植物生态学报 ›› 2009, Vol. 33 ›› Issue (4): 764-771.DOI: 10.3773/j.issn.1005-264x.2009.04.015
收稿日期:
2008-12-15
修回日期:
2009-03-23
出版日期:
2009-12-15
发布日期:
2009-07-30
通讯作者:
王孟本
作者简介:
*(mbwang@sxu.edu.cn)基金资助:
XUN Jun-Jie, LI Jun-Ying, CHEN Jian-Wen, SHI Jian-Wei, WANG Meng-Ben*()
Received:
2008-12-15
Revised:
2009-03-23
Online:
2009-12-15
Published:
2009-07-30
Contact:
WANG Meng-Ben
摘要:
以晋西北黄土高原区柠条(Caragana korshinskii)幼龄人工林为研究对象, 应用微根管技术(Minirhizotron technique)对林地100 cm土层范围的柠条细根生长动态进行了观测。以2007年生长季(5~9月)的根长密度(RLD, mm·cm-3)数据为基础, 对柠条细根现存量(RLDst, mm·cm-3)及其与环境因子(≥10 ℃积温、同期土壤积温、积降雨量和土壤水分等)的关系作了研究。结果表明, 40~90 cm土层是柠条细根的主要分布区和生长活跃区, 其细根占细根总量的59.7%。柠条细根现存量的季节变化特征为: 5月至9月上旬RLDst持续增加, 9月下旬RLDst略有降低。柠条细根现存量季节变化与≥10 ℃积温、同期土壤积温和积降雨量均存在极显著正相关关系。
荀俊杰, 李俊英, 陈建文, 史建伟, 王孟本. 幼龄柠条细根现存量与环境因子的关系. 植物生态学报, 2009, 33(4): 764-771. DOI: 10.3773/j.issn.1005-264x.2009.04.015
XUN Jun-Jie, LI Jun-Ying, CHEN Jian-Wen, SHI Jian-Wei, WANG Meng-Ben. RELATIONSHIPS OF FINE ROOT STANDING LENGTH OF CARAGANA KORSHINSKII SEEDLINGS WITH ENVIRONMENTAL FACTORS. Chinese Journal of Plant Ecology, 2009, 33(4): 764-771. DOI: 10.3773/j.issn.1005-264x.2009.04.015
图1 2007年生长季各测定期幼龄柠条细根现存量(RLDst)的垂直分布 a. 5月26日 May 26 b. 7月4日 Jul. 4 c. 7月26日 Jul. 26 d. 8月12日 Aug. 12 e. 9月5日 Sept. 5 f. 9月23日 Sept. 23
Fig. 1 The vertical distributions of fine root standing length (RLDst) of Caragana korshinskii seedlings during the growing season in 2007
图2 2007年生长季幼龄柠条细根现存量(RLDst)、土壤温度和土壤水分的总体垂直变化情形
Fig. 2 The vertical changes of average fine root standing length (RLDst) of Caragana korshinskii seedlings, average soil water content and average soil temperature in the 100 cm soil profile during the growing season in 2007
图3 林地10个土层幼龄柠条细现存量(RLDst)的季节动态 (2007年5月~9月) a, b, c, d, e, f: 同图1 See Fig.1
Fig. 3 The seasonal dynamics of fine root standing length (RLDst) of Caragana korshinskii seedlings in each soil layer in a 5-year old plantation (May to Sept., 2007)
图4 幼龄柠条细根现存量(RLDst)与≥10 ℃积温及其同期土壤积温和积降水量的季节动态(2007年5月~9月) a, b, c, d, e, f: 同图1 See Fig.1
Fig. 4 The seasonal dynamics of average fine root standing length (RLDst) of Caragana korshinskii seedlings, ≥10 ℃accumulated air temperature, accumulated soil temperature and accumulated precipitation (May to Sept., 2007)
[1] | Alamusa (阿拉木萨), Jiang DM (蒋德明), Pei TF (裴铁璠) (2003). Relationship between root system distribution and soil moisture of artificial Caragana microphylla vegetation in sandy land. Journal of Soil and Water Conservation (水土保持学报), 17(3), 78-81. (in Chinese with English abstract) |
[2] | Bai WM (白文明), Cheng WX (程维信), Li LH (李凌浩) (2005). Applications of minirhizotron techniques to root ecology research. Acta Ecologica Sinica (生态学报) , 25, 3076-3081. (in Chinese with English abstract) |
[3] |
Burke MK, Raynal DJ (1994). Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystems. Plant and Soil, 162, 135-146.
