植物生态学报 ›› 2010, Vol. 34 ›› Issue (9): 1075-1083.DOI: 10.3773/j.issn.1005-264x.2010.09.008
张想英1,2, 樊大勇1, 谢宗强1,*(), 熊高明1, 李兆佳1,2
收稿日期:
2010-05-24
接受日期:
2010-06-04
出版日期:
2010-05-24
发布日期:
2010-10-08
通讯作者:
谢宗强
作者简介:
* E-mail: xie@ibcas.ac.cn
ZHANG Xiang-Ying1,2, FAN Da-Yong1, XIE Zong-Qiang1,*(), XIONG Gao-Ming1, LI Zhao-Jia1,2
Received:
2010-05-24
Accepted:
2010-06-04
Online:
2010-05-24
Published:
2010-10-08
Contact:
XIE Zong-Qiang
摘要:
尽管国内外开展了大量的克隆整合对克隆植物抵御逆境能力影响的研究, 但整合对植物抵御水淹能力的影响研究仍比较缺乏。该文从克隆整合的角度探讨多年生草本植物狗牙根(Cynodon dactylon)对水淹胁迫的响应。试验模拟了先端分株(相对年幼的分株)分别处于0、5和15 cm三种水淹胁迫环境, 并在每个水淹梯度下实施先端分株与基端分株(相对年长的分株)之间匍匐茎连接或切断处理, 调查水淹一个月后基端分株和先端分株以及整个克隆片段在形态和生理上的表现。研究发现: 切断匍匐茎连接显著降低了狗牙根先端分株的生长, 表现在生物量下降、匍匐茎长度减短和分株数减少等方面; 水淹显著抑制了先端分株的生长, 但对基端分株的生长并未造成显著影响; 在5 cm水淹处理下, 匍匐茎保持连接时, 先端分株和整个克隆片段的生长显著增加; 连接或切断处理在不同水淹梯度下对匍匐茎平均节间长没有显著影响, 对先端分株或基端分株在光化学转化效率上也未表现显著性差异。结果表明: 克隆整合效应促进了狗牙根在水淹胁迫下分株的生长, 并有助于整个克隆片段抵御水淹胁迫。
张想英, 樊大勇, 谢宗强, 熊高明, 李兆佳. 克隆整合有助于狗牙根抵御水淹. 植物生态学报, 2010, 34(9): 1075-1083. DOI: 10.3773/j.issn.1005-264x.2010.09.008
ZHANG Xiang-Ying, FAN Da-Yong, XIE Zong-Qiang, XIONG Gao-Ming, LI Zhao-Jia. Clonal integration enhances performance of Cynodon dactylon subjected to submergence. Chinese Journal of Plant Ecology, 2010, 34(9): 1075-1083. DOI: 10.3773/j.issn.1005-264x.2010.09.008
图1 狗牙根先端水淹与匍匐茎切断双因素试验设计。 每个盒子中都是一个狗牙根克隆片段, 盒子左边是2个基端分株, 右边是2个先端分株, 基端和先端保持连接(左)/切断(右), 对先端进行不同水淹深度处理(0、5和15 cm)。
Fig. 1 Two factorial experimental design with submergence and stolon severing in Cynodon dactylon. There was one clonal fragment of C. dactylon in each box, consisting of two basal ramets grown in the left side and two apical ramets grown in the right side. Stolon connection between basal and apical ramets was either connected (left) or disconnected (right). Apical ramets were submerged into water at a depth of 0 (control), 5 or 15 cm.
