植物生态学报 ›› 2011, Vol. 35 ›› Issue (11): 1167-1181.DOI: 10.3724/SP.J.1258.2011.01167
张庆1, 牛建明1,2,*(), 韩芳1, 董建军1, 张艳楠1, 康萨如拉1, 杨艳1
收稿日期:
2011-02-24
接受日期:
2011-08-25
出版日期:
2011-02-24
发布日期:
2011-11-07
通讯作者:
牛建明
作者简介:
*(E-mail:jmniu2005@163.com)
ZHANG Qing1, NIU Jian-Ming1,2,*(), Alexander BUYANTUYEV2, HAN Fang1, DONG Jian-Jun1, ZHANG Yan-Nan1, KANG Sarula1, YANG Yan1
Received:
2011-02-24
Accepted:
2011-08-25
Online:
2011-02-24
Published:
2011-11-07
Contact:
NIU Jian-Ming
摘要:
在内蒙古短花针茅(Stipa breviflora)草原分布区选择赛汉、化德、准格尔3个典型样地, 在各样地沿坡面设置3条样线进行植被调查和土壤分析, 并采用聚类分析、二项式检验、差异显著性检验、典范对应分析、Pearson相关性分析等一系列统计学方法, 探讨了坡位对植被格局的影响及土壤效应。结果表明: (1)坡位导致缓丘上部坡面和下部坡面植被类型明显分异, 且以群落复合体的形式出现, 上部坡面发育的是该区气候顶级群落, 下部坡面发育的为地形群落; (2)坡位影响了物种沿坡面的分布格局, 主要体现在建群种及部分优势种上; (3)坡位导致上部坡面和下部坡面生产力的差异, 且下部坡面的生产力高于上部坡面, 形成2个不同的功能区域; (4)坡位通过地貌过程和起伏变化, 外加风蚀、水蚀影响, 严重改变了表层土(尤其是0-5 cm)的土壤特征, 从而在极小的范围内形成了非常明显的生境异质性, 提供了多样化的生存环境, 为局域范围内生物多样性的形成与维持提供了一种重要机制; (5)坡位导致植被分异的土壤效应主要是表层土(尤其是0-5 cm)土壤机械组成的差异, 生产力沿坡面的分异主要来源于土壤含水量。开展坡位对植被分布格局的影响将为植被分类、植被制图学科的发展提供理论依据, 并为植被资源的合理规划和利用以及开展植被保护与各种生态恢复工程提供科学依据和现实指导意义。
张庆, 牛建明, 韩芳, 董建军, 张艳楠, 康萨如拉, 杨艳. 不同坡位植被分异及土壤效应——以内蒙古短花针茅草原为例. 植物生态学报, 2011, 35(11): 1167-1181. DOI: 10.3724/SP.J.1258.2011.01167
ZHANG Qing, NIU Jian-Ming, Alexander BUYANTUYEV, HAN Fang, DONG Jian-Jun, ZHANG Yan-Nan, KANG Sarula, YANG Yan. Vegetation differentiation and soil effect at different slope locations—a case study ofStipa breviflora grassland in Inner Mongolia, China. Chinese Journal of Plant Ecology, 2011, 35(11): 1167-1181. DOI: 10.3724/SP.J.1258.2011.01167
样地 Site | 赛汉 Saihan (SH) | 化德 Huade (HD) | 准格尔 Jungar (JGR) |
---|---|---|---|
纬度 Latitude (E) | 42.70° | 41.94° | 39.76° |
经度 Longitude (N) | 112.73° | 113.91° | 111.13° |
海拔 Altitude (m) | 1 096 | 1 507 | 1 129 |
植被类型 Vegetation type | 荒漠草原 Desert steppe | 中温性典型草原 Temperate typical steppe | 暖温性典型草原 Warm typical steppe |
土壤类型 Soil type | 棕钙土 Brown calcic soil | 淡栗钙土 Light chestnut soil | 黄绵土 Loessal soil |
年平均气温 Annual mean air temperature (℃) | 3.67 | 1.42 | 6.88 |
年平均降水量 Annual mean precipitation (mm) | 245.09 | 339.80 | 363.42 |
地形 Topography | 缓丘 Gradual hill | 缓丘 Gradual hill | 沟坡 Gully slope |
围封年限 Fencing duration (Year) | 2 | 3 | 9 |
表1 样地描述
Table 1 Description of observation sites
样地 Site | 赛汉 Saihan (SH) | 化德 Huade (HD) | 准格尔 Jungar (JGR) |
---|---|---|---|
纬度 Latitude (E) | 42.70° | 41.94° | 39.76° |
经度 Longitude (N) | 112.73° | 113.91° | 111.13° |
海拔 Altitude (m) | 1 096 | 1 507 | 1 129 |
植被类型 Vegetation type | 荒漠草原 Desert steppe | 中温性典型草原 Temperate typical steppe | 暖温性典型草原 Warm typical steppe |
土壤类型 Soil type | 棕钙土 Brown calcic soil | 淡栗钙土 Light chestnut soil | 黄绵土 Loessal soil |
年平均气温 Annual mean air temperature (℃) | 3.67 | 1.42 | 6.88 |
年平均降水量 Annual mean precipitation (mm) | 245.09 | 339.80 | 363.42 |
地形 Topography | 缓丘 Gradual hill | 缓丘 Gradual hill | 沟坡 Gully slope |
围封年限 Fencing duration (Year) | 2 | 3 | 9 |
图2 3个样地各条样线群落聚类图。SH代表赛汉, HD代表化德, JGR代表准格尔, 每个样地的3条样线按照布置顺序命名, 分别为SH01、SH02、SH03; HD01、HD02、HD03; JGR01、JGR02、JGR03。
Fig. 2 Dendrograms obtained by cluster analyses for every line transect of three sampling sites. SH represents Saihan; HD represents Huade; JGR represents Jungar; Three line transects are named as SH01, SH02, SH03; HD01, HD02, HD03; JGR01, JGR02, JGR03, respectively in the establishment order.