DOI URL |
[4] | Craine J, Tremmel D (1995). Improvements to the minirhizotron system. Bulletin of the Ecological Society of America, 76, 234-235. |
[5] |
Dhyani SK, Narain P, Singh RK (1990). Studies on root distribution of five multipurpose tree species in Doon Valley, India. Agroforestry Systems, 12, 149-161.
DOI URL |
[6] | Eissenstat DM, Yanai RD (1997). The ecology of root life-span. Advances in Ecological Research, 27, 1-60. |
[7] | Fahey TJ, Hughes JW, Pu M (1988). Root decomposition and nutrient flux following whole tree harvest of northern hardwood forest. Forestry Science, 34, 744-768. |
[8] |
Gordon WS, Jackson RB (2000). Nutrient concentrations in fine roots. Ecology, 81, 275-280.
DOI URL |
[9] | Harris WF, Kinerson RS, Edwards NT (1977). Comparison of belowground biomass in natural deciduous forests and loblolly pine plantations. Pedobiologia, 17, 369-381. |
[10] |
Hendrick RL, Pregitzer KS (1992). The demography of fine roots in a northern hardwood forest. Ecology, 73, 1094-1104.
DOI URL |
[11] | Itoh S (1985). In situ measurement of rooting density by micro-rhizotrons. Soil Science and Plant Nutrition, 361, 59-61. |
[12] | Jia L (贾丽) (2001). Research progress of Caragana. Plant Research (植物研究), 21, 515-518. (in Chinese with English abstract) |
[13] | Johnson MG, Tingey DT, Philips DL, Strom MJ (2001). Advancing fine root research with minirhizotrons. Environmental Botany, 45, 263-289. |
[14] |
Jonsson I, Fidjeland L, Maghembe JA (1988). The vertical distribution of fine roots of five tree species and maize in Morogoro, Tanzania. Agroforestry Systems, 6, 63-69.
DOI URL |
[15] | Joslin JD, Henderson GS (1987). Organic matter and nutrients associated with fine root turnover in a white oak stand. Forestry Science, 33, 330-346. |
[16] |
Kage H, Kochler M, Stutzel H (2004). Root growth and dry matter partitioning of cauliflower under drought stress conditions: measurement and stimulation. European Journal of Agronomy, 20, 379-394.
DOI URL |
[17] | Li JY (李俊英), Wang MB (王孟本), Shi JW (史建伟) (2007). Minirhizotron technique in measuring fine root indices: a review. Chinese Journal of Ecology (生态学杂志), 26, 1842-1848. (in Chinese with English abstract) |
[18] | Li LH (李凌浩), Lin P (林鹏), Xing XR (邢雪荣) (1998). Fine root biomass and production of Castanopsis eyrei forests in Wuyi Mountains. Chinese Journal of Applied Ecology (应用生态学报), 9, 337-340. (in Chinese with English abstract) |
[19] | Li P, Zhao Z, Li ZB (2004). Vertical root distribution characters of Robinia pseudoscia on the Loess Plateau in China. Journal of Forestry Research, 15(4), 87-92. |
[20] | Li XR (李新荣), Zhang JG (张景光), Liu LC (刘立超), Chen HS (陈怀顺), Shi QH (石庆辉 ) (2000). Plant diversity in the process of succession of artifical vegetation types and environment in an arid desert region of China. Acta Phytoecologica Sinica (植物生态学报), 24, 257-261. (in Chinese with English abstract) |
[21] |
Liedgens M, Richner W (2001). Relation between maize (Zea mays) leaf area and root density observed with minirhizotrons. European Journal of Agronomy, 15, 131-141.
DOI URL |
[22] |
Majdi H (1996). Root sampling methods-applications and limitations of minirhizotron technique. Plant and Soil, 185, 255-258.
DOI URL |
[23] | Mei L (梅莉), Wang ZQ (王政权), Cheng YH (程云环), Han YZ (韩有志), Zhao ZW (张卓文) (2008). The relationship between soil available nitrogen and fine root distribution of Larix Gmelinii and Fraxinus Mandshurica plantations. Journal of Huazhong Agricultural University (华中农业大学学报), 27, 117-121. (in Chinese with English abstract) |
[24] |
Niu XW (牛西午) (1998). Study on the biological characteristics of Caragana korshinskii. Acta Agriculturae Boreali-Sinica (华北农学报), 13, 122-129. (in Chinese with English abstract)
DOI URL |
[25] | Niu XW (牛西午) (1999). The distribution and description of Caragana Fabr. Acta Botanica Boreali- Occidenttalia Sinica (西北植物学报), 23, 107-133. (in Chinese with English abstract) |
[26] |
Persson H (1983). The distribution and productivity of fine roots in Boreal forests. Plant and Soil, 71, 87-101.
