 
	植物生态学报 ›› 2011, Vol. 35 ›› Issue (11): 1182-1191.DOI: 10.3724/SP.J.1258.2011.01182
所属专题: 碳循环
收稿日期:2011-04-18
									
				
									
				
											接受日期:2011-07-18
									
				
											出版日期:2011-04-18
									
				
											发布日期:2011-11-07
									
			通讯作者:
					肖春旺
							作者简介:*(E-mail:cwxiao@ibcas.ac.cn)
        
               		PEI Zhi-Qin1,2, ZHOU Yong1,2, ZHENG Yuan-Run1, XIAO Chun-Wang1,*( )
)
			  
			
			
			
                
        
    
Received:2011-04-18
									
				
									
				
											Accepted:2011-07-18
									
				
											Online:2011-04-18
									
								
											Published:2011-11-07
									
							Contact:
					XIAO Chun-Wang   
							摘要:
尽管干旱区生态系统的脆弱性受到了广泛的关注, 但目前关于干旱区植物细根有机碳与土壤碳循环关系的研究还比较少见。在2010年整个生长季节内, 采用土钻法和内生长法, 对新疆干旱区的琵琶柴(Reaumuria soongorica)群落土壤特性、细根的生物量月动态、生产量和周转进行了研究。结果表明: 琵琶柴群落表层土壤含水量最低, 土壤含水量表现出从浅层到深层逐渐增加的趋势; 而表层土壤的有机碳含量最高, 随着土壤深度的加深, 有机碳含量逐渐降低。细根生物量的月平均值为54.51 g·m-2, 群落细根生产量在82.76-136.21 g·m-2·a-1之间, 琵琶柴群落的细根周转率为2.08 times·a-1, 通过细根死亡进入土壤中的有机碳为17 g·m-2·a-1。这些结果表明: 由于灌丛细根高的周转速率, 细根是干旱区土壤有机碳输入的重要部分。
裴智琴, 周勇, 郑元润, 肖春旺. 干旱区琵琶柴群落细根周转对土壤有机碳循环的贡献. 植物生态学报, 2011, 35(11): 1182-1191. DOI: 10.3724/SP.J.1258.2011.01182
PEI Zhi-Qin, ZHOU Yong, ZHENG Yuan-Run, XIAO Chun-Wang. Contribution of fine root turnover to the soil organic carbon cycling in a Reaumuria soon- goricacommunity in an arid ecosystem of Xinjiang Uygur Autonomous Region, China. Chinese Journal of Plant Ecology, 2011, 35(11): 1182-1191. DOI: 10.3724/SP.J.1258.2011.01182
|  | 活细根 Live fine root | ||
|---|---|---|---|
| 增加 Increase | 减少 Decrease | ||
| 死细根 Dead fine root | ΔBdead > ΔBlive | ΔBlive > Δ Bdead | |
| 增加 Increase | P = ΔBlive + ΔBdead M = ΔBdead | P = ΔBlive + ΔBdead M = ΔBdead | P= 0 M =-ΔBlive | 
| 减少 Decrease | P= ΔBlive M = 0 | P= 0 M =-ΔBlive | |
表1 细根月生产量和死亡量公式
Table 1 Formula of monthly fine root production and mortality
|  | 活细根 Live fine root | ||
|---|---|---|---|
| 增加 Increase | 减少 Decrease | ||
| 死细根 Dead fine root | ΔBdead > ΔBlive | ΔBlive > Δ Bdead | |
| 增加 Increase | P = ΔBlive + ΔBdead M = ΔBdead | P = ΔBlive + ΔBdead M = ΔBdead | P= 0 M =-ΔBlive | 
| 减少 Decrease | P= ΔBlive M = 0 | P= 0 M =-ΔBlive | |
 
																													图1 琵琶柴群落细根生物量的月变化(平均值±标准误差)。左图: 活根; 右图: 死根。
Fig. 1 Monthly variations of fine root biomass of Reaumuria soongorica community (mean ± SE). Left figure: live root; Right figure: dead root.
 
