植物生态学报 ›› 2016, Vol. 40 ›› Issue (9): 871-882.DOI: 10.17521/cjpe.2016.0117
李晓红1,2, 徐健程1,3, 肖宜安1,2,*(), 胡文海1,2, 曹裕松1,2
收稿日期:
2016-03-30
接受日期:
2016-07-23
出版日期:
2016-09-10
发布日期:
2016-09-29
通讯作者:
肖宜安
基金资助:
Xiao-Hong LI1,2, Jian-Cheng XU1,3, Yi-An XIAO1,2,*(), Wen-Hai HU1,2, Yu-Song CAO1,2
Received:
2016-03-30
Accepted:
2016-07-23
Online:
2016-09-10
Published:
2016-09-29
Contact:
Yi-An XIAO
摘要:
气候变暖正持续影响着陆地生态系统的结构和功能, 一直是备受关注的热点问题。异速生长关系被认为是生物界中的一种普遍规律, 但我们对于气候变暖如何影响植物异速生长特征所知甚少。该文采用开顶式增温小室对野外自然生境进行模拟增温的方法, 研究了气候变暖对江西武功山亚高山草甸植物群落优势种野古草(Arundinella anomala)和芒(Miscanthus sinensis)异速生长特征的影响。结果表明: 野古草和芒的大多数形态指标之间均具有显著或极显著相关生长关系和异速生长关系, 气候变暖强化了两种禾本科植物大多数形态特征之间的异速生长, 或改变了其原有的生长关系。气候变暖还导致野古草和芒的基部茎粗与其高度、穗长间由原有的等速生长关系转变为异速生长关系; 野古草基部茎粗与小穗数间的异速生长随着温度升高而趋于增强。气候变暖导致野古草个体高度与其叶片长度的异速生长关系转变为等速生长关系, 而芒有相反表现。同时, 增温促进了野古草株高及叶鞘长的生长, 较强增温则改变了芒株高和叶鞘长之间的生长关系; 野古草和芒的叶片形态特征之间几乎都表现为类似的异速生长关系, 增温对其异速生长指数无显著影响。研究表明气候变暖对不同植物和植物构件具有差异性影响, 这种差异性往往与植物的适应性有关。
李晓红, 徐健程, 肖宜安, 胡文海, 曹裕松. 武功山亚高山草甸群落优势植物野古草和芒异速生长对气候变暖的响应. 植物生态学报, 2016, 40(9): 871-882. DOI: 10.17521/cjpe.2016.0117
Xiao-Hong LI, Jian-Cheng XU, Yi-An XIAO, Wen-Hai HU, Yu-Song CAO. Responses in allometric growth of two dominant species of subalpine meadow—Arundinella anomala and Miscanthus sinensis—to climate warming in Wugongshan Mountains, China. Chinese Journal of Plant Ecology, 2016, 40(9): 871-882. DOI: 10.17521/cjpe.2016.0117
图1 增温对野古草和芒茎粗与株高、穗长和小穗数关系的影响。CKI, 野古草对照; CKII, 芒对照; TDI, 野古草低增温; TDII, 芒低增温; TGI, 野古草高增温; TGII, 芒高增温。
Fig. 1 Effects of simulated warming on the relationships of stem diameter with plant height, spike length, and spikelet in Arundinella anomala and Miscanthus sinensis. CKI, control treatment of Arundinella anomala; CKII, control treatment of Miscanthus sinensis; TDI, low warming treatment of Arundinella anomala; TDII, low warming treatment of Miscanthus sinensis; TGI, high warming treatment of Arundinella anomala; TGII, high warming treatment of Miscanthus sinensis.