变异来源 Source of variation | 生物量 BM | 匍匐枝长 SL | 直立茎长 EL | 分枝数 NR | 直立茎数 NE | 平均节间长 IL |
---|---|---|---|---|---|---|
先端分株 Apical ramets | ||||||
D | 15.199** | 16.781*** | 1.984ns | 25.651*** | 2.021ns | 3.060ns |
S | 77.876*** | 86.960*** | 19.450*** | 135.589*** | 25.825*** | 2.967ns |
D × S | 0.143ns | 0.513ns | 0.913ns | 1.189ns | 2.399ns | 1.027ns |
基端分株 Basal ramets | ||||||
D | 2.277ns | 1.861ns | 0.122ns | 0.000ns | 1.327ns | 1.700ns |
S | 0.304ns | 0.229ns | 2.171ns | 0.093ns | 2.907ns | 0.240ns |
D × S | 0.279ns | 0.677ns | 0.242ns | 2.224ns | 0.650ns | 1.277ns |
克隆片段 Clonal fragment | ||||||
D | 12.509** | 7.917* | 1.195ns | 2.365ns | 3.009ns | 2.810ns |
S | 28.595*** | 10.493*** | 13.444*** | 13.930*** | 17.862*** | 1.220ns |
D × S | 0.637ns | 0.920ns | 0.621ns | 2.722ns | 1.295ns | 0.294ns |
表1 匍匐茎切断(D)和水淹深度(S)及其交互作用(D × S)对狗牙根生长指标的双因素方差分析(F值)
Table 1 Results (F value) of two-way ANOVA on the effects of stolon disconnection (D), submergence (S) and their interaction (D × S) on the biomass (BM), total stolon length (SL), erect stem length (EL), number of ramets (NR), number of erect stems (NE) and mean internode length (IL) of the apical, basal ramets and clonal fragments of Cynodon dactylon
变异来源 Source of variation | 生物量 BM | 匍匐枝长 SL | 直立茎长 EL | 分枝数 NR | 直立茎数 NE | 平均节间长 IL |
---|---|---|---|---|---|---|
先端分株 Apical ramets | ||||||
D | 15.199** | 16.781*** | 1.984ns | 25.651*** | 2.021ns | 3.060ns |
S | 77.876*** | 86.960*** | 19.450*** | 135.589*** | 25.825*** | 2.967ns |
D × S | 0.143ns | 0.513ns | 0.913ns | 1.189ns | 2.399ns | 1.027ns |
基端分株 Basal ramets | ||||||
D | 2.277ns | 1.861ns | 0.122ns | 0.000ns | 1.327ns | 1.700ns |
S | 0.304ns | 0.229ns | 2.171ns | 0.093ns | 2.907ns | 0.240ns |
D × S | 0.279ns | 0.677ns | 0.242ns | 2.224ns | 0.650ns | 1.277ns |
克隆片段 Clonal fragment | ||||||
D | 12.509** | 7.917* | 1.195ns | 2.365ns | 3.009ns | 2.810ns |
S | 28.595*** | 10.493*** | 13.444*** | 13.930*** | 17.862*** | 1.220ns |
D × S | 0.637ns | 0.920ns | 0.621ns | 2.722ns | 1.295ns | 0.294ns |
图2 匍匐茎连接或切断的狗牙根先端分株(A)、基端分株(B)和整个克隆片段(C)在不同水淹深度(0、5和15 cm)下的生物量(平均值±标准误差)。 不同小写字母表示各处理间差异显著(p < 0.05)。
Fig. 2 Biomass of the apical ramets (A), basal ramets (B) and clonal fragments (C) of Cynodon dactylon, with the apical ramets submerged in water to a depth of 0, 5 and 15 cm connected to or disconnected from the basal ramets growing in soil (mean ± SE). Different small letters mean significant difference at 0.05 level.
图3 匍匐茎连接或切断的狗牙根先端、基端和克隆片段在不同水淹深度(0、5和15 cm)下的匍匐枝总长(A、B、C)、直立茎总长(D、E、F)、分株数(G、H、I)和直立茎数(J、K、L) (平均值±标准误差)。 不同小写字母表示各处理间差异显著(p < 0.05)。
Fig. 3 Total stolon length (A, B, C), erect stem length (D, E, F), number of ramets (G, H, I), number of erect stems (J, K, L) of Cynodon dactylon. The apical ramets submerged in water at a depth of 0, 5 and 15 cm were connected to or disconnected from the basal ramets growing in soil (mean ± SE). Different small letters mean significant difference at 0.05 level.
图4 匍匐茎连接或切断的狗牙根先端分株(A)、基端分株(B)在不同水淹深度(0、5和15 cm)下的平均节间长(平均值±标准误差)。 不同小写字母表示各处理间差异显著(p < 0.05)。
Fig. 4 Mean internode length of apical ramets (A) and basal ramets (B) of Cynodon dactylon. The apical ramets submerged in water at a depth of 0, 5 and 15 cm were connected to or disconnected from the basal ramets growing in soil (mean ± SE). Different small letters mean significant difference at 0.05 level.