样地 Site | 样线 Line transect | 聚类结果 Results by cluster analyses | 群落类型 Community type |
---|---|---|---|
赛汉 Saihan (SH) | 样线1下部 Lower slope of the first line transect | 1、2、3、4、5、6、8、9、10、11 | 短花针茅群系 Form.Stipa breviflora |
样线1上部 Upper slope of the first line transect | 7、12、13、14、15、16、17、18、19、20、21 | 小针茅群系 Form. S. klemenzii | |
样线2下部 Lower slope of the second line transect | 1、2、3、4、5、6、7、8 | 短花针茅群系 Form. S. breviflora | |
样线2上部 Upper slope of the second line transect | 9、10、11、12、13、14、15、16、17、18、19 | 小针茅群系 Form. S. klemenzii | |
样线3下部 Lower slope of the third line transect | 1、2、3、4、5、6、7、8、9 | 短花针茅群系 Form. S. breviflora | |
样线3上部 Upper slope of the third line transect | 10、11、12、13、14、15、16 | 小针茅群系 Form. S. klemenzii | |
化德 Huade (HD) | 样线1下部 Lower slope of the first line transect | 1、2、3、4、5、6、7 | 短花针茅群系 Form. S. breviflora |
样线1上部 Upper slope of the first line transect | 8、9、10、11、12、13、14 | 克氏针茅群系 Form. S. krylovii | |
样线2下部 Lower slope of the second line transect | 1、2、3、4、5、6、7、8 | 短花针茅群系 Form. S. breviflora | |
样线2上部 Upper slope of the second line transect | 9、10、11、12、13、14 | 克氏针茅群系 Form. S. krylovii | |
样线3下部 Lower slope of the third line transect | 1、2、3、4、5、6、7、8 | 短花针茅群系 Form. S. breviflora | |
样线3上部 Upper slope of the third line transect | 9、10、11、12、13、14 | 克氏针茅群系 Form. S. krylovii | |
准格尔 Jungar (JGR) | 样线1下部 Lower slope of the first line transect | 1、2、3、4、5、6 | 短花针茅群系 Form. S. breviflora |
样线1上部 Upper slope of the first line transect | 7、8、9、10、11、12 | 本氏针茅群系 Form. S. bungeana | |
样线2下部 Lower slope of the second line transect | 1、2、3、5、6 | 短花针茅群系 Form. S. breviflora | |
样线2上部 Upper slope of the second line transect | 4、7、8、9、10 | 本氏针茅群系 Form. S. bungeana | |
样线3下部 Lower slope of the third line transect | 1、2、3、4、5、6、7 | 短花针茅群系 Form. S. breviflora | |
样线3上部 Upper slope of the third line transect | 8、9、10、11、12 | 本氏针茅群系 Form. S. bungeana |
表2 3个样地各条样线群落聚类结果
Table 2 Results obtained by cluster analyses for every line transect of three sampling sites
样地 Site | 样线 Line transect | 聚类结果 Results by cluster analyses | 群落类型 Community type |
---|---|---|---|
赛汉 Saihan (SH) | 样线1下部 Lower slope of the first line transect | 1、2、3、4、5、6、8、9、10、11 | 短花针茅群系 Form.Stipa breviflora |
样线1上部 Upper slope of the first line transect | 7、12、13、14、15、16、17、18、19、20、21 | 小针茅群系 Form. S. klemenzii | |
样线2下部 Lower slope of the second line transect | 1、2、3、4、5、6、7、8 | 短花针茅群系 Form. S. breviflora | |
样线2上部 Upper slope of the second line transect | 9、10、11、12、13、14、15、16、17、18、19 | 小针茅群系 Form. S. klemenzii | |
样线3下部 Lower slope of the third line transect | 1、2、3、4、5、6、7、8、9 | 短花针茅群系 Form. S. breviflora | |
样线3上部 Upper slope of the third line transect | 10、11、12、13、14、15、16 | 小针茅群系 Form. S. klemenzii | |
化德 Huade (HD) | 样线1下部 Lower slope of the first line transect | 1、2、3、4、5、6、7 | 短花针茅群系 Form. S. breviflora |
样线1上部 Upper slope of the first line transect | 8、9、10、11、12、13、14 | 克氏针茅群系 Form. S. krylovii | |
样线2下部 Lower slope of the second line transect | 1、2、3、4、5、6、7、8 | 短花针茅群系 Form. S. breviflora | |
样线2上部 Upper slope of the second line transect | 9、10、11、12、13、14 | 克氏针茅群系 Form. S. krylovii | |
样线3下部 Lower slope of the third line transect | 1、2、3、4、5、6、7、8 | 短花针茅群系 Form. S. breviflora | |
样线3上部 Upper slope of the third line transect | 9、10、11、12、13、14 | 克氏针茅群系 Form. S. krylovii | |
准格尔 Jungar (JGR) | 样线1下部 Lower slope of the first line transect | 1、2、3、4、5、6 | 短花针茅群系 Form. S. breviflora |
样线1上部 Upper slope of the first line transect | 7、8、9、10、11、12 | 本氏针茅群系 Form. S. bungeana | |
样线2下部 Lower slope of the second line transect | 1、2、3、5、6 | 短花针茅群系 Form. S. breviflora | |
样线2上部 Upper slope of the second line transect | 4、7、8、9、10 | 本氏针茅群系 Form. S. bungeana | |
样线3下部 Lower slope of the third line transect | 1、2、3、4、5、6、7 | 短花针茅群系 Form. S. breviflora | |
样线3上部 Upper slope of the third line transect | 8、9、10、11、12 | 本氏针茅群系 Form. S. bungeana |
样地 Site | 样线 Line transect | 上部坡面样方 Plot on the upper slope | 下部坡面样方 Plot on the lower slope |
---|---|---|---|
赛汉 Saihan (SH) | 样线1 The first line transect | 12、13、14、15、16、17、18、19、20、21 | 1、2、3、4、5、6、7、8、9、10、11 |
样线2 The second line transect | 9、10、11、12、13、14、15、16、17、18、19 | 1、2、3、4、5、6、7、8 | |
样线3 The third line transect | 10、11、12、13、14、15、16 | 1、2、3、4、5、6、7、8、9 | |
化德 Huade (HD) | 样线1 The first line transect | 8、9、10、11、12、13、14 | 1、2、3、4、5、6、7 |
样线2 The second line transect | 9、10、11、12、13、14 | 1、2、3、4、5、6、7、8 | |
样线3 The third line transect | 9、10、11、12、13、14 | 1、2、3、4、5、6、7、8 | |
准格尔 Jungar (JGR) | 样线1 The first line transect | 7、8、9、10、11、12 | 1、2、3、4、5、6 |
样线2 The second line transect | 7、8、9、10 | 1、2、3、4、5、6 | |
样线3 The third line transect | 8、9、10、11、12 | 1、2、3、4、5、6、7 |
表3 上部坡面及下部坡面的划分结果
Table 3 Division results for upper and lower slope of every line transect
样地 Site | 样线 Line transect | 上部坡面样方 Plot on the upper slope | 下部坡面样方 Plot on the lower slope |
---|---|---|---|
赛汉 Saihan (SH) | 样线1 The first line transect | 12、13、14、15、16、17、18、19、20、21 | 1、2、3、4、5、6、7、8、9、10、11 |
样线2 The second line transect | 9、10、11、12、13、14、15、16、17、18、19 | 1、2、3、4、5、6、7、8 | |
样线3 The third line transect | 10、11、12、13、14、15、16 | 1、2、3、4、5、6、7、8、9 | |
化德 Huade (HD) | 样线1 The first line transect | 8、9、10、11、12、13、14 | 1、2、3、4、5、6、7 |
样线2 The second line transect | 9、10、11、12、13、14 | 1、2、3、4、5、6、7、8 | |
样线3 The third line transect | 9、10、11、12、13、14 | 1、2、3、4、5、6、7、8 | |
准格尔 Jungar (JGR) | 样线1 The first line transect | 7、8、9、10、11、12 | 1、2、3、4、5、6 |
样线2 The second line transect | 7、8、9、10 | 1、2、3、4、5、6 | |
样线3 The third line transect | 8、9、10、11、12 | 1、2、3、4、5、6、7 |