参数 Item | 处理物种 Species | n | R2 | 斜率检验 Shift A test | 95%置信区间 95% confidence intervals | 截距检验 Shift B test | 95%置信区间 95% confidence intervals | 共同斜率 Common slope | |
---|---|---|---|---|---|---|---|---|---|
F | p | ||||||||
茎粗-株高 D-H | CKI | 59 | 0.329** | 0.881b | 0.710, 1.093 | 2.534 | 2.399, 2.670 | 7.395 | 0.029 |
TDI | 59 | 0.198** | 1.208a | 0.955, 1.528 | 2.818 | 2.614, 3.023 | |||
TGI | 58 | 0.071* | 1.363a | 1.056, 1.759 | 2.949 | 2.702, 3.195 | |||
CKII | 60 | 0.419** | 0.934b | 0.766, 1.140 | 2.457 | 2.360, 2.554 | 9.911 | 0.002 | |
TDII | 46 | 0.300** | 1.514a | 1.177, 1.947 | 2.733 | 2.548, 2.917 | |||
TGII | 45 | 0.292** | 1.333a | 1.032, 1.723 | 2.776 | 2.609, 2.943 | |||
茎粗-穗长 D-E | CKI | 60 | 0.145** | 1.111c | 0.873, 1.413 | 1.958 | 1.768, 2.148 | 29.920 | 0.001 |
TDI | 60 | 0.166** | 1.566b | 1.234, 1.986 | 2.229 | 1.962, 2.496 | |||
TGI | 58 | 0.075* | 2.981a | 2.311, 3.846 | 3.166 | 2.627, 3.704 | |||
CKII | 60 | 0.269** | 1.526a | 1.221, 1.907 | 1.927a | 1.748, 2.105 | 4.938 | 0.090 | |
TDII | 46 | 0.232** | 1.987a | 1.527, 2.585 | 2.078b | 1.825, 2.332 | |||
TGII | 45 | 0.148** | 2.237a | 1.690, 2.960 | 2.251ab | 1.943, 2.560 | |||
茎粗-小穗数 D-R | CKI | 60 | 0.162** | 1.689b | 1.331, 2.143 | 2.450 | 2.164, 2.736 | 17.060 | 0.001 |
TDI | 60 | 0.076* | 2.076b | 1.617, 2.666 | 2.645 | 2.272, 3.018 | |||
TGI | 58 | 0.027 | 3.527a | 2.717, 4.580 | 3.584 | 2.930, 4.238 | |||
CKII | 60 | 0.177** | 1.853b | 1.463, 2.347 | 1.765 | 1.534, 1.995 | 8.858 | 0.015 | |
TDII | 46 | 0.381** | 3.074a | 2.426, 3.896 | 2.262 | 1.910, 2.614 | |||
TGII | 45 | 0.263** | 2.502ab | 1.927, 3.248 | 2.002 | 1.682, 2.322 |
表1 增温对野古草和芒植物形态与茎粗异速生长变化分析
Table 1 Analysis of the effects of simulated warming on the relationships of stem diameter with plant height, spike length, and spikelet in Arundinella anomala and Miscanthus sinensis
参数 Item | 处理物种 Species | n | R2 | 斜率检验 Shift A test | 95%置信区间 95% confidence intervals | 截距检验 Shift B test | 95%置信区间 95% confidence intervals | 共同斜率 Common slope | |
---|---|---|---|---|---|---|---|---|---|
F | p | ||||||||
茎粗-株高 D-H | CKI | 59 | 0.329** | 0.881b | 0.710, 1.093 | 2.534 | 2.399, 2.670 | 7.395 | 0.029 |
TDI | 59 | 0.198** | 1.208a | 0.955, 1.528 | 2.818 | 2.614, 3.023 | |||
TGI | 58 | 0.071* | 1.363a | 1.056, 1.759 | 2.949 | 2.702, 3.195 | |||
CKII | 60 | 0.419** | 0.934b | 0.766, 1.140 | 2.457 | 2.360, 2.554 | 9.911 | 0.002 | |
TDII | 46 | 0.300** | 1.514a | 1.177, 1.947 | 2.733 | 2.548, 2.917 | |||
TGII | 45 | 0.292** | 1.333a | 1.032, 1.723 | 2.776 | 2.609, 2.943 | |||
茎粗-穗长 D-E | CKI | 60 | 0.145** | 1.111c | 0.873, 1.413 | 1.958 | 1.768, 2.148 | 29.920 | 0.001 |
TDI | 60 | 0.166** | 1.566b | 1.234, 1.986 | 2.229 | 1.962, 2.496 | |||
TGI | 58 | 0.075* | 2.981a | 2.311, 3.846 | 3.166 | 2.627, 3.704 | |||
CKII | 60 | 0.269** | 1.526a | 1.221, 1.907 | 1.927a | 1.748, 2.105 | 4.938 | 0.090 | |
TDII | 46 | 0.232** | 1.987a | 1.527, 2.585 | 2.078b | 1.825, 2.332 | |||
TGII | 45 | 0.148** | 2.237a | 1.690, 2.960 | 2.251ab | 1.943, 2.560 | |||
茎粗-小穗数 D-R | CKI | 60 | 0.162** | 1.689b | 1.331, 2.143 | 2.450 | 2.164, 2.736 | 17.060 | 0.001 |
TDI | 60 | 0.076* | 2.076b | 1.617, 2.666 | 2.645 | 2.272, 3.018 | |||
TGI | 58 | 0.027 | 3.527a | 2.717, 4.580 | 3.584 | 2.930, 4.238 | |||
CKII | 60 | 0.177** | 1.853b | 1.463, 2.347 | 1.765 | 1.534, 1.995 | 8.858 | 0.015 | |
TDII | 46 | 0.381** | 3.074a | 2.426, 3.896 | 2.262 | 1.910, 2.614 | |||
TGII | 45 | 0.263** | 2.502ab | 1.927, 3.248 | 2.002 | 1.682, 2.322 |
图2 增温对野古草和芒株高与植物形态关系的影响。CKI, 野古草对照; CKII, 芒对照; TDI, 野古草低增温; TDII, 芒低增温; TGI, 野古草高增温; TGII, 芒高增温。
Fig. 2 Effects of simulated warming on the relationships between plant height and plant morphology in Arundinella anomala and Miscanthus sinensis. CKI, control treatment of Arundinella anomala; CKII, control treatment of Miscanthus sinensis; TDI, low warming treatment of Arundinella anomala; TDII, low warming treatment of Miscanthus sinensis; TGI, high warming treatment of Arundinella anomala; TGII, high warming treatment of Miscanthus sinensis.