变异来源 Source of variation | 最大量子产率 Fv/Fm | 实际量子产率 Yield |
---|---|---|
先端分株 Apical ramets | ||
D | 0.053ns | 1.426ns |
S | 1.371ns | 2.768ns |
D × S | 0.776ns | 0.647ns |
基端分株 Basal ramets | ||
D | 0.035ns | 0.413ns |
S | 3.529ns | 0.620ns |
D × S | 1.006ns | 1.473ns |
表2 匍匐茎切断(D)和水淹深度(S)及其交互作用(D × S)对狗牙根先端分株和基端分株的最大量子产率、实际量子产率影响的双因素方差分析(F值)
Table 2 Results (F value) of two-way ANOVA on the effects of stolon disconnection (D), submergence (S) and their interaction (D × S) on maximum quantum yield of PSII (Fv/Fm) and effective quantum yield of PSII (Yield) of apical and basal ramets of Cynodon dactylon
变异来源 Source of variation | 最大量子产率 Fv/Fm | 实际量子产率 Yield |
---|---|---|
先端分株 Apical ramets | ||
D | 0.053ns | 1.426ns |
S | 1.371ns | 2.768ns |
D × S | 0.776ns | 0.647ns |
基端分株 Basal ramets | ||
D | 0.035ns | 0.413ns |
S | 3.529ns | 0.620ns |
D × S | 1.006ns | 1.473ns |
图5 匍匐茎连接或切断的狗牙根先端分株、基端分株在不同水淹深度(0、5和15 cm)下的最大量子产率(A、B)和实际量子产率(C、D) (平均值±标准误差)。 不同小写字母表示各处理间差异显著(p < 0.05)。
Fig. 5 Maximum quantum yield of PSII (Fv/Fm) (A, B) and effective quantum yield of PSII (Yield) (C, D) of the apical ramets and basal ramets of Cynodon dactylon. The apical ramets submerged in water at a depth of 0, 5 and 15 cm were connected to or disconnected from the basal ramets growing in soil (mean ± SE). Different small letters mean significant difference at 0.05 level.
[1] | Alpert P (1999). Effects of clonal integration on plant plasticity in Fragaria chiloensis. Plant Ecology, 141, 99-106. |
[2] | Birch CPD, Hutchings MJ (1994). Exploitation of patchily distributed soil resources by the clonal herb Glechoma hederacea. Journal of Ecology, 82, 653-664. |
[3] | Bloom AJ, Chapin FSIII, Mooney HA (1985). Resource limitation in plants—an economic analogy. Annual Review of Ecology and Systematics, 16, 363-392. |
[4] |
Cain ML, Carson WP, Root RB (1991). Long-term suppression of insect herbivores increases the production and growth of solidago-altissima rhizomes. Oecologia, 88, 251-257.
URL PMID |
[5] | Charpentier A, Mesleard F, Thompson JD (1998). The effects of rhizome severing on clonal growth and clonal architecture of Scirpus maritimus. Oikos, 83, 107-116. |
[6] | Chen JQ (1996). Riparian vegetation characteristics and their functions in ecosystems and landscapes. Chinese Journal of Applied Ecology, 7, 439-448. |
[7] | Chen JS, Lei NF, Yu D, Dong M (2006). Differential effects of clonal integration on performance in the stoloniferous herb Duchesnea indica, as growing at two sites with different altitude. Plant Ecology, 183, 147-156. |
[8] | Chen FQ (陈芳清), Huang YZ (黄友珍), Zeng X (曾旭) (2010). Biological response of Cynodon dactylon vegetative propagule to simulated flooding. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 18, 15-20. (in Chinese with English abstract) |
[9] | Cooling MP, Ganf GG, Walker KF (2001). Leaf recruitment and elongation: an adaptive response to flooding in Villarsia reniformis. Aquatic Botany, 70, 281-294. |
[10] | de Kroon H, van Groenendael J (1997). The Ecology and Evolution of Clonal Plants. Backhuys Publishers, Leiden, The Netherlands. |
[11] | Dong M, Alaten B (1999). Clonal plasticity in response to rhizome severing and heterogeneous resource supply in the rhizomatous grass Psammochloa villosa in an Inner Mongolian dune, China. Plant Ecology, 141, 53-58. |
[12] | Evans JP, Cain ML (1995). A spatially explicit test of foraging behavior in a clonal plant. Ecology, 76, 1147-1155. |
[13] |
Fan DY, Nie Q, Hope AB, Hillier W, Pogson BJ, Chow WS (2007). Quantification of cyclic electron flow around Photosystem I in spinach leaves during photosynthetic induction. Photosynthesis Research, 94, 347-357.
URL PMID |
[14] |
Gibbs J, Greenway H (2003). Mechanisms of anoxia tolerance in plants. I. Growth, survival and anaerobic catabolism. Functional Plant Biology, 30, 1-47.