样地 Site | 植物名称 Plant species | 相对数量 Relative number (%) | 干重之和 Sum of dry weight (g) | 二项式检验 Binomial test | |
---|---|---|---|---|---|
上部坡面 Upper slope | 下部坡面 Lower slope | ||||
赛汉 Saihan (SH) | 阿尔泰狗娃花 Heteropapus altaicus | 59.39 | 40.61 | 5.86 | 0.997 |
阿氏旋花 Convolvulus ammannii | 27.36 | 72.64 | 19.15 | 0.012* | |
篦齿蒿 Neopallasia pectinata | 0.00 | 100.00 | 0.30 | 1.000 | |
草芸香 Haplophyllum dauricum | 100.00 | 0.00 | 0.33 | 1.000 | |
地蔷薇 Chamaerhcdos erecta | 100.00 | 0.00 | 0.14 | 1.000 | |
短花针茅 Stipa breviflora | 8.29 | 91.71 | 215.58 | 0.000** | |
戈壁天门冬 Asparagus gobicus | 30.00 | 70.00 | 4.80 | 0.938 | |
碱韭 Allium polyrhizum | 100.00 | 0.00 | 1.11 | 0.763 | |
冷蒿 Artemisia frigida | 70.90 | 29.10 | 11.10 | 0.541 | |
米口袋 Gueldenstaeditia verna | 0.00 | 100.00 | 0.23 | 1.000 | |
乳白花黄芪 Astragalus galactites | 12.37 | 87.63 | 0.97 | 0.997 | |
薹草 Carex korshinsdyi | 26.45 | 73.55 | 3.63 | 0.541 | |
无芒隐子草 Cleistogenes songorica | 28.24 | 71.76 | 57.82 | 0.001** | |
狭叶锦鸡儿 Caragana stenophylla | 31.67 | 68.33 | 22.07 | 0.056 | |
小针茅 Stipa klemenzii | 85.51 | 14.49 | 203.16 | 0.000** | |
芯芭 Cymbaria dahurica | 100.00 | 0.00 | 0.44 | 1.000 | |
所有物种 All species | 43.18 | 56.82 | 546.69 | 0.379 | |
化德 Huade (HD) | 阿尔泰狗娃花 Heteropapus altaicus | 100.00 | 0.00 | 1.35 | 0.251 |
阿氏旋花 Convolvulus ammannii | 32.39 | 67.61 | 21.80 | 0.635 | |
瓣蕊唐松草 Thalictrum petaloideum | 0.00 | 100.00 | 0.20 | 1.000 | |
篦齿蒿 Neopallasia pectinata | 100.00 | 0.00 | 0.46 | 1.000 | |
扁蓿豆 Melissitus ruthenica | 0.00 | 100.00 | 0.13 | 1.000 | |
冰草 Agropyron cirstatum | 80.36 | 19.64 | 7.18 | 0.196 | |
糙隐子草 Cleistogenes squarrosa | 48.02 | 51.98 | 24.76 | 0.647 | |
车前 Plantago asiatica | 0.00 | 100.00 | 0.22 | 1.000 | |
短花针茅 Stipa breviflora | 7.12 | 92.88 | 137.93 | 0.000** | |
二裂委陵菜 Potentilla bifurca | 0.00 | 100.00 | 2.30 | 0.290 | |
克氏针茅 Stipa krylovii | 81.79 | 18.21 | 109.82 | 0.000** | |
冷蒿 Artemisia frigida | 29.13 | 70.87 | 82.53 | 0.004** | |
轮叶委陵菜 Potentilla verticilaris | 15.31 | 84.69 | 6.99 | 0.004** | |
麦瓶草 Silene jenisseensis | 0.00 | 100.00 | 3.61 | 0.017* | |
乳白花黄芪 Astragalus galactites | 0.00 | 100.00 | 1.09 | 1.000 | |
山莓草 Sibbaldia procumbens | 8.23 | 91.77 | 7.90 | 0.573 | |
双齿葱 Allium bidentatum | 0.00 | 100.00 | 0.18 | 1.000 | |
细叶葱 Allium tenuissimum | 13.40 | 86.60 | 1.94 | 0.325 | |
芯芭 Cymbaria dahurica | 0.00 | 100.00 | 5.51 | 0.709 | |
羊草 Leymus chinensis | 47.30 | 52.70 | 173.83 | 0.867 | |
所有物种 All species | 39.75 | 60.25 | 589.73 | 0.023* | |
准格尔 Jungar (JGR) | 阿尔泰狗娃花 Heteropapus altaicus | 57.75 | 42.25 | 6.39 | 1.000 |
本氏针茅 Stipa bungeana | 91.52 | 8.48 | 678.90 | 0.000** | |
变蒿 Artemisia pubescens | 5.56 | 94.44 | 12.42 | 0.807 | |
糙隐子草 Cleistogenes squarrosa | 29.64 | 70.36 | 39.75 | 0.387 | |
草木樨状黄芪 Astragalus melilotoides | 73.77 | 26.23 | 0.61 | 1.000 | |
样地 Site | 植物名称 Plant species | 相对数量 Relative number (%) | 干重之和 Sum of dry weight (g) | 二项式检验 Binomial test | |
上部坡面 Upper slope | 下部坡面 Lower slope | ||||
准格尔 Jungar (JGR) | 达乌里胡枝子 Lespedeza davurica | 32.76 | 67.24 | 87.52 | 0.590 |
短花针茅 Stipa breviflora | 7.86 | 92.14 | 895.25 | 0.000** | |
防风 Saposhnikovia divaricata | 14.29 | 85.71 | 0.91 | 1.000 | |
黄蒿 Artemisia scoparia | 3.80 | 96.20 | 3.16 | 0.851 | |
蒲公英 Taraxacum mongolicum | 0.00 | 100.00 | 0.15 | 1.000 | |
乳白花黄芪 Astragalus galactites | 49.09 | 50.91 | 21.35 | 0.998 | |
细叶葱 Allium tenuissimum | 100.00 | 0.00 | 0.31 | 1.000 | |
细叶鸢尾 Iris tenuifolia | 0.00 | 100.00 | 0.69 | 1.000 | |
细叶远志 Polygala tenuifolia | 32.89 | 67.11 | 10.61 | 0.807 | |
斜茎黄芪 Astragalus adsurgens | 61.59 | 38.41 | 1.64 | 1.000 | |
岩黄芪 Hedysarum scoparium | 38.71 | 61.29 | 8.06 | 1.000 | |
羊草 Leymus chinensis | 52.32 | 47.68 | 34.98 | 0.993 | |
紫筒草 Stenosolenium saxatile | 13.33 | 86.67 | 0.75 | 0.985 | |
所有物种 All species | 42.92 | 57.08 | 1803.45 | 0.078 | |
3个样地物种 All species of three sampling sites | 42.33 | 57.67 | 2939.87 | 0.005** |
表4 上部坡面与下部坡面物种分布的二项式检验
Table 4 Binomial test for the distribution of species between the upper slope and lower slope
样地 Site | 植物名称 Plant species | 相对数量 Relative number (%) | 干重之和 Sum of dry weight (g) | 二项式检验 Binomial test | |
---|---|---|---|---|---|
上部坡面 Upper slope | 下部坡面 Lower slope | ||||
赛汉 Saihan (SH) | 阿尔泰狗娃花 Heteropapus altaicus | 59.39 | 40.61 | 5.86 | 0.997 |
阿氏旋花 Convolvulus ammannii | 27.36 | 72.64 | 19.15 | 0.012* | |
篦齿蒿 Neopallasia pectinata | 0.00 | 100.00 | 0.30 | 1.000 | |
草芸香 Haplophyllum dauricum | 100.00 | 0.00 | 0.33 | 1.000 | |
地蔷薇 Chamaerhcdos erecta | 100.00 | 0.00 | 0.14 | 1.000 | |
短花针茅 Stipa breviflora | 8.29 | 91.71 | 215.58 | 0.000** | |
戈壁天门冬 Asparagus gobicus | 30.00 | 70.00 | 4.80 | 0.938 | |
碱韭 Allium polyrhizum | 100.00 | 0.00 | 1.11 | 0.763 | |
冷蒿 Artemisia frigida | 70.90 | 29.10 | 11.10 | 0.541 | |
米口袋 Gueldenstaeditia verna | 0.00 | 100.00 | 0.23 | 1.000 | |
乳白花黄芪 Astragalus galactites | 12.37 | 87.63 | 0.97 | 0.997 | |
薹草 Carex korshinsdyi | 26.45 | 73.55 | 3.63 | 0.541 | |
无芒隐子草 Cleistogenes songorica | 28.24 | 71.76 | 57.82 | 0.001** | |
狭叶锦鸡儿 Caragana stenophylla | 31.67 | 68.33 | 22.07 | 0.056 | |
小针茅 Stipa klemenzii | 85.51 | 14.49 | 203.16 | 0.000** | |
芯芭 Cymbaria dahurica | 100.00 | 0.00 | 0.44 | 1.000 | |
所有物种 All species | 43.18 | 56.82 | 546.69 | 0.379 | |
化德 Huade (HD) | 阿尔泰狗娃花 Heteropapus altaicus | 100.00 | 0.00 | 1.35 | 0.251 |
阿氏旋花 Convolvulus ammannii | 32.39 | 67.61 | 21.80 | 0.635 | |
瓣蕊唐松草 Thalictrum petaloideum | 0.00 | 100.00 | 0.20 | 1.000 | |
篦齿蒿 Neopallasia pectinata | 100.00 | 0.00 | 0.46 | 1.000 | |
扁蓿豆 Melissitus ruthenica | 0.00 | 100.00 | 0.13 | 1.000 | |