参数 Item | 处理物种 Species | n | R2 | 斜率检验 Shift A test | 95%置信区间 95% confidence intervals | 截距检验 Shift B test | 95%置信区间 95% confidence intervals | 共轴漂移检验 Shift C test | 共同斜率 Common slope | |
---|---|---|---|---|---|---|---|---|---|---|
F | p | |||||||||
株高-节间距 H-P | CKI | 60 | 0.600** | 1.193a | 1.011, 1.408 | -1.064a | -1.445, -0.684 | bc | 0.058 | 0.980 |
TDI | 60 | 0.494** | 1.158a | 0.961, 1.395 | -1.047b | -1.473, -0.622 | ab | |||
TGI | 58 | 0.539** | 1.181a | 0.985, 1.414 | -1.108b | -1.537, -0.679 | a | |||
CKII | 60 | 0.607** | 1.359bc | 1.153, 1.601 | -1.474 | -1.918, -1.031 | 9.808 | 0.008 | ||
TDII | 46 | 0.276** | 1.586ab | 1.229, 2.048 | -1.963 | -2.790, -1.135 | ||||
TGII | 45 | 0.286** | 2.217a | 1.715, 2.867 | -3.535 | -4.768, -2.302 | ||||
株高-叶片长 H-L | CKI | 60 | 0.206** | 1.570a | 1.244, 1.980 | -1.547 | -2.253, -0.842 | 6.209 | 0.044 | |
TDI | 60 | 0.234** | 1.073b | 0.854, 1.348 | -0.593 | -1.079, -0.108 | ||||
TGI | 58 | 0.057 | 1.112b | 0.860, 1.439 | -0.633 | -1.212, -0.054 | ||||
CKII | 60 | 0.248** | 0.990b | 0.790, 1.241 | -0.444 | -0.891, 0.003 | 11.580 | 0.004 | ||
TDII | 46 | 0.403** | 0.892b | 0.707, 1.126 | -0.230 | -0.653, 0.193 | ||||
TGII | 45 | 0.496** | 1.499a | 1.207, 1.861 | -1.555 | -2.255, -0.855 | ||||
株高-叶鞘长 H-S | CKI | 60 | 0.274** | 1.100a | 0.881, 1.373 | -1.161a | -1.634, -0.688 | c | 4.664 | 0.113 |
TDI | 60 | 0.343** | 0.844a | 0.683, 1.042 | -0.698a | -1.051, -0.345 | b | |||
TGI | 57 | 0.042 | 1.175a | 0.904, 1.526 | -1.352a | -1.974, -0.73 | a | |||
CKII | 60 | 0.145** | 0.912b | 0.717, 1.161 | -0.773 | -1.213, -0.334 | 10.950 | 0.004 | ||
TDII | 46 | 0.171** | 0.753b | 0.573, 0.989 | -0.508 | -0.929, -0.088 | ||||
TGII | 45 | 0.715** | 1.241a | 1.054, 1.461 | -1.549 | -1.985, -1.113 | ||||
株高-叶面积 H-A | CKI | 60 | 0.265** | 1.938a | 1.550, 2.423 | -2.236a | -3.074, -1.398 | c | 2.986 | 0.231 |
TDI | 60 | 0.184** | 1.607a | 1.271, 2.034 | -1.621a | -2.371, -0.871 | b | |||
TGI | 58 | 0.040 | 1.449a | 1.118, 1.878 | -1.264a | -2.025, -0.504 | a | |||
CKII | 60 | 0.252** | 2.102a | 1.678, 2.634 | -2.706a | -3.653, -1.759 | c | 4.174 | 0.124 | |
TDII | 46 | 0.380** | 1.507a | 1.189, 1.910 | -1.484a | -2.212, -0.756 | b | |||
TGII | 45 | 0.627** | 1.885a | 1.564, 2.272 | -2.389b | -3.147, -1.632 | a |
表2 增温处理对野古草和芒植物形态与株高异速生长变化分析
Table 2 Analysis of the effects of simulated warming on the relationships between plant height and plant characteristics in Arundinella anomala and Miscanthus sinensis
参数 Item | 处理物种 Species | n | R2 | 斜率检验 Shift A test | 95%置信区间 95% confidence intervals | 截距检验 Shift B test | 95%置信区间 95% confidence intervals | 共轴漂移检验 Shift C test | 共同斜率 Common slope | |
