植物生态学报 ›› 2016, Vol. 40 ›› Issue (9): 958-968.DOI: 10.17521/cjpe.2015.0443
• 综述 • 上一篇
收稿日期:
2015-12-04
接受日期:
2016-07-23
出版日期:
2016-09-10
发布日期:
2016-09-29
通讯作者:
万贤崇
基金资助:
Zhi-Cheng CHEN, Xian-Chong WAN*()
Received:
2015-12-04
Accepted:
2016-07-23
Online:
2016-09-10
Published:
2016-09-29
Contact:
Xian-Chong WAN
摘要:
大规模虫害爆发可造成区域森林死亡, 近年的气候变化进一步增加了虫害的频度和危害程度。森林和林地植物死亡会导致植被生产力降低, 改变生态系统结构和功能, 使森林由一个净的碳汇转变为一个碳源。因此, 加深虫害对树木危害机制的认识有重要意义。虫害造成的叶损失(虫害叶损失)降低树木光合作用能力, 增加非结构性碳(NSC)消耗, 使得树木体内碳储备降低, NSC降低到一定程度会导致树木因碳饥饿而死亡。外部环境和树木自身的补偿性机制也会对这个过程产生正或负的影响。在近年气候变化背景下, 树木死亡在全球尺度上增多, 重新激起了人们对碳饥饿的重视, 碳饥饿被视为解释树木死亡的主要生理机制之一。该文介绍了碳饥饿的定义, 综述了虫害叶损失减少树木NSC储备与树木生长、死亡的关系, 以及树木虫害和叶损失与气候变化之间的关系, 并对今后的研究进行了展望。
陈志成, 万贤崇. 虫害叶损失造成的树木非结构性碳减少与树木生长、死亡的关系研究进展. 植物生态学报, 2016, 40(9): 958-968. DOI: 10.17521/cjpe.2015.0443
Zhi-Cheng CHEN, Xian-Chong WAN. The relationship between the reduction of nonstructural carbohydrate induced by defoliator and the growth and mortality of trees. Chinese Journal of Plant Ecology, 2016, 40(9): 958-968. DOI: 10.17521/cjpe.2015.0443
1 | Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009). Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought.Proceedings of the National Academy of Sciences of the United States of America, 106, 7063-7066. |
2 | Alcorn PJ, Bauhus J, Smith RGB, Thomas D, James R, Nicotra A (2008). Growth responses following green crown pruning in plantation-grown Eucalyptus pilularis and Eucalyptus cloeziana. Canadian Journal of Forest Research, 38, 770-781. |
3 | Allen CD, Breshears DD (1998). Drought-induced shift of a forest woodland ecotone: Rapid landscape response to climate variation. Proceedings of the National Academy of Sciences of the United States of America, 95, 14839-14842. |
4 | Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests.Forest Ecology and Management, 259, 660-684. |
5 | Anderegg WR, Callaway ES (2012). Infestation and hydraulic consequences of induced carbon starvation.Plant Physiology, 159, 1866-1874. |
6 | Anderegg WR, Hicke JA, Fisher RA, Allen CD, Aukema J, Bentz B, Hood S, Lichstein JW, Macalady AK, McDowell N, Pan Y, Raffa K, Sala A, Shaw JD, Stephenson NL, Tague C, Zeppel M (2015). Tree mortality from drought, insects, and their interactions in a changing climate.New Phytologist, 208, 674-683. |
7 | Anttonen S, Piispanen R, Ovaska J, Mutikainen P, Saranpaa P, Vapaavuori E (2002). Effects of defoliation on growth, biomass allocation, and wood properties of Betula pendula clones grown at different nutrient levels.Canadian Journal of Forest Research, 32, 498-508. |
8 | Atkinson RRL, Burrell MM, Rose KE, Osborne CP, Rees M (2014). The dynamics of recovery and growth: How defoliation affects stored resources? Proceedings of the Royal Society B—Biological Sciences, 281, 140-147. |
9 | Ayres MP, Lombardero MJ (2000). Assessing the consequences of global change for forest disturbances for herbivores and pathogens.The Total Science of the Environment, 262, 263-286. |
10 | Bonan GB (2008). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests.Science, 320, 1444-1449. |
11 | Bossel H (1986). Dynamics of forest dieback: Systems analysis and simulation.Ecological Modeling, 34, 259-288. |
12 | Breshears DD, Allen CD (2002). The importance of rapid, disturbance-induced losses in carbon management and sequestration.Global Ecology and Biogeography Letters, 11, 1-15. |
13 | Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, Floyd ML (2005). Regional vegetation die-off in response to global-change type drought.Proceedings of the National Academy of Sciences of the United States of America, 102, 15144-15148. |
14 | Bryant JP, Reichardt PB, Clausen TP, Werner RA (1993). Effects of mineral nutrition on delayed inducible resistance in Alaskan paper birch.Ecology, 74, 2072-2084. |
15 | Bucci SJ, Scholz FG, Goldstein G, Meinzer FC, Sternberg L, Da SL (2003). Dynamic changes in hydraulic conductivity in petioles of two savanna tree species: Factors and mechanisms contributing to the refilling of embolized vessels.Plant, Cell & Environment, 26, 1633-1645. |
16 | Canham C, Kobe R, Latty E, Chazdon R (1999). Interspecific and intraspecific variation in tree seedling survival: Effects of allocation to roots versus carbohydrate reserves.Oecologia, 121, 1-11. |
17 | Causton DR (1985). Biometrical, structural and physiological relationships among tree parts. In: Cannell MGR, Jackson JE eds. Tree as Crop Plants. Institute of Terrestrial Ecology, Huntington, UK. 137-159. |
18 | Chaves MM, Maroco JP, Pereira JS (2003). Understanding plant responses to drought—From genes to the whole plant. Functional Plant Biology, 30, 239-264. |
19 | Dickmann DI, Nguyen PV, Pregitzer KS (1996). Effects of irrigation and coppicing on above-ground growth, physiology, and fine-root dynamics of two field-grown hybrid poplar clones.Forest Ecology and Management, 80, 163-174. |
20 | Dormann CF, van der Wal R, Bakker JP (2000). Competition and herbivory during salt marsh succession: The importance of forb growth strategy.Journal of Ecology, 88, 571-583. |
21 | Dunn JP, Kimmerer T, Potter D (