冰草 Agropyron cirstatum | 80.36 | 19.64 | 7.18 | 0.196 | |
糙隐子草 Cleistogenes squarrosa | 48.02 | 51.98 | 24.76 | 0.647 | |
车前 Plantago asiatica | 0.00 | 100.00 | 0.22 | 1.000 | |
短花针茅 Stipa breviflora | 7.12 | 92.88 | 137.93 | 0.000** | |
二裂委陵菜 Potentilla bifurca | 0.00 | 100.00 | 2.30 | 0.290 | |
克氏针茅 Stipa krylovii | 81.79 | 18.21 | 109.82 | 0.000** | |
冷蒿 Artemisia frigida | 29.13 | 70.87 | 82.53 | 0.004** | |
轮叶委陵菜 Potentilla verticilaris | 15.31 | 84.69 | 6.99 | 0.004** | |
麦瓶草 Silene jenisseensis | 0.00 | 100.00 | 3.61 | 0.017* | |
乳白花黄芪 Astragalus galactites | 0.00 | 100.00 | 1.09 | 1.000 | |
山莓草 Sibbaldia procumbens | 8.23 | 91.77 | 7.90 | 0.573 | |
双齿葱 Allium bidentatum | 0.00 | 100.00 | 0.18 | 1.000 | |
细叶葱 Allium tenuissimum | 13.40 | 86.60 | 1.94 | 0.325 | |
芯芭 Cymbaria dahurica | 0.00 | 100.00 | 5.51 | 0.709 | |
羊草 Leymus chinensis | 47.30 | 52.70 | 173.83 | 0.867 | |
所有物种 All species | 39.75 | 60.25 | 589.73 | 0.023* | |
准格尔 Jungar (JGR) | 阿尔泰狗娃花 Heteropapus altaicus | 57.75 | 42.25 | 6.39 | 1.000 |
本氏针茅 Stipa bungeana | 91.52 | 8.48 | 678.90 | 0.000** | |
变蒿 Artemisia pubescens | 5.56 | 94.44 | 12.42 | 0.807 | |
糙隐子草 Cleistogenes squarrosa | 29.64 | 70.36 | 39.75 | 0.387 | |
草木樨状黄芪 Astragalus melilotoides | 73.77 | 26.23 | 0.61 | 1.000 | |
样地 Site | 植物名称 Plant species | 相对数量 Relative number (%) | 干重之和 Sum of dry weight (g) | 二项式检验 Binomial test | |
上部坡面 Upper slope | 下部坡面 Lower slope | ||||
准格尔 Jungar (JGR) | 达乌里胡枝子 Lespedeza davurica | 32.76 | 67.24 | 87.52 | 0.590 |
短花针茅 Stipa breviflora | 7.86 | 92.14 | 895.25 | 0.000** | |
防风 Saposhnikovia divaricata | 14.29 | 85.71 | 0.91 | 1.000 | |
黄蒿 Artemisia scoparia | 3.80 | 96.20 | 3.16 | 0.851 | |
蒲公英 Taraxacum mongolicum | 0.00 | 100.00 | 0.15 | 1.000 | |
乳白花黄芪 Astragalus galactites | 49.09 | 50.91 | 21.35 | 0.998 | |
细叶葱 Allium tenuissimum | 100.00 | 0.00 | 0.31 | 1.000 | |
细叶鸢尾 Iris tenuifolia | 0.00 | 100.00 | 0.69 | 1.000 | |
细叶远志 Polygala tenuifolia | 32.89 | 67.11 | 10.61 | 0.807 | |
斜茎黄芪 Astragalus adsurgens | 61.59 | 38.41 | 1.64 | 1.000 | |
岩黄芪 Hedysarum scoparium | 38.71 | 61.29 | 8.06 | 1.000 | |
羊草 Leymus chinensis | 52.32 | 47.68 | 34.98 | 0.993 | |
紫筒草 Stenosolenium saxatile | 13.33 | 86.67 | 0.75 | 0.985 | |
所有物种 All species | 42.92 | 57.08 | 1803.45 | 0.078 | |
3个样地物种 All species of three sampling sites | 42.33 | 57.67 | 2939.87 | 0.005** |
样地 Site | 样线 Line transect | 生产力平均值 Average of productivity (g) | 检验结果 Result of assay | |
---|---|---|---|---|
上部坡面 Upper slope | 下部坡面 Lower slope | |||
赛汉 Saihan (SH) | 样线1 The first line transect | 8.07 | 11.72 | 0.000** |
样线2 The second line transect | 10.06 | 12.34 | 0.257 | |
样线3 The third line transect | 6.38 | 9.22 | 0.001** | |
3条样线 All the three line transects | 8.43 | 11.09 | 0.001** | |
化德 Huade (HD) | 样线1 The first line transect | 13.11 | 15.92 | 0.028* |
样线2 The second line transect | 11.46 | 15.82 | 0.040* | |
样线3 The third line transect | 12.32 | 14.67 | 0.033* | |
3条样线 All the three line transects | 12.34 | 15.45 | 0.000** | |
准格尔 Jungar (JGR) | 样线1 The first line transect | 51.03 | 54.04 | 0.589 |
样线2 The second line transect | 47.58 | 57.20 | 0.173 | |
样线3 The third line transect | 51.52 | 59.53 | 0.244 | |
3条样线 All the three line transects | 50.14 | 56.71 | 0.058 |
表5 上部坡面与下部坡面生产力差异的显著性检验
Table 5 Significant difference test for the productivity between the upper slope and lower slope
样地 Site | 样线 Line transect | 生产力平均值 Average of productivity (g) | 检验结果 Result of assay | |
---|---|---|---|---|
上部坡面 Upper slope | 下部坡面 Lower slope | |||
赛汉 Saihan (SH) | 样线1 The first line transect | 8.07 | 11.72 | 0.000** |
样线2 The second line transect | 10.06 | 12.34 | 0.257 | |
样线3 The third line transect | 6.38 | 9.22 | 0.001** | |
3条样线 All the three line transects | 8.43 | 11.09 | 0.001** | |
化德 Huade (HD) | 样线1 The first line transect | 13.11 | 15.92 | 0.028* |
样线2 The second line transect | 11.46 | 15.82 | 0.040* | |
样线3 The third line transect | 12.32 | 14.67 | 0.033* | |
3条样线 All the three line transects | 12.34 | 15.45 | 0.000** | |
准格尔 Jungar (JGR) | 样线1 The first line transect | 51.03 | 54.04 | 0.589 |
样线2 The second line transect | 47.58 | 57.20 | 0.173 | |
样线3 The third line transect | 51.52 | 59.53 | 0.244 | |
3条样线 All the three line transects | 50.14 | 56.71 | 0.058 |
土壤因子 Soil factor | 赛汉 Saihan (SH) | 化德 Huade (HD) | 准格尔 Jungar (JGR) |
---|---|---|---|
0-10 cm深度土壤含水量 Soil moisture for 0-10 cm soil depth | 0.000** | 0.000** | 0.254 |
10-20 cm深度土壤含水量 Soil moisture for 10-20 cm soil depth | 0.299 | 0.237 | 0.776 |
20-30 cm深度土壤含水量 Soil moisture for 20-30 cm soil depth | 0.470 | 0.654 | 0.445 |
0-30 cm深度土壤含水量总和 Total soil moisture for 0-30 cm soil depth | 0.168 | 0.465 | 0.986 |
0-5 cm深度石砾含量 Gravel content for 0-5 cm soil depth | 0.000** | 0.000** | 0.177 |
5-10 cm深度石砾含量 Gravel content for 5-10 cm soil depth | 0.048** | 0.069 | 0.096 |
10-15 cm深度石砾含量 Gravel content for 10-15 cm soil depth | 0.807 | 0.632 | 0.762 |
15-20 cm深度石砾含量 Gravel content for 15-20 cm soil depth | 0.690 | 0.711 | 0.106 |
0-20 cm深度石砾含量总和 Total gravel content for 0-20 cm soil depth | 0.054* | 0.164 | 0.275 |
0-5 cm深度砂粒含量 Sand content for 0-5 cm soil depth | 0.000** | 0.000** | 0.000** |
5-10 cm深度砂粒含量 Sand content for 5-10 cm soil depth | 0.084 | 0.094 | 0.042** |
10-15 cm深度砂粒含量 Sand content for 10-15 cm soil depth | 0.133 | 0.334 | 0.264 |
15-20 cm深度砂粒含量 Sand content for 15-20 cm soil depth | 0.386 | 0.538 | 0.723 |
0-20 cm深度砂粒含量总和 Total sand content for 0-20 cm soil depth | 0.143 | 0.150 | 0.197 |
0-5 cm深度粉粒含量 Silt content for 0-5 cm soil depth | 0.000** | 0.000** | 0.000** |