---|---|---|---|---|---|---|---|---|---|---|
F | p | |||||||||
株高-节间距 H-P | CKI | 60 | 0.600** | 1.193a | 1.011, 1.408 | -1.064a | -1.445, -0.684 | bc | 0.058 | 0.980 |
TDI | 60 | 0.494** | 1.158a | 0.961, 1.395 | -1.047b | -1.473, -0.622 | ab | |||
TGI | 58 | 0.539** | 1.181a | 0.985, 1.414 | -1.108b | -1.537, -0.679 | a | |||
CKII | 60 | 0.607** | 1.359bc | 1.153, 1.601 | -1.474 | -1.918, -1.031 | 9.808 | 0.008 | ||
TDII | 46 | 0.276** | 1.586ab | 1.229, 2.048 | -1.963 | -2.790, -1.135 | ||||
TGII | 45 | 0.286** | 2.217a | 1.715, 2.867 | -3.535 | -4.768, -2.302 | ||||
株高-叶片长 H-L | CKI | 60 | 0.206** | 1.570a | 1.244, 1.980 | -1.547 | -2.253, -0.842 | 6.209 | 0.044 | |
TDI | 60 | 0.234** | 1.073b | 0.854, 1.348 | -0.593 | -1.079, -0.108 | ||||
TGI | 58 | 0.057 | 1.112b | 0.860, 1.439 | -0.633 | -1.212, -0.054 | ||||
CKII | 60 | 0.248** | 0.990b | 0.790, 1.241 | -0.444 | -0.891, 0.003 | 11.580 | 0.004 | ||
TDII | 46 | 0.403** | 0.892b | 0.707, 1.126 | -0.230 | -0.653, 0.193 | ||||
TGII | 45 | 0.496** | 1.499a | 1.207, 1.861 | -1.555 | -2.255, -0.855 | ||||
株高-叶鞘长 H-S | CKI | 60 | 0.274** | 1.100a | 0.881, 1.373 | -1.161a | -1.634, -0.688 | c | 4.664 | 0.113 |
TDI | 60 | 0.343** | 0.844a | 0.683, 1.042 | -0.698a | -1.051, -0.345 | b | |||
TGI | 57 | 0.042 | 1.175a | 0.904, 1.526 | -1.352a | -1.974, -0.73 | a | |||
CKII | 60 | 0.145** | 0.912b | 0.717, 1.161 | -0.773 | -1.213, -0.334 | 10.950 | 0.004 | ||
TDII | 46 | 0.171** | 0.753b | 0.573, 0.989 | -0.508 | -0.929, -0.088 | ||||
TGII | 45 | 0.715** | 1.241a | 1.054, 1.461 | -1.549 | -1.985, -1.113 | ||||
株高-叶面积 H-A | CKI | 60 | 0.265** | 1.938a | 1.550, 2.423 | -2.236a | -3.074, -1.398 | c | 2.986 | 0.231 |
TDI | 60 | 0.184** | 1.607a | 1.271, 2.034 | -1.621a | -2.371, -0.871 | b | |||
TGI | 58 | 0.040 | 1.449a | 1.118, 1.878 | -1.264a | -2.025, -0.504 | a | |||
CKII | 60 | 0.252** | 2.102a | 1.678, 2.634 | -2.706a | -3.653, -1.759 | c | 4.174 | 0.124 | |
TDII | 46 | 0.380** | 1.507a | 1.189, 1.910 | -1.484a | -2.212, -0.756 | b | |||
TGII | 45 | 0.627** | 1.885a | 1.564, 2.272 | -2.389b | -3.147, -1.632 | a |
图3 增温对野古草和芒植叶面积与叶片特征关系的影响。CKI, 野古草对照; CKII, 芒对照; TDI, 野古草低增温; TDII, 芒低增温; TGI, 野古草高增温; TGII, 芒高增温。
Fig. 3 Effects of simulated warming on the relationships between leaf area and leaf traits in Arundinella anomala and Miscanthus sinensis. CKI, control treatment of Arundinella anomala; CKII, control treatment of Miscanthus sinensis; TDI, low warming treatment of Arundinella anomala; TDII, low warming treatment of Miscanthus sinensis; TGI, high warming treatment of Arundinella anomala; TGII, high warming treatment of Miscanthus sinensis.