																													图2 琵琶柴群落土壤含水量的月变化(平均值±标准误差) (6月与9月取样时间为降雨后, 造成表层土壤含水量偏高)。
Fig. 2 Monthly variations of soil water content (SWC) of Reaumuria soongorica community (mean ± SE) (Higher SWC in soil surface layer was observed in June and September due to sampling after the rains.
| 因素 Factor | 土壤含水量 SWC | 土壤有机碳 SOC | 活细根生物量 Live fine root biomass | 死细根生物量 Fine root necromass | 细根生产量 Fine root production | 
|---|---|---|---|---|---|
| ST | 196.16*** | 2.64* | 9.89*** | 6.21*** | 2.62* | 
| SL | 179.07*** | 47.99*** | 2.44NS | 2.90NS | 0.45NS | 
| ST × SL | 33.46*** | 0.77NS | 1.41NS | 3.58** | 1.30NS | 
表2 取样时间(ST)和土层(SL)对土壤含水量、土壤有机碳、活细根生物量、死细根生物量和生产量的方差分析的F值
Table 2 F values of the effects of sampling time (ST) and soil layer (SL) on soil water content (SWC), soil organic carbon (SOC), fine root biomass, necromass and production by ANOVA
| 因素 Factor | 土壤含水量 SWC | 土壤有机碳 SOC | 活细根生物量 Live fine root biomass | 死细根生物量 Fine root necromass | 细根生产量 Fine root production | 
|---|---|---|---|---|---|
| ST | 196.16*** | 2.64* | 9.89*** | 6.21*** | 2.62* | 
| SL | 179.07*** | 47.99*** | 2.44NS | 2.90NS | 0.45NS | 
| ST × SL | 33.46*** | 0.77NS | 1.41NS | 3.58** | 1.30NS | 
 
