15] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19