参数 Item | 处理物种 Species | n | R2 | 斜率检验 Shift A test | 95%置信区间 95% confidence intervals | 截距检验 Shift B test | 95%置信区间 95% confidence intervals | 共轴漂移检验Shift C test | 共同斜率 Common slope | |
---|---|---|---|---|---|---|---|---|---|---|
F | p | |||||||||
叶面积-叶片长 A-L | CKI | 60 | 0.687** | 0.810a | 0.700, 0.938 | 0.263a | 0.086, 0.441 | b | 4.106 | 0.131 |
TDI | 60 | 0.736** | 0.668a | 0.584, 0.764 | 0.489a | 0.350, 0.628 | a | |||
TGI | 58 | 0.805** | 0.768a | 0.682, 0.864 | 0.338a | 0.189, 0.486 | a | |||
CKII | 60 | 0.819** | 0.471c | 0.421, 0.526 | 0.830 | 0.753, 0.907 | 30.610 | 0.001 | ||
TLII | 46 | 0.729** | 0.592b | 0.506, 0.693 | 0.649 | 0.503, 0.796 | ||||
TGII | 44 | 0.907** | 0.728a | 0.662, 0.800 | 0.460 | 0.346, 0.575 | ||||
叶面积-叶片宽 A-W | CKI | 60 | 0.345** | 0.560a | 0.453, 0.691 | -0.810a | -0.988, -0.633 | b | 2.378 | 0.306 |
TDI | 60 | 0.608** | 0.548a | 0.465, 0.645 | -0.819b | -0.959, -0.680 | b | |||
TGI | 58 | 0.457** | 0.460a | 0.378, 0.560 | -0.710c | -0.859, -0.561 | a | |||
CKII | 60 | 0.892** | 0.608a | 0.557, 0.663 | -0.944 | -1.021, -0.867 | 19.410 | 0.001 | ||
TLII | 46 | 0.720** | 0.583a | 0.497, 0.684 | -0.921 | -1.067, -0.775 | ||||
TGII | 44 | 0.657** | 0.379b | 0.316, 0.454 | -0.636 | -0.750, -0.521 | ||||
叶面积-叶鞘长 A-S | CKI | 60 | 0.214** | 0.567b | 0.450, 0.715 | 0.108 | -0.090, 0.305 | 14.790 | 0.001 | |
TDI | 60 | 0.163** | 0.525b | 0.414, 0.666 | 0.153 | -0.043, 0.348 | ||||
TGI | 58 | 0.267** | 0.949a | 0.756, 1.191 | -0.545 | -0.901, -0.189 | ||||
CKII | 60 | 0.027 | 0.434bc | 0.336, 0.561 | 0.401 | 0.236, 0.567 | 6.745 | 0.032 | ||
TLII | 46 | 0.316** | 0.500ab | 0.390, 0.641 | 0.233 | 0.037, 0.429 | ||||
TGII | 45 | 0.545** | 0.658a | 0.536, 0.809 | 0.024 | -0.201, 0.249 |
表3 增温处理对野古草和芒植物形态与叶面积异速生长变化分析
Table 3 Analysis of of the effects of simulated warming on the relationships between leaf area and leaf characteristics in Arundinella anomala and Miscanthus sinensis
参数 Item | 处理物种 Species | n | R2 | 斜率检验 Shift A test | 95%置信区间 95% confidence intervals | 截距检验 Shift B test | 95%置信区间 95% confidence intervals | 共轴漂移检验Shift C test | 共同斜率 Common slope | |
---|---|---|---|---|---|---|---|---|---|---|
F | p | |||||||||
叶面积-叶片长 A-L | CKI | 60 | 0.687** | 0.810a | 0.700, 0.938 | 0.263a | 0.086, 0.441 | b | 4.106 | 0.131 |
TDI | 60 | 0.736** | 0.668a | 0.584, 0.764 | 0.489a | 0.350, 0.628 | a | |||
TGI | 58 | 0.805** | 0.768a | 0.682, 0.864 | 0.338a | 0.189, 0.486 | a | |||
CKII | 60 | 0.819** | 0.471c | 0.421, 0.526 | 0.830 | 0.753, 0.907 | 30.610 | 0.001 | ||
TLII | 46 | 0.729** | 0.592b | 0.506, 0.693 | 0.649 | 0.503, 0.796 | ||||
TGII | 44 | 0.907** | 0.728a | 0.662, 0.800 | 0.460 | 0.346, 0.575 | ||||
叶面积-叶片宽 A-W | CKI | 60 | 0.345** | 0.560a | 0.453, 0.691 | -0.810a | -0.988, -0.633 | b | 2.378 | 0.306 |
TDI | 60 | 0.608** | 0.548a | 0.465, 0.645 | -0.819b | -0.959, -0.680 | b | |||
TGI | 58 | 0.457** | 0.460a | 0.378, 0.560 | -0.710c | -0.859, -0.561 | a | |||
CKII | 60 | 0.892** | 0.608a | 0.557, 0.663 | -0.944 | -1.021, -0.867 | 19.410 | 0.001 | ||
TLII | 46 | 0.720** | 0.583a | 0.497, 0.684 | -0.921 | -1.067, -0.775 | ||||
TGII | 44 | 0.657** | 0.379b | 0.316, 0.454 | -0.636 | -0.750, -0.521 | ||||
叶面积-叶鞘长 A-S | CKI | 60 | 0.214** | 0.567b | 0.450, 0.715 | 0.108 | -0.090, 0.305 | 14.790 | 0.001 | |
TDI | 60 | 0.163** | 0.525b | 0.414, 0.666 | 0.153 | -0.043, 0.348 | ||||
TGI | 58 | 0.267** | 0.949a | 0.756, 1.191 | -0.545 | -0.901, -0.189 | ||||
CKII | 60 | 0.027 | 0.434bc | 0.336, 0.561 | 0.401 | 0.236, 0.567 | 6.745 | 0.032 | ||
TLII | 46 | 0.316** | 0.500ab | 0.390, 0.641 | 0.233 | 0.037, 0.429 | ||||
TGII | 45 | 0.545** | 0.658a | 0.536, 0.809 | 0.024 | -0.201, 0.249 |
1 | Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013). Potential for evolutionary responses to climate change-evidence from tree populations.Global Change Biology, 19, 1645-1661. |
2 | Allen A, Pockman W, Restrepo C, Milne B (2008). Allometry, growth and population regulation of the desert shrub Larrea tridentata.Functional Ecology, 22, 197-204. |