																													图3 琵琶柴群落细根生产量的月变化(细根月生产量月动态采用了平衡转化法计算, 平均值±标准误差)。
Fig. 3 Monthly variations of fine root production of Reaumuria soongorica community (calculated by using the method of Decision matrix, mean ± SE).
| [1] | Aber JD, Melillo JM, Nadelhoffer KJ, McClaugherty CA, Pastor J (1985). Fine root turnover in forest ecosystems in relation to quantity and form of nitrogen availability: a comparison of two methods. Oecologia, 66,317-321. URL PMID | 
| [2] | Arthur MA, Fahey TJ (1992). Biomass and nutrition in an Engelmann spruce-subalpine fir forest in north central Colorado: pool, annual production and internal cycling. Canadian Journal of Forest Research, 22,315-325. | 
| [3] | Bartsch N (1987). Responses of root systems of young Pinus sylvestris and Picea abies plants to water deficits and soil acidity. Canadian Journal of Forest Research, l7,805-812. | 
| [4] | Bloomfield J, Vogt K, Wargo PM (1996). Tree root turnover and senescence. In: Waisel Y, Eshel A, Kafkafi U eds. Plant Roots: The Hidden Half. Decker, New York. 363-381. | 
| [5] | Burton AJ, Pregitzer KS, Hendrick RL (2000). Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests. Oecologia, 125,389-399. URL PMID | 
| [6] | Buyanovsky GA, Kucera CL, Wagner GH (1987). Comparative analyses of carbon dynamics in native and cultivated ecosystems. Ecology, 68,2023-2031. URL PMID | 
| [7] | Comeau PG, Kimmins JP (1989). Above- and below-ground biomass and production of lodgepole pine on sites with different soil moisture regimes. Canadian Journal of Forest Research, 19,447-454. | 
| [8] | Connin SL, Virginia RA, Chamberlain CP (1997). Carbon isotopes reveal soil organic matter dynamics following arid land shrub expansion. Oecologia, 110,374-386. DOI URL PMID | 
| [9] | Eissenstat DM,van Rees KCJ (1994). The growth and function of pine roots. Ecological Bulletins, 43,76-91. | 
| [10] | Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL (2000). Building roots in a changing environment: implications for root longevity. New Phytologist, 147,33-42. | 
| [11] | Fischer RA, Turner NC (1978). Plant productivity in the arid and semiarid zones. Annual Review of Plant Physiology, 29,227-317. | 
| [12] | Fitter AH, Graves JD, Self GK, Brown TK, Bogie DS, Taylor K (1998). Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. Oecologia, 114,20-30. URL PMID | 
| [13] | Fogel R (1983). Root turnover and productivity of coniferous forests. Plant and Soil, 71,75-85. | 
| [14] | Gill RA, Jackson RB (2000). Global patterns of root turnover for terrestrial ecosystems. New Phytologist, 147,13-31. | 
| [15] | Gong ZT (龚子同), Lei WJ (雷文进) (1989). On the dryland soil of China. Journal of Arid Land Resources & Environment (干旱区资源与环境), 3,1-11. (in Chinese with English abstract) | 
| [16] | Grier CC, Vogt KA, Keyes MR, Edmonds RL (1981). Biomass distribution and above- and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Canadian Journal of Forest Research, 11,155-167. | 
| [17] | Guo ZL (郭忠玲), Zheng JP (郑金萍), Ma YD (马元丹), Han SJ (韩士杰), Li QK (李庆康), Yu GR (于贵瑞), Fan CN (范春楠), Liu WD (刘万德), Shao DK (邵殿坤) (2008). A preliminary study on fine root biomass and dynamics of woody plants in several major forest communities of Changbai Mountain, China. Acta Ecologica Sinica (生态学报), 26,2855-2862. (in Chinese with English abstract) | 
| [18] | Heinsoo K, Merilo E, Petrovits M, Koppel A (2009). Fine root biomass and production in a Salix viminalis and Salix dasyclados plantation. Estonian Journal of Ecology, 58,27-37. | 
| [19] | Helmisaari HS, Derome J, Nöjd P, Kukkola M (2007). Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiology, 27,1493-1504. DOI URL PMID | 
| [20] | Hendrick RL, Pregitzer KS (1996). Applications of mini- rhizotrons to understand root function in forests and other natural ecosystems. Plant and Soil, 185,293-304. | 
| [21] | Huang JH (黄建辉), Han XG (韩兴国), Chen LZ (陈灵芝) (1999). Advances in the research of (fine) root biomass in forest ecosystems. Acta Ecologica Sinica (生态学报), 19,270-277. (in Chinese with English abstract) | 
| [22] | Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94,7362-7366. URL PMID | 
| [23] | Janos DP, Scott J,Bowman DMJS (2008). Temporal and spatial variation of fine roots in a northern Australian Eucalyptus tetrodonta savanna. Journal of Tropical Ecology, 24,177-188. | 
| [24] | Jha P, Mohapatra KP (2010). Leaf litterfall, fine root production and turnover in four major tree species of the semi-arid region of India. Plant and Soil, 326,481-491. | 
| [25] | King JS, Albaugh TJ, Allen HL, Buford M, Strain BR, Dougherty P (2002). Below-ground carbon input to soil is controlled by nutrient availability and fine root dynamics in loblolly pine. New Phytologist, 154,389-398. | 
| [26] | Lal R (2003). Carbon sequestration in dryland ecosystems. Environmental Management, 33,528-544. DOI URL PMID | 
| [27] | Li XR (2005). Influence of variation of soil spatial heterogeneity on vegetation restoration. Science in China Series D: Earth Sciences, 48,2020-2031. | 
| [28] | Lima TTS, Miranda IS, Vasconcelos SS (2010). Effects of water and nutrient availability on fine root growth in eastern Amazonian forest regrowth, Brazil. New Phytologist, 187,622-630. | 