5-10 cm深度粉粒含量 Silt content for 5-10 cm soil depth | 0.080 | 0.094 | 0.065 |
10-15 cm深度粉粒含量 Silt content for 10-15 cm soil depth | 0.094 | 0.234 | 0.274 |
15-20 cm深度粉粒含量 Silt content for 15-20 cm soil depth | 0.365 | 0.376 | 0219 |
0-20 cm深度粉粒含量总和 Total silt content for 0-20 cm soil depth | 0.214 | 0.219 | 0.177 |
0-5 cm深度黏粒含量 Clay content for 0-5 cm soil depth | 0.000** | 0.000** | 0.041* |
5-10 cm深度黏粒含量 Clay content for 5-10 cm soil depth | 0.004** | 0.430 | 0.130 |
10-15 cm深度黏粒含量 Clay content for 10-15 cm soil depth | 0.988 | 0.780 | 0.288 |
15-20 cm深度黏粒含量 Clay content for 15-20 cm soil depth | 0.650 | 0.924 | 0.637 |
0-20 cm深度黏粒含量总和 Total clay content for 0-20 cm soil depth | 0.196 | 0.375 | 0.530 |
表6 上部坡面与下部坡面土壤特征差异的显著性检验
Table 6 Significant difference test for the soil characters between the upper slope and lower slope
土壤因子 Soil factor | 赛汉 Saihan (SH) | 化德 Huade (HD) | 准格尔 Jungar (JGR) |
---|---|---|---|
0-10 cm深度土壤含水量 Soil moisture for 0-10 cm soil depth | 0.000** | 0.000** | 0.254 |
10-20 cm深度土壤含水量 Soil moisture for 10-20 cm soil depth | 0.299 | 0.237 | 0.776 |
20-30 cm深度土壤含水量 Soil moisture for 20-30 cm soil depth | 0.470 | 0.654 | 0.445 |
0-30 cm深度土壤含水量总和 Total soil moisture for 0-30 cm soil depth | 0.168 | 0.465 | 0.986 |
0-5 cm深度石砾含量 Gravel content for 0-5 cm soil depth | 0.000** | 0.000** | 0.177 |
5-10 cm深度石砾含量 Gravel content for 5-10 cm soil depth | 0.048** | 0.069 | 0.096 |
10-15 cm深度石砾含量 Gravel content for 10-15 cm soil depth | 0.807 | 0.632 | 0.762 |
15-20 cm深度石砾含量 Gravel content for 15-20 cm soil depth | 0.690 | 0.711 | 0.106 |
0-20 cm深度石砾含量总和 Total gravel content for 0-20 cm soil depth | 0.054* | 0.164 | 0.275 |
0-5 cm深度砂粒含量 Sand content for 0-5 cm soil depth | 0.000** | 0.000** | 0.000** |
5-10 cm深度砂粒含量 Sand content for 5-10 cm soil depth | 0.084 | 0.094 | 0.042** |
10-15 cm深度砂粒含量 Sand content for 10-15 cm soil depth | 0.133 | 0.334 | 0.264 |
15-20 cm深度砂粒含量 Sand content for 15-20 cm soil depth | 0.386 | 0.538 | 0.723 |
0-20 cm深度砂粒含量总和 Total sand content for 0-20 cm soil depth | 0.143 | 0.150 | 0.197 |
0-5 cm深度粉粒含量 Silt content for 0-5 cm soil depth | 0.000** | 0.000** | 0.000** |
5-10 cm深度粉粒含量 Silt content for 5-10 cm soil depth | 0.080 | 0.094 | 0.065 |
10-15 cm深度粉粒含量 Silt content for 10-15 cm soil depth | 0.094 | 0.234 | 0.274 |
15-20 cm深度粉粒含量 Silt content for 15-20 cm soil depth | 0.365 | 0.376 | 0219 |
0-20 cm深度粉粒含量总和 Total silt content for 0-20 cm soil depth | 0.214 | 0.219 | 0.177 |
0-5 cm深度黏粒含量 Clay content for 0-5 cm soil depth | 0.000** | 0.000** | 0.041* |
5-10 cm深度黏粒含量 Clay content for 5-10 cm soil depth | 0.004** | 0.430 | 0.130 |
10-15 cm深度黏粒含量 Clay content for 10-15 cm soil depth | 0.988 | 0.780 | 0.288 |
15-20 cm深度黏粒含量 Clay content for 15-20 cm soil depth | 0.650 | 0.924 | 0.637 |
0-20 cm深度黏粒含量总和 Total clay content for 0-20 cm soil depth | 0.196 | 0.375 | 0.530 |
环境因子 Environment factor | 样地 Sites | |||||||
---|---|---|---|---|---|---|---|---|
赛汉 Saihan (SH) | 化德 Huade (HD) | 准格尔 Jungar (JGR) | ||||||
第一轴 First axis | 第二轴 Second axis | 第一轴 First axis | 第二轴Second axis | 第一轴 First axis | 第二轴 Second axis | |||
0-10 cm深度土壤含水量 Soil moisture for 0-10 cm soil depth | 0.560 4** | -0.030 7 | 0.792 3** | -0.083 1 | 0.538 1** | -0.113 6 | ||
10-20 cm深度土壤含水量 Soil moisture for 10-20 cm soil depth | 0.177 3 | 0.122 6 | 0.222 5 | 0.159 3 | 0.255 4 | 0.211 7 | ||
20-30 cm深度土壤含水量 Soil moisture for 20-30 cm soil depth | 0.089 2 | 0.026 2 | 0.121 2 | 0.072 2 | 0.114 4 | 0.075 5 | ||
0-30 cm深度土壤含水量总和 Total soil moisture for 0-30 cm soil depth | 0.210 7 | 0.044 6 | 0.295 3 | 0.118 5 | 0.202 3 | 0.145 0 | ||
0-5 cm深度石砾含量 Gravel content for 0-5 cm soil depth | 0.593 0** | -0.112 3 | 0.770 2** | -0.251 2 | -0.304 1 | 0.169 9 | ||
5-10 cm深度石砾含量 Gravel content for 5-10 cm soil depth | 0.356 2** | 0.026 3 | 0.327 4* | -0.117 0 | 0.085 8 | 0.118 2 | ||
10-15 cm深度石砾含量 Gravel content for 10-15 cm soil depth | 0.113 1 | 0.056 5 | 0.168 2 | -0.070 0 | -0.179 9 | -0.230 6 | ||
15-20 cm深度石砾含量 Gravel content for 15-20 cm soil depth | -0.087 9 | -0.128 1 | 0.144 7 | -0.043 6* | 0.029 0 | -0.441 3* | ||
0-20 cm深度石砾含量总和 Total gravel content for 0-20 cm soil depth | 0.315 8* | -0.082 0 | 0.331 7* | -0.138 6 | -0.239 5 | -0.037 4 | ||
0-5 cm深度砂粒含量 Sand content for 0-5 cm soil depth | -0.770 6** | 0.210 4 | -0.802 3** | 0.160 2 | -0.484 0* | 0.234 2 | ||
5-10 cm深度砂粒含量 Sand content for 5-10 cm soil depth | -0.299 4* | -0.139 4 | -0.252 2 | -0.054 5 | -0.400 4 | 0.018 0 | ||
10-15 cm深度砂粒含量 Sand content for 10-15 cm soil depth | 0.181 6 | -0.081 5 | 0.155 8 | -0.015 2** | 0.012 4 | 0.171 4 | ||
15-20 cm深度砂粒含量 Sand content for 15-20 cm soil depth | 0.266 6 | -0.116 1 | 0.119 4 | -0.064 6 | -0.384 4 | 0.055 4 | ||
0-20 cm深度砂粒含量总和 Total sand content for 0-20 cm soil depth | -0.227 0 | -0.030 7 | 0.218 6 | -0.087 7 | -0.511 7* | 0.104 2 | ||
0-5 cm深度粉粒含量 Silt content for 0-5 cm soil depth | 0.765 7** | -0.182 0 | -0.868 2** | 0.135 0 | 0.458 5* | -0.282 1 | ||
5-10 cm深度粉粒含量 Silt content for 5-10 cm soil depth | 0.291 8* | 0.133 4 | -0.799 9** | 0.284 8 | 0.429 3* | -0.043 8* | ||
10-15 cm深度粉粒含量 Silt content for 10-15 cm soil depth | -0.190 3 | 0.062 8 | -0.222 1 | 0.048 4 | 0.161 8 | -0.253 7 | ||
15-20 cm深度粉粒含量 Silt content for 15-20 cm soil depth | -0.181 5 | 0.135 2 | -0.107 5 | 0.072 1 | 0.039 5 | -0.089 1 | ||
0-20 cm深度粉粒含量总和 Total silt content for 0-20 cm soil depth | 0.223 8 | 0.038 6 | -0.419 7** | 0.191 0 | 0.475 2* | -0.152 8 | ||
0-5 cm深度黏粒含量 Clay content for 0-5 cm soil depth | 0.739 2** | -0.243 7 | 0.784 7** | -0.186 6 | 0.585 5** | 0.280 3 | ||