3 | Bellard C, Bertelsmeier B, Leadley P, Thuiller W, Courchamp F (2012). Impacts of climate change on the future of biodiversity.Ecology Letters, 15, 365-377. |
4 | Chen JQ, Zhang R, Hou YC, Ma LN, Ding LM, Long RJ, Shang ZH (2013). Relationships between species diversity and C, N and P ecological stoichiometry in plant communities of sub-alpine meadow.Chinese Journal of Plant Ecology, 37, 979-987. (in Chinese with English abstract)[陈军强, 张蕊, 侯尧宸, 马丽娜, 丁路明, 龙瑞军, 尚占环 (2013). 亚高山草甸植物群落物种多样性与群落C、N、P生态化学计量的关系. 植物生态学报, 37, 979-987.] |
5 | Chen LM, Qiao LF, Zhang YC (2004). Ecological construction of National Forest Park of Wugong Mountain.Journal of Jiangsu Forestry Science & Technology, 31(5), 18-21. (in Chinese with English abstract)[陈亮明, 乔丽芳, 张毅川 (2004). 武功山国家森林公园的自然生态化规划设计实践. 江苏林业科技, 31(5), 18-21.] |
6 | Cook BI, Wolkovich EM, Parmesan C (2012). Divergent responses to spring and winter warming drive community level flowering trends.Proceedings of the National Academy of Sciences of the United States of America, 109, 9000-9005. |
7 | Coomes DA (2006). Challenges to the generality of WBE theory.Trends in Ecology & Evolution, 21, 593-596. |
8 | Dorji T, Totland Ø, Moe SR, Hopping KA, Pan J, Klein JA (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19, 459-472. |
9 | Eklöf JS, Alsterberg C, Havenhand JN, Sundbäck K, Wood HL, Gamfeldt L (2012). Experimental climate change weakens the insurance effect of biodiversity.Ecology Letters, 15, 864-872. |
10 | Fan Y, Tian M, Jing Q, Tian Z, Han H, Jiang D, Cao W, Dai T (2015). Winter night warming improves pre-anthesis crop growth and post-anthesis photosynthesis involved in grain yield of winter wheat (Triticum aestivum L.).Field Crops Research, 178, 100-108. |
11 | Farrior CE, Bohlman SA, Hubbell S, Pacala SW (2016). Dominance of the suppressed, power-law size structure in tropical forests.Science, 351, 155-157. |
12 | Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Penuelas J, Song Y, Vitasse Y, Zeng Z, Janssens IA (2015). Declining global warming effects on the phenology of spring leaf unfolding.Nature, 526, 104-107. |
13 | Gao BQ, Yuan ZQ, Wang BX, Gao H, Zhang R (2014). Effects of fertilization and clipping on species diversity, productivity and their relationship in subalpine meadow.Chinese Journal of Plant Ecology, 38, 417-424. (in Chinese with English abstract)[高本强, 袁自强, 王斌先, 高慧, 张荣 (2014). 施肥和刈割对亚高山草甸物种多样性与生产力及其关系的影响. 植物生态学报, 38, 417-424.] |
14 | Gao XM, Ma KP, Chen LZ, Li DQ (2002). The effects of tourism on species diversity of subalpine meadow in Dongling mountainous area, Beijing.Biodiversity Science, 10, 189-195. (in Chinese with English abstract)[高贤明, 马克平, 陈灵芝, 李迪强 (2002). 旅游对北京东灵山亚高山草甸物种多样性影响的初步研究. 生物多样性, 10, 189-195.] |
15 | Givnish TJ, Wong SC, Stuart-Williams H, Holloway-Phillips M, Farquhar GD (2014). Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia.Ecology, 95, 2991-3007. |
16 | Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001). Climate Change 2001, The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
17 | Huang XX, Jiang Y, Liu QR, Huang QR (2007). Relationship between habitats and communities of subalpine meadow on Mt. Xiaowutai, North China. Journal of Plant Ecology (Chinese Version), 31, 437-444. (in Chinese with English abstract)[黄晓霞, 江源, 刘全儒, 黄秋如 (2007). 小五台亚高山草甸与生境关系分析. 植物生态学报, 31, 437-444.] |
18 | Huang XX, Jiang Y, Liu QR, Huang QR, Dai QY (2003). The spatial pattern of biodiversity in subalpine meadow on Mt. Xiaowutai.Acta Geographica Sinica, 58, 186-192. (in Chinese with English abstract)[黄晓霞, 江源, 刘全儒, 黄秋如, 戴泉玉 (2003). 小五台山亚高山草甸生物多样性的空间格局. 地理学报, 58, 186-192.] |
19 | IPCC> (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007, The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
20 | Ji L, Gan YM, Luo YJ, Cheng P, Feng GY, Ma C (2011). Comparison between the vegetation characteristics of alpine and subalpine meadow with different degradation degrees in North-west of Sichuan Province. Pratacultural Science, 28, 1101-1105. (in Chinese with English abstract)[纪磊, 干友民, 罗元佳, 成平, 冯国英, 马超 (2011). 川西北不同退化程度高山草甸和亚高山草甸的植被特征. 草业科学, 28, 1101-1105.] |