| [29] | Lu RK (鲁如坤) (2000). Analysis Method of Soil Agricultural Chemistry(土壤农业化学分析方法). China Agriculture Science and Technology Press, Beijing.106-107. (in Chinese) | 
| [30] | Ludwig JA (1987). Primary productivity in arid lands: myths and realities. Journal of Arid Environments, 13,1-7. | 
| [31] | Majdi H, Pregitzer K, Morén AS, Nylund JE, Ågren GI (2005). Measuring fine root turnover in forest ecosystems. Plant and Soil, 276,1-8. | 
| [32] | Metcalfe DB, Meir P, Aragão LEOC, da Costa ACL, Braga AP, Goncalves PHL, Silva Junior JA, de Aimeida SS, Dawson LA, Malhi Y, Williams M (2008). The effects of water availability on root growth and morphology in an Amazon rainforest. Plant and Soil, 311,189-199. | 
| [33] | Nadelhoffer KJ, Raich JW (1992). Fine root production estimates and belowground carbon allocation in forest ecosystems. Ecology, 73,1139-1147. | 
| [34] | Noy-Meir I (1973). Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4,25-51. | 
| [35] | Reynolds ERC (1970). Root distribution and the cause of its spatial variability in Pseudotsuga taxifolia (Poir.) Britt. Plant and Soil, 32,501-517. | 
| [36] | Richter DD, Markewitz D, Trumbore SE, Wells CG (1999). Rapid accumulation and turnover of soil carbon in a re-establishing forest. Nature, 400,56-58. | 
| [37] | Ruess RW, Hendrick RL, Burton AJ, Pregitzer KS, Sveinb- jornsson B, Allen MF, Maurer E (2003). Coupling fine root dynamics with ecosystem carbon cycling in black spruce forests of interior Alaska. Ecological Monographs, 73,643-662. | 
| [38] | Rytter RM, Hansson AC (1996). Seasonal amount, growth and depth distribution of fine roots in an irrigated and fertilized Salix viminalis L. plantation. Biomass and Bioenergy, 11,129-137. | 
| [39] | Santantonio D, Grace JC (1987). Estimating fine-root production and turnover from biomass and decomposition data: a compartment-flow model. Canadian Journal of Forest Research, 17,900-908. | 
| [40] | Santantonio D, Hermann RK, Overton WS (1977). Root biomass studies in forest ecosystems. Pedobiologia, 17,1-31. | 
| [41] | Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989). Microbial biomass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 338,499-500. | 
| [42] | Stewart AM, Frank DA (2008). Short sampling intervals reveal very rapid root turnover in a temperate grassland. Oecologia, 157,453-458. URL PMID | 
| [43] | Tingey DT, Phillips DL, Johnson MG (2003). Optimizing minirhizotrons sample frequency for an evergreen and deciduous tree species. New Phytologist, 157,155-161. | 
| [44] | Vogt KA, Bloomfield J (1991). Root turnover and senescence. In: Waisel Y, Eschel A, Kafkafi U eds. Plant Roots: The Hidden Half. Marcel Dekker Inc., New York. 287-306. | 
| [45] | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover and nutrient dynamics of above- and below-ground detritus of world forests. Advances in Ecological Research, 15,303-377. | 
| [46] | Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1996). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 187,159-219. | 
| [47] | Wallace A, Bamberg SA, Cha JW (1974). Quantitative studies of roots of perennial plants in the Mojave Desert. Ecology, 55,1160-1162. | 
| [48] | Wang YR (王彦荣), Zeng YJ (曾彦军), Fu H (付华), Chen SK (陈善科) (2002). Affects of over grazing and enclose on desert vegetation succession of Reaumuria soongrica. Journal of Desert Research(中国沙漠), 22,321-327. (in Chinese with English abstract) | 
| [49] | Wilcox CS, Ferguson JW, Fernandez GCJ, Nowak RS (2004). Fine root growth dynamics of four Mojave Desert shrubs as related to soil moisture and microsite. Journal of Arid Environments, 56,129-148. | 
| [50] | Xiao CW, Curiel-Yuste J, Janssens IA, Roskams P, Nachtergale L, Carrara A, Sanchez BY, Ceulemans R (2003). Above- and below-ground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiology, 23,505-516. URL PMID | 
| [51] | Xiao CW, Janssens IA, Sang WG, Wang RZ, Xie ZQ, Pei ZQ, Yi Y (2010). Belowground carbon pools and dynamics in China’s warm temperate and sub-tropical deciduous forests. Biogeosciences, 7,275-287. | 
| [52] | Zhang XQ (张小全), Wu KH (吴可红) (2001). Fine-root production and turnover for forest ecosystems. Scientia Silvae Sinicae (林业科学), 37,126-138. (in Chinese with English abstract) | 
| [1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. | 
| [2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. | 
| [3] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. | 
| [4] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. | 
| [5] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. | 
| [6] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. | 
| [7] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. | 
| [8] | 陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素[J]. 植物生态学报, 2023, 47(9): 1245-1255. | 
| [9] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. | 
| [10] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. | 
| [11] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. | 
| [12] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. | 
| [13] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. | 
| [14] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. | 
| [15] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
	
	Copyright © 2022 版权所有 《植物生态学报》编辑部  
地址: 北京香山南辛村20号, 邮编: 100093 
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn 
 备案号: 京ICP备16067583号-19