5-10 cm深度黏粒含量 Clay content for 5-10 cm soil depth | 0.444 2** | 0.033 2 | 0.724 3** | 0.284 6** | 0.505 0* | 0.172 7* | ||
10-15 cm深度黏粒含量 Clay content for 10-15 cm soil depth | 0.048 3 | -0.063 6 | 0.058 9 | -0.062 2 | 0.079 8 | 0.125 7 | ||
15-20 cm深度黏粒含量 Clay content for 15-20 cm soil depth | 0.010 4 | -0.034 8 | 0.028 1 | -0.044 6 | -0.027 4 | 0.083 0 | ||
0-20 cm深度黏粒含量总和 Total clay content for 0-20 cm soil depth | 0.411 2** | -0.112 7 | 0.528 4** | -0.126 7 | 0.500 1* | 0.187 6 | ||
蒙特卡罗检验 Monte Carlo test (第一轴 First axis) | 0.00 2 | 0.002 | 0.018 | |||||
蒙特卡罗检验 Monte Carlo test (所有轴 All axis) | 0.00 2 | 0.004 | 0.004 | |||||
贡献率 Contribution (%) | 72.3 | 6.9 | 51.4 | 11.6 | 56.7 | 8.4 | ||
累积贡献率 Cumulative contribution (%) | 72.3 | 79.2 | 51.4 | 63.0 | 56.7 | 65.1 |
表7 除趋势典范对应分析前2个排序轴及其与24个土壤因子间的相关系数
Table 7 Correlation coefficients of the first and second axes of detrended canonical correspondence analysis for 24 soil factors
环境因子 Environment factor | 样地 Sites | |||||||
---|---|---|---|---|---|---|---|---|
赛汉 Saihan (SH) | 化德 Huade (HD) | 准格尔 Jungar (JGR) | ||||||
第一轴 First axis | 第二轴 Second axis | 第一轴 First axis | 第二轴Second axis | 第一轴 First axis | 第二轴 Second axis | |||
0-10 cm深度土壤含水量 Soil moisture for 0-10 cm soil depth | 0.560 4** | -0.030 7 | 0.792 3** | -0.083 1 | 0.538 1** | -0.113 6 | ||
10-20 cm深度土壤含水量 Soil moisture for 10-20 cm soil depth | 0.177 3 | 0.122 6 | 0.222 5 | 0.159 3 | 0.255 4 | 0.211 7 | ||
20-30 cm深度土壤含水量 Soil moisture for 20-30 cm soil depth | 0.089 2 | 0.026 2 | 0.121 2 | 0.072 2 | 0.114 4 | 0.075 5 | ||
0-30 cm深度土壤含水量总和 Total soil moisture for 0-30 cm soil depth | 0.210 7 | 0.044 6 | 0.295 3 | 0.118 5 | 0.202 3 | 0.145 0 | ||
0-5 cm深度石砾含量 Gravel content for 0-5 cm soil depth | 0.593 0** | -0.112 3 | 0.770 2** | -0.251 2 | -0.304 1 | 0.169 9 | ||
5-10 cm深度石砾含量 Gravel content for 5-10 cm soil depth | 0.356 2** | 0.026 3 | 0.327 4* | -0.117 0 | 0.085 8 | 0.118 2 | ||
10-15 cm深度石砾含量 Gravel content for 10-15 cm soil depth | 0.113 1 | 0.056 5 | 0.168 2 | -0.070 0 | -0.179 9 | -0.230 6 | ||
15-20 cm深度石砾含量 Gravel content for 15-20 cm soil depth | -0.087 9 | -0.128 1 | 0.144 7 | -0.043 6* | 0.029 0 | -0.441 3* | ||
0-20 cm深度石砾含量总和 Total gravel content for 0-20 cm soil depth | 0.315 8* | -0.082 0 | 0.331 7* | -0.138 6 | -0.239 5 | -0.037 4 | ||
0-5 cm深度砂粒含量 Sand content for 0-5 cm soil depth | -0.770 6** | 0.210 4 | -0.802 3** | 0.160 2 | -0.484 0* | 0.234 2 | ||
5-10 cm深度砂粒含量 Sand content for 5-10 cm soil depth | -0.299 4* | -0.139 4 | -0.252 2 | -0.054 5 | -0.400 4 | 0.018 0 | ||
10-15 cm深度砂粒含量 Sand content for 10-15 cm soil depth | 0.181 6 | -0.081 5 | 0.155 8 | -0.015 2** | 0.012 4 | 0.171 4 | ||
15-20 cm深度砂粒含量 Sand content for 15-20 cm soil depth | 0.266 6 | -0.116 1 | 0.119 4 | -0.064 6 | -0.384 4 | 0.055 4 | ||
0-20 cm深度砂粒含量总和 Total sand content for 0-20 cm soil depth | -0.227 0 | -0.030 7 | 0.218 6 | -0.087 7 | -0.511 7* | 0.104 2 | ||
0-5 cm深度粉粒含量 Silt content for 0-5 cm soil depth | 0.765 7** | -0.182 0 | -0.868 2** | 0.135 0 | 0.458 5* | -0.282 1 | ||
5-10 cm深度粉粒含量 Silt content for 5-10 cm soil depth | 0.291 8* | 0.133 4 | -0.799 9** | 0.284 8 | 0.429 3* | -0.043 8* | ||
10-15 cm深度粉粒含量 Silt content for 10-15 cm soil depth | -0.190 3 | 0.062 8 | -0.222 1 | 0.048 4 | 0.161 8 | -0.253 7 | ||
15-20 cm深度粉粒含量 Silt content for 15-20 cm soil depth | -0.181 5 | 0.135 2 | -0.107 5 | 0.072 1 | 0.039 5 | -0.089 1 | ||
0-20 cm深度粉粒含量总和 Total silt content for 0-20 cm soil depth | 0.223 8 | 0.038 6 | -0.419 7** | 0.191 0 | 0.475 2* | -0.152 8 | ||
0-5 cm深度黏粒含量 Clay content for 0-5 cm soil depth | 0.739 2** | -0.243 7 | 0.784 7** | -0.186 6 | 0.585 5** | 0.280 3 | ||
5-10 cm深度黏粒含量 Clay content for 5-10 cm soil depth | 0.444 2** | 0.033 2 | 0.724 3** | 0.284 6** | 0.505 0* | 0.172 7* | ||
10-15 cm深度黏粒含量 Clay content for 10-15 cm soil depth | 0.048 3 | -0.063 6 | 0.058 9 | -0.062 2 | 0.079 8 | 0.125 7 | ||
15-20 cm深度黏粒含量 Clay content for 15-20 cm soil depth | 0.010 4 | -0.034 8 | 0.028 1 | -0.044 6 | -0.027 4 | 0.083 0 | ||
0-20 cm深度黏粒含量总和 Total clay content for 0-20 cm soil depth | 0.411 2** | -0.112 7 | 0.528 4** | -0.126 7 | 0.500 1* | 0.187 6 | ||
蒙特卡罗检验 Monte Carlo test (第一轴 First axis) | 0.00 2 | 0.002 | 0.018 | |||||
蒙特卡罗检验 Monte Carlo test (所有轴 All axis) | 0.00 2 | 0.004 | 0.004 | |||||
贡献率 Contribution (%) | 72.3 | 6.9 | 51.4 | 11.6 | 56.7 | 8.4 | ||
累积贡献率 Cumulative contribution (%) | 72.3 | 79.2 | 51.4 | 63.0 | 56.7 | 65.1 |
环境因子 Environment factor | 赛汉 Saihan (SH) | 化德 Huade (HD) | 准格尔 Jungar (JGR) |
---|---|---|---|
土壤含水量总和 Total soil moisture | 0.552** | 0.675** | 0.472** |
石砾含量总和 Total gravel content | -0.450** | -0.497** | -0.189 |
砂粒含量总和 Total sand content | -0.017 | -0.209 | -0.087 |
粉粒含量之和 Total silt content | 0.013 | 0.623** | 0.072 |
黏粒含量之和 Total clay content | 0.158 | 0.492** | 0.090 |
表8 Pearson相关性分析结果
Table 8 Correlation coefficients obtained by Pearson correlation analysis
环境因子 Environment factor | 赛汉 Saihan (SH) | 化德 Huade (HD) | 准格尔 Jungar (JGR) |
---|---|---|---|
土壤含水量总和 Total soil moisture | 0.552** | 0.675** | 0.472** |
石砾含量总和 Total gravel content | -0.450** | -0.497** | -0.189 |
砂粒含量总和 Total sand content | -0.017 | -0.209 | -0.087 |
粉粒含量之和 Total silt content | 0.013 | 0.623** | 0.072 |
黏粒含量之和 Total clay content | 0.158 | 0.492** | 0.090 |
[1] | Abrams PA (1995). Monotonic or unimodal diversity-produc- tivity gradients: What does competition theory predict? Ecology, 76,2019-2027. |
[2] |
Aldrich PR, Hamrick JL (1998). Reproductive dominance of pasture trees in a fragmented tropical forest mosaic. Science, 281,103-105.