21 | Li T (2010). Response Mechanism of Desert Plant Allomertic Exponents and Spatial Patterns to a Precipitation Gradient. PhD dissertation, Lanzhou University, Lanzhou. 60-61. (in Chinese with English abstract)[李涛 (2010). 荒漠植物异速生长指数及其空间格局适应降雨梯度变化的规律与机制研究. 博士论文, 兰州大学, 兰州. 60-61.] |
22 | Lines ER, Zavala MA, Purves DW, Coomes DA (2012). Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Global Ecology and Biogeography, 21, 1017-1028. |
23 | Liu ZG, Cai YL, Li K (2008). Studies on the leaf size-twig size spectrum of subtropical evergreen board-leaved woody species. Journal of Plant Ecology (Chinese Version), 32, 363-369. (in Chinese with English abstract)[刘志国, 蔡永立, 李恺 (2008). 亚热带常绿阔叶林植物叶-小枝的异速生长. 植物生态学报, 32, 363-369.] |
24 | Lü XM, Zheng D (2006). Impacts of global change on the alpine meadow ecosystem in the source region of the Yangtze River.Resources and Environment in the Yangtze Basin, 15, 603-607. (in Chinese with English abstract)[吕新苗, 郑度 (2006). 气候变化对长江源地区高寒草甸生态系统的影响. 长江流域与环境, 15, 603-607.] |
25 | Morin X, Roy J, Sonie L, Chuine I (2010). Changes in leaf phenology of three European oak species in response to experimental climate change.New Phytologist, 186, 900-910. |
26 | Niklas KJ (1993a). The scaling of plant height: A comparison among major plant clades and anatomical grades. Annals of Botany, 72, 165-172. |
27 | Niklas KJ (1993b). Influence of tissue density-specific mechanical properties on the scaling of plant height. Annals of Botany, 72, 173-179. |
28 | Niklas KJ, Enquist BJ (2001). Invariant scaling relationships for interspecific plant biomass production rates and body size.Proceedings of the National Academy of Sciences of the United States of America, 98, 2922-2927. |
29 | Niklas KJ, Enquist BJ (2002). Canonical rules for plant organ biomass partitioning and growth allocation.American Journal of Botany, 89, 812-819. |
30 | Norberg RA (1988). Theory of growth geometry of plants and self-thinning of plant populations: Geometric similarity, elastic similarity, and different growth modes of plant parts.The American Naturalist, 131, 220-256. |
31 | Oreskes N (2004). The scientific consensus on climate change.Science, 306, 1686. |
32 | Osunkoya OO, Omarali K, Amit N, Dayan J, Daud DS, Sheng TK (2007). Comparative height crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo.American Journal of Botany, 94, 1951-1962. |
33 | Piper FI, Fajardo A, Cavieres LA (2013). Simulated warming does not impair seedling survival and growth of Nothofagus pumilio in the southern Andes.Perspectives in Plant Ecology Evolution & Systematics, 15, 97-105. |
34 | Price CA, Enquist BJ, Savage VM (2007). A general model for allometric covariation in botanical form and function.Proceedings of the National Academy of Sciences of the United States of America, 104, 13204-13209. |
35 | Rammig A, Jonas T, Zimmermann NE, Rixen C (2010). Changes in alpine plant growth under future climate conditions.Biogeosciences, 7, 2013-2024. |
36 | Shi FS, Wu N, Luo P (2008). Effect of temperature enhancement on community structure and biomass of subalpine meadow in North western Sichuan.Acta Ecologica Sinica, 28, 5286-5293. (in Chinese with English abstract)[石福孙, 吴宁, 罗鹏 (2008). 川西北亚高山草甸植物群落结构及生物量对温度升高的响应. 生态学报, 28, 5286-5293.] |
37 | Subedi N, Sharma M (2013). Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada.Global Change Biology, 19, 505-516. |
38 | Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient, an invariant allometric scaling relationship.Annals of Botany, 97, 97-107. |
39 | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291. |
40 | Watson MA, Casper BB (1984). Morphogenetic constraints on patterns of carbon distribution in plants.Annual Review of Ecology and Systematics, 15, 233-258. |
41 | West GB, Brown JH, Enquist BJ (1999). A general model for the structure and allometry of plant vascular systems.Nature, 400, 664-667. |