DOI URL |
[27] |
Ruess RW, Cleve KV, Yarie J (1996). Contributions of fine root production and turnover to the carbon and nitrogen cycling in taiga forests of the Alaskan interior. Canadian Journal of Forest Research, 26, 1326-1336.
DOI URL |
[28] |
Rytter RM, Hansson AC (1996). Seasonal amount, growth and depth distribution of fine roots in an irrigated and fertilized Salix viminalis L. plantation. Biomass and Bioenergy, 11(2), 129-137.
DOI URL |
[29] |
Sanders JL, Brown DA (1978). A new fiber optic technique for measuring root growth of soybeans under field conditions. Agronomy Journal, 70, 1073-1076.
DOI URL |
[30] |
Santantonio D, Grace JC (1987). Estimating fine root production and turnover from biomass and decomposition data: a compartment flow model. Canadian Journal of Forest Research, 17, 900-908.
DOI URL |
[31] | Shi JW (史建伟), Wang ZQ (王政权), Yu SQ (于水强), Quan XK (全先奎), Sun Y (孙玥), Jia SX (贾淑霞), Mei L (梅莉) (2006a). Estimating fine root production, mortality and turnover with Minirhizotrons in Larix gmelinii and Fraxinus mandshurica plantations. Journal of Plant Ecology (Chinese Version)(植物生态学报), 31, 333-342. (in Chinese with English abstract) |
[32] |
Shi JW (史建伟), Yu SQ (于水强), Yu LZ (于立忠), Han YZ (韩有志), Wang ZQ (王政权), Guo DL (郭大立) (2006b). Application of minirhizotron in fine root studies. Chinese Journal of Applied Ecology (应用生态学报), 17, 715-719. (in Chinese with English abstract)
URL PMID |
[33] |
Steele SJ, Gower ST, Vogel JG, Norman JM (1997). Root mass, net primary production and turnover in aspen, jack pine and black spruce forests in Saskatchewan and Manitoba, Canada. Tree Physiology, 17, 577-587.
DOI URL PMID |
[34] |
Taylor HM, Huck MG, Klepper B, Lund ZF (1970). Mea- surement of soil-grown roots in a rhizotron. Agronomy Journal, 62, 807-809.
DOI URL |
[35] |
Taylor HM, Upchurch DR, McMichael BL (1990). Application and limitation of rhizotron and minirhizotrons for root studies. Plant and Soil, 129, 29-35.
DOI URL |
[36] |
Teskey RO, Hinckley TM (1981). Influence of temperature and water potential on root growth of white oak. Physiologia Plantarum, 52, 363-369.
DOI URL |
[37] |
Toky OP, Bisht RP (1992). Observations on the rooting pattern of some agroforestry trees in an arid region of north-western India. Agroforestry Systems, 18, 245-263.
DOI URL |
[38] | Vogt KA, Grier CC, Vogt DJ (1986). Production, turnover, and nutrient dynamics of above and below ground detritus of world forests. Advances in Ecological Research, 15, 303-377. |
[39] | Yang LY (杨丽韫), Li WH (李文华) (2005). Fine root distribution and turnover in a broad-leaved and Korean pine climax forest of the Changbai Mountain in China. Journal of Beijing Forestry University (北京林业大学学报), 27(2), 1-5. (in Chinese with English abstract) |
[40] | Zhang XQ (张小全), Wu KH (吴可红) (2000). A review of methods for fine-root production and turnover of trees. Acta Ecologica Sinica (生态学报), 20, 815-883. (in Chinese with English abstract) |
[41] | Zhang ZS (张志山), Li XR (李新荣), Zhang JG (张景光), Wang XP (王新平), Zhao JL (赵金龙) , Chen YW (陈应武) (2006). Root growth dynamics of Caragana Korshinkii using minirhizotrons. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 457-464. (in Chinese with English abstract) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[4] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[5] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[6] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[7] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[8] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[9] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[10] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[11] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[12] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[13] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[14] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[15] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19