DOI URL PMID |
[3] |
Arroyo-Rodríguez V, Pineda E, Escobar F, Benítez-Malvido J (2009). Value of small patches in the conservation of plant-species diversity in highly fragmented rainforest. Conservation Biology, 23,729-739.
DOI URL PMID |
[4] |
Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431,181-184.
URL PMID |
[5] | Bai YF (白永飞), Li LH (李凌浩), Wang QB (王其兵), Zhang LX (张丽霞), Zhang Y (张焱), Chen ZZ (陈佐忠) (2000). Changes in plant species diversity and productivity along gradients of precipitation and elevation in the Xilin River Basin, Inner Mongolia. Acta Phytoecologica Sinica (植物生态学报), 24,667-673. (in Chinese with English abstract) |
[6] | Bai YF, Wu JG, Clark CM, Naeem S, Pan QM, Huang JH, Zhang LX, Han XG (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology, 16,358-372. |
[7] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89,2140-2153.
DOI URL PMID |
[8] | Bazzaz FA (1975). Plant species diversity in old-field successional ecosystems in Southern Illinois. Ecology, 56,485-488. |
[9] |
Benton MJ (1995). Diversification and extinction in the history of life. Science, 268,52-58.
DOI URL PMID |
[10] | Berglund H, Jonsson BG (2003). Nested plant and fungal communities: the importance of area and habitat quality in maximizing species capture in boreal old-growth forests. Biological Conservation, 112,319-328. |
[11] |
Biswas SR, Mallik AU (2010). Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology, 91,28-35.
DOI URL PMID |
[12] | Borregaard MK, Rahbek C (2010). Dispersion fields, diversity fields and null models: uniting range sizes and species richness. Ecography, 33,402-407. |
[13] |
Chase JM, Leibold MA (2002). Spatial scale dictates the productivity-biodiversity relationship. Nature, 416,427-430.
URL PMID |
[14] | Coop JD, Massatti RT, Schoettle AW (2010). Subalpine vegetation pattern three decades after stand-replacing fire: effects of landscape context and topography on plant community composition, tree regeneration, and diversity. Journal of Vegetation Science, 21,472-487. |
[15] | Courtillot V, Gaudemer Y (1996). Effects of mass extinctions on biodiversity. Nature, 381,146-148. |
[16] | Davies KF, Margules CR, Lawrence JF (2000). Which traits of species predict population declines in experimental forest fragments? Ecology, 81,1450-1461. |
[17] | del Barrio G, Alvera B, Puigdefabregas J, Diez C (1997). Response of high mountain landscape to topographic variables: Central Pyrenees. Landscape Ecology, 12,95-115. |
[18] | Denslow JS (1995). Disturbance and diversity in tropical rain forests: the density effect. Ecological Applications, 5,962-968. |
[19] | Dong MW (董明伟), Yu M (喻梅) (2008). Simulation analysis on net primary productivity of grassland communities along a water gradient and their responses to climate change. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32,531-543. (in Chinese with English abstract) |
[20] |
Ellner SP, McCauley E, Kendall BE, Briggs CJ, Hosseini PR, Wood SN, Janssen A, Sabelis MW, Turchin P, Nisbet RM, Murdoch WW (2001). Habitat structure and population persistence in an experimental community. Nature, 412,538-543.
DOI URL PMID |
[21] | Fang JY (方精云), Li YD (李意德), Zhu B (朱彪), Liu GH (刘国华), Zhou GY (周光益) (2004a). Community structures and species richness in the montane rain forest of Jianfengling, Hainan Island, China. Biodiversity Science (生物多样性), 12,29-43. (in Chinese with English abstract) |
[22] | Fang JY (方精云), Mamoru K (神崎护), Wang XP (王襄平), Kyoji Y (依田恭二), Sun SZ (孙世洲), Katsuhiko S (下田胜久) (2004b). Community structure of alpine sparse vegetation and effects of micro-topography in Pushila, Everest-Choyu region, Tibet, China. Biodiversity Science (生物多样性), 12,190-199. (in Chinese with English abstract) |
[23] |
Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2003). Productivity responses to altered rainfall patterns in a C 4-dominated grassland. Oecologia, 137,245-251.
URL PMID |
[24] | Fernández-Aláez C, Fernández-Aláez M, García-Criado F (2005). Spatial distribution pattern of the riparian vegetation in a basin in the NW Spain. Plant Ecology, 179,31-42. |
[25] | Gentry AH (1988). Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden, 75,1-34. |
[26] |
Godfray HCJ, Lawton JH (2001). Scale and species numbers. Trends in Ecology & Evolution, 16,400-404.
DOI URL PMID |
[27] | Guo K (郭柯), Dong XJ (董学军), Liu ZM (刘志茂) (2000). Characteristics of soil moisture content on sand dunes in Mu Us sandy grassland: why Artemisia ordosica declines on old fixed sand dunes. Acta Phytoecologica Sinica (植物生态学报), 24,275-279. (in Chinese with English abstract) |
[28] | Hara M, Hirata K, Fujihara M, Oono K (1996). Vegetation structure in relation to micro-landform in an evergreen broad-leaved forest on Amami Ohshima Island, South- west Japan. Ecological Research, 11,325-337. |
[29] | Hassler SK, Kreyling J, Beierkuhnlein C, Eisold J, Samimi C, Wagenseil H, Jentsch A (2010). Vegetation pattern divergence between dry and wet season in a semiarid savanna―spatio-temporal dynamics of plant diversity in northwest Namibia. Journal of Arid Environments, 74,1516-1524. |
[30] | Huang CY (黄昌勇) (2000). Soil Science (土壤学). China Agriculture Publishing House, Beijing. (in Chinese) |
[31] | Hubbell SP (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19,166-172. |
[32] | Inner Mongolia-Ningxia Joint Inspection Group of Chinese Sciences of Academy (中国科学院内蒙古宁夏综合考察队) (1985). Vegetation of Inner Mongolia (内蒙古植被). Science Press, Beijing. (in Chinese) |
[33] | Jonsson M, Yeates GW, Wardle DA (2009). Patterns of invertebrate density and taxonomic richness across gradients of area, isolation, and vegetation diversity in a lake-island system. Ecography, 32,963-972. |
[34] | Kikuchi T (2001). Vegetation and Landforms. University of Tokyo Press, Tokyo. |
[35] | Kikuchi T, Miura O (1993). Vegetation patterns in relation to micro-scale landforms in hilly land regions. Plant Ecology, 106,147-154. |
[36] | Levin SA (1992). The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology, 73,1943-1967. |
[37] | Li M (李勉), Li ZB (李占斌), Liu PL (刘普灵), Cui LZ (崔灵周), Li YQ (李雅琦) (2004). Characteristics of different aspect of soil erosion in wind-water erosion crisscross region on Loess Plateau. Journal of Soil and Water Conservation (水土保持学报), 18,63-65. (in Chinese with English abstract) |
[38] | Liu HM, Wang LX, Yang J, Nakagoshi N, Liang CZ, Wang W, Lü YM (2009). Predictive modeling of the potential natural vegetation pattern in northeast China. Ecological Research, 24,1313-1321. |
[39] | Lomolino MV (2001). Elevation gradients of species-density: historical and prospective views. Global Ecology and Biogeography, 10,3-13. |
[40] | MacArthur RH, Wilson EO (1963). An equilibrium theory of insular zoogeography. Evolution, 17,373-387. |
[41] | McDonald DJ, Cowling RM, Boucher C (1996). Vegetation- environment relationships on a species-rich coastal mountain range in the fynbos biome (South Africa). Plant Ecology, 123,165-182. |
[42] | Nagamatsu D, Hirabuki Y, Mochida Y (2003). Influence of micro-landforms on forest structure, tree death and recruitment in a Japanese temperate mixed forest. Ecological Research, 18,533-547. |
[43] | Nagamatsu D, Miura O (1997). Soil disturbance regime in relation to micro-scale landforms and its effects on vegetation structure in a hilly area in Japan. Plant Ecology, 133,191-200. |
[44] | Nakamura F, Yajima T, Kikuchi S (1997). Structure and composition of riparian forests with special reference to geomorphic site conditions along the Tokachi River, northern Japan. Plant Ecology, 133,209-219. |
[45] | Nippert J, Knapp AK, Briggs JM (2006). Intra-annual rainfall variability and grassland productivity: Can the past predict the future? Plant Ecology, 184,65-74. |
[46] | Niu JM (牛建明) (2000). Relationship between main vegetation types and climatic factors in Inner Mongolia. Chinese Journal of Applied Ecology (应用生态学报), 11,47-52. (in Chinese with English abstract) |
[47] | Ostendorf B, Hilbert DW, Hopkins MS (2001). The effect of climate change on tropical rainforest vegetation pattern. Ecological Modelling, 145,211-224. |
[48] | Parker AJ (1982). The topographic relative moisture index: an approach to soil-moisture assessment in mountain terrain. Physical Geography, 3,160-168. |
[49] | Pe’er G, Heinz SK, Frank K (2006). Connectivity in heterogeneous landscapes: analyzing the effect of topography. Landscape Ecology, 21,47-61. |
[50] | Pepper DA, del Grosso SJ, McMurtrie RE, Parton WJ (2005). Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising [CO 2], temperature and nitrogen input. Global Biogeochemical Cycles, 19. |
[51] | Reed RA, Peet RK, Palmer MW, White PS (1993). Scale dependence of vegetation-environment correlations: a case study of a North Carolina piedmont woodland. Journal of Vegetation Science, 4,329-340. |
[52] | Rowe RJ (2009). Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah. Ecography, 32,411-422. |
[53] |
Sabatino M, Maceira N, Aizen MA (2010). Direct effects of habitat area on interaction diversity in pollination webs. Ecological Applications, 20,1491-1497.