42 | Wheeler HC, Høye TT, Schmidt NM, Svenning JC, Forch- hammer MC (2015). Phenological mismatch with abiotic conditions-implications for flowering in Arctic plants.Ecology, 96, 775-787. |
43 | Williams CM, Henry HAL, Sinclair BJ (2015). Cold truths, how winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90, 214-235. |
44 | Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G (2008). Towards an integrated framework for assessing the vulnerability of species to climate change.PLoS Biology, 6, 2621-2626. |
45 | Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra- Manriquez G, Martinez-Ramos M, Mazer SJ, Muller- Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ. (2007). Relationships among ecologically-important dimensions of plant trait variation in 7 neotropical forests.Annals of Botany, 99, 1003-1015. |
46 | Xie R, Tao Y, Chang SL (2015). Allometric relationship between modular morphology and biomass of four annuals in the Gurbantunggut Desert, China.Chinese Journal of Ecology, 34, 648-655. (in Chinese with English abstract)[谢然, 陶冶, 常顺利 (2015). 四种一年生荒漠植物构件形态与生物量间的异速生长关系. 生态学杂志, 34, 648-655.] |
47 | Yu H, Luedeling E, Xu J (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau.Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156. |
48 | Zhang GP, Zhang F, Ru WM (2008). Effects of disturbance by tourism on plant diversity in Lishan subalpine meadow, Shanxi Province.Acta Ecologica Sinica, 28, 407-415. (in Chinese with English abstract)[张桂萍, 张峰, 茹文明 (2008). 旅游干扰对历山亚高山草甸植物多样性的影响. 生态学报, 28, 407-415.] |
49 | Zhang WI, Xiao YA, Yan XH, Zhang SS, Huang HQ, Liu BB (2013). Effects of simulated warming on the growth and reproduction investment of invasive plantPlantago virginica. Chinese Journal of Ecology, 32, 2959-2965. (in Chinese with English abstract)[张万灵, 肖宜安, 闫小红, 张斯斯, 黄海裙, 刘保兵 (2013). 模拟增温对入侵植物北美车前生长及繁殖投资的影响. 生态学杂志, 32, 2959-2965.] |
50 | Zhao JZ, Liu W, Xu QM, Yang XL, Achun (2007a). Effects of simulated greenhouse on clonal growth of Kobresia humilis.Qinghai Prataculture, 16(4), 1-8. (in Chinese with English abstract)[赵建中, 刘伟, 许庆民, 杨秀丽, 阿春 (2007a). 模拟增温效应对矮嵩草草甸莎草科植物无性繁殖的影响. 青海草业, 16(4), 1-8.] |
51 | Zhao JZ, Liu W, Zhou HK, Liu HW, Xu QM (2007b). Influence of simulated warming effect on growth characteristic of Carex alrofusca.Journal of Gansu Agricultural university, 42(2), 84-90. (in Chinese with English abstract)[赵建中, 刘伟, 周华坤, 刘汉武, 许庆民 (2007b). 模拟增温效应对黑褐苔草(Carex alrofusca)生长特征的影响. 甘肃农业大学学报, 42(2), 84-90.] |
52 | Zwiers FW (2002). The 20-year forecast.Nature, 416, 690-691. |
[1] | 王广亚, 陈柄华, 黄雨晨, 金光泽, 刘志理. 着生位置对水曲柳小叶性状变异及性状间相关性的影响[J]. 植物生态学报, 2022, 46(6): 712-721. |
[2] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[3] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[4] | 于海英 杨莉琳 付素静 张志敏 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量 累积变化的响应 [J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[5] | 董楠, 唐明明, 崔文倩, 岳梦瑶, 刘洁, 黄玉杰. 不同根系分隔方式对栗和茶幼苗生长的影响[J]. 植物生态学报, 2022, 46(1): 62-73. |
[6] | 尹晓雷, 刘旭阳, 金强, 李先德, 林少颖, 阳祥, 王维奇, 张永勋. 不同管理模式对茶树碳氮磷含量及其生态化学计量比的影响[J]. 植物生态学报, 2021, 45(7): 749-759. |
[7] | 杨克彤, 常海龙, 陈国鹏, 俞筱押, 鲜骏仁. 兰州市主要绿化植物气孔性状特征[J]. 植物生态学报, 2021, 45(2): 187-196. |
[8] | 李雪莹, 朱文泉, 李培先, 谢志英, 赵涔良. 气候变暖背景下青藏高原草本植物物候变化空间换时间预测[J]. 植物生态学报, 2020, 44(7): 742-751. |
[9] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[10] | 夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉. 陆地生态系统过程对气候变暖的响应与适应[J]. 植物生态学报, 2020, 44(5): 494-514. |
[11] | 牛书丽, 陈卫楠. 全球变化与生态系统研究现状与展望[J]. 植物生态学报, 2020, 44(5): 449-460. |
[12] | 熊星烁, 蔡宏宇, 李耀琪, 马文红, 牛克昌, 陈迪马, 刘娜娜, 苏香燕, 景鹤影, 冯晓娟, 曾辉, 王志恒. 内蒙古典型草原植物叶片碳氮磷化学计量特征的季节动态[J]. 植物生态学报, 2020, 44(11): 1138-1153. |
[13] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[14] | 陈国鹏, 杨克彤, 王立, 王飞, 曹秀文, 陈林生. 甘肃南部7种高寒杜鹃生物量分配的异速生长关系[J]. 植物生态学报, 2020, 44(10): 1040-1049. |
[15] | 周天阳, NARAYAN Prasad Gaire, 廖礼彬, 郑莉莉, 王金牛, 孙建, 魏彦强, 谢雨, 吴彦. 青藏高原东缘两处高山树线交错带时空动态及其建群种的生态学特征[J]. 植物生态学报, 2018, 42(11): 1082-1093. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19