DOI URL PMID |
[15] | Hartnett DC, Bazzaz FA (1983). Physiological integration among intraclonal ramets in Solidago canadensis. Ecology, 64, 779-788. |
[16] | He ZS, He WM, Yu FH, Shi PL, Zhang XZ, He YT, Zhong ZM, Dong M (2007). Do clonal growth form and habitat origin affect resource-induced plasticity in Tibetan alpine herbs? Flora, 202, 408-416. |
[17] | Janecek S, Kantorova J, Bartos M, Klimesova J (2008). Integration in the clonal plant Eriophorum angustifolium: an experiment with a three-member-clonal system in a patchy environment. Evolutionary Ecology, 22, 325-336. |
[18] | Jiang MX (江明喜), Cai QH (蔡庆华) (2000). Preliminary studies on the riparian plant communities of main channel in the Three Gorges area, the Yangtze River. Acta Hydrobiologica Sinica (水生生物学报), 24, 458-463. (in Chinese with English abstract) |
[19] | Kelly CK (1994). On the economics of plant-growth-stolon length and ramet initiation in the parasitic clonal plant Cuscuta europaea. Evolutionary Ecology, 8, 459-470. |
[20] | Kozlowski TT (1997). Responses of woody plants to flooding and salinity. Tree Physiology Monograph, 1, 1-29. |
[21] | Lavinsky AO, Sant’Ana CD, Mielke MS, de Almeida AAF, Gomes FP, Franca S, Silva DD (2007). Effects of light availability and soil flooding on growth and photosynthetic characteristics of Genipa americana L. seedlings. New Forests, 34, 41-50. |
[22] | Ong CK, Marshall C (1979). Growth and survival of severely shaded tillers in Lolium perenne L. Annals of Botany, 43, 147-155. |
[23] | Pauliukonis N, Gough L (2004). Effects of the loss of clonal integration on four sedges that differ in ramet aggregation. Plant Ecology, 173, 1-15. |
[24] |
Roiloa SR, Retuerto R (2006a). Development, photosynthetic activity and habitat selection of the clonal plant Fragaria vesca growing in copper-polluted soil. Functional Plant Biology, 33, 961-971.
DOI URL PMID |
[25] | Roiloa SR, Retuerto R (2006b). Physiological integration ameliorates effects of serpentine soils in the clonal herb Fragaria vesca. Physiologia Plantarum, 128, 662-676. |
[26] | Roiloa SR, Retuerto R (2007). Responses of the clonal Fragaria vesca to microtopographic heterogeneity under different water and light conditions. Environmental and Experimental Botany, 61, 1-9. |
[27] | Stuefer JF, During HJ, de Kroon H (1994). High benefits of clonal integration in two stoloniferous species, in response to heterogeneous light environments. Journal of Ecology, 82, 511-518. |
[28] | Stuefer JF, de Kroon H, During HJ (1996). Exploitation of environmental heterogeneity by spatial division of labour in a clonal plant. Functional Ecology, 10, 328-334. |
[29] | Sun BX (孙必兴), Hu ZH (胡志浩) (1990). Cynodon dactylon (L.) Pers. In: Chen SL (陈守良) ed. Flora Reipublicae Popularis Sinicae (中国植物志). Science Press, Beijing 10, 82-85. (in Chinese) |
[30] | Tan SD (谭淑端), Zhu MY (朱明勇), Dang HS (党海山), Wang Y (王勇), Zhang QF (张全发) (2009). Physiological responses of Bermudagrass (Cynodon dactylon (L.) Pers.) to deep submergence stress in the Three Gorges Reservoir Area. Acta Ecologica Sinica (生态学报), 29, 3685-3691. (in Chinese with English abstract) |
[31] | van Kleunen M, Stuefer JF (1999). Quantifying the effects of reciprocal assimilate and water translocation in a clonal plant by the use of steam-girdling. Oikos, 85, 135-145. |
[32] | Wang HF (王海锋), Zeng B (曾波), Li Y (李娅), Qiao P (乔普), Ye XQ (叶小齐), Luo FL (罗芳丽) (2008). Effects of long-term submergence on survival and recovery growth of four riparian plant species in Three Gorges Reservoir region, China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 977-984. (in Chinese with English abstract) |
[33] |
Wang N, Yu FH, Li PX, He WM, Liu FH, Liu JM, Dong M (2008). Clonal integration affects growth, photosynthetic efficiency and biomass allocation, but not the competitive ability, of the alien invasive Alternanthera philoxeroides under severe stress. Annals of Botany, 101, 671-678.
DOI URL PMID |
[34] |
Wang N, Yu FH, Li PX, He WM, Liu J, Yu GL, Song YB, Dong M (2009). Clonal integration supports the expansion from terrestrial to aquatic environments in the amphibious stoloniferous herb Alternanthera philoxeroides. Plant Biology, 11, 483-489.
DOI URL PMID |
[35] |
Xiao KY, Yu D, Xu XW, Xiong W (2007). Benefits of clonal integration between interconnected ramets of Vallisneria spiralis in heterogeneous light environments. Aquatic Botany, 86, 76-82.
DOI URL |
[36] |
Yu FH, Dong M, Krüsi B (2004). Clonal integration helps Psammochloa villosa survive sand burial in an inland dune. New Phytologist, 162, 697-704.
DOI URL |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 韩大勇, 李海燕, 张维, 杨允菲. 松嫩草地全叶马兰种群分株养分的季节运转及衰老过程[J]. 植物生态学报, 2024, 48(2): 192-200. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[9] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[10] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[11] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[12] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[13] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[14] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[15] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19