URL PMID |
[54] | Sakai A, Ohsawa M (1994). Topographical pattern of the forest vegetation on a river basin in a warm-temperate hilly region, central Japan. Ecological Research, 9,269-280. |
[55] | Sala OE, Austin AT (2000). Methods of estimating aboveground net primary productivity. In: Sala OE, Jackson RB, Mooney HA, Howarth RH eds. Methods in Ecosystem Science. Springer, New York. |
[56] | Sala OE, Lauenroth WK, Parton WJ (1992). Long-term soil water dynamics in the shortgrass steppe. Ecology, 73,1175-1181. |
[57] |
Schulze ED, Mooney HA, Sala OE, Jobbagy E, Buchmann N, Bauer G, Canadell J, Jackson RB, Loreti J, Oesterheld M, Ehleringer JR (1996). Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia, 108,503-511.
URL PMID |
[58] | Shen ZH (沈泽昊), Zhang XS (张新时), Jin YX (金义兴) (2000). Gradient analysis of the influence of mountain topography on vegetation pattern. Acta Phytoecologica Sinica (植物生态学报), 24,430-435. (in Chinese with English abstract) |
[59] | Sieben EJJ, Mucina L, Boucher C (2009). Scaling hierarchy of factors controlling riparian vegetation patterns of the Fynbos Biome at the Western Cape, South Africa. Journal of Vegetation Science, 20,17-26. |
[60] | Song YC (宋永昌) (2001). Vegetation Ecology (植被生态学). East China Normal University, Shanghai. (in Chinese) |
[61] | Tamura T (1987). Landform-soil features of the humid temperate hills. Pedologist, 31,135-146. |
[62] |
Tatian M, Arzani H, Reihan MK, Bahmanyar MA, Jalilvand H (2010). Effect of soil and physiographic factors on ecological plant groups in the eastern Elborz mountain rangeland of Iran. Grassland Science, 56,77-86.
DOI URL PMID |
[63] | Ter Braak CJF (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67,1167-1179. |
[64] | Ter Braak CJF (1989). CANOCO—an extension of DECO- RANA to analyze species-environment relationships. Hydrobiologia, 184,169-170. |
[65] | Ter Braak CJF (1994). Canonical community ordination. Part I. Basic theory and linear methods. Ecoscience, 1,127-140. |
[66] | Tilman D (1999). The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80,1455-1474. |
[67] | Tüxen R (1973). Vorschlag zur Aufnahme von Gesellschaftskomplexen in potentiell natürlichen Vegetationsgebieten. Acta Botanica Academiae Scientiarum Hungaricae, 19,379-384. |
[68] | Wassie A, Sterck FJ, Bongers F (2010). Species and structural diversity of church forests in a fragmented Ethiopian Highland landscape. Journal of Vegetation Science, 21,938-948. |
[69] | Weltzin JF, Loik ME, Schwinning S, Williams DG, Fay PA, Haddad BM, Harte J, Huxman TE, Knapp AK, Lin GH, Pockman WT, Shaw MR, Small EE, Smith MD, Smith SD, Tissue DT, Zak JC (2003). Assessing the response of terrestrial ecosystems to potential changes in precipitation. BioScience, 53,941-952. |
[70] | Whittaker RH, Niering WA (1975). Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient. Ecology, 56,771-790. |
[71] | Wu DQ (吴大千), Liu J (刘建), Wang W (王炜), Ding WJ (丁文娟), Wang RQ (王仁卿) (2009). Multiscale analysis of vegetation index and topographic variables in the Yellow River Delta of China. Chinese Journal of Plant Ecology (植物生态学报), 33,237-245. (in Chinese with English abstract) |
[72] | Xie WB (谢文波) (2009). Studies on the Pattern of Earth Surface Wind Erosion and Aeolian and Environmental Effects in the Desert Steppe (荒漠草原地表蚀积格局及其环境效应的研究). Master dissertation, Inner Mongolia University, Hohhot. (in Chinese with English abstract) |
[73] | Yang YC (杨永川), Da LJ (达良俊) (2006). A brief review of studies on differentiation of vegetation pattern along a topographic gradient in hilly regions. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30,504-513. (in Chinese with English abstract) |
[74] | Yang YC (杨永川), Da LJ (达良俊), You WH (由文辉) (2005). Vegetation structure in relation to micro-landform in Tiantong National Forest Park, Zhejiang, China. Acta Ecologica Sinica (生态学报), 25,2830-2840. (in Chinese with English abstract) |
[75] | Yu L, Cao MK, Li KR (2006). Climate-induced changes in the vegetation pattern of China in the 21st century. Ecological Research, 21,912-919. |
[76] | Zelený D, Li CF, Chytrý M (2010). Pattern of local plant species richness along a gradient of landscape topographical heterogeneity: result of spatial mass effect or environmental shift? Ecography, 33,578-589. |
[77] | Zhang JT (张金屯) (2004). Quantitative Ecology (数量生态学). Science Press, Beijing. (in Chinese) |
[78] | Zhang M (张谧), Xiong GM (熊高明), Chen ZG (陈志刚), Fan DY (樊大勇), Xie ZQ (谢宗强) (2004). The topography heterogeneity of Fagus engleriana- Cyclobalanopsis oxyodon community in Shennongjia region. Acta Ecologica Sinica (生态学报), 24,2686-2692. (in Chinese with English abstract) |
[79] | Zhang XL (张学礼), Hu ZQ (胡振琪), Chu SL (初士立) (2005). Methods for measuring soil water content: a review. Chinese Journal of Soil Science (土壤通报), 36,118-123. (in Chinese with English abstract) |
[80] | Zhu TC (祝廷成), Zhao YT (赵毓棠) (1965). Vegetation complex in Northeast grassland. Journal of Northeast Normal University (吉林师大学报), (2),87-102. (in Chinese with English abstract) |
[81] | Zou BJ (邹豹君) (1985). Principles of Little Geomorphology(小地貎学原理). The Commercial Press, Beijing. (in Chinese) |
[1] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[2] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[3] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[4] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[5] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[6] | 刘沛荣, 同小娟, 孟平, 张劲松, 张静茹, 于裴洋, 周宇. 散射辐射对中国东部典型人工林总初级生产力的影响[J]. 植物生态学报, 2022, 46(8): 904-918. |
[7] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
[8] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[9] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[10] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[11] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[12] | 汲玉河, 周广胜, 王树东, 王丽霞, 周梦子. 2000-2019年秦岭地区植被生态质量演变特征及 驱动力分析[J]. 植物生态学报, 2021, 45(6): 617-625. |
[13] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[14] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[15] | 哈努拉•塔斯肯, 蔡慧颖, 金光泽. 树冠结构对典型阔叶红松林生产力的影响[J]. 植物生态学报, 2021, 45(1): 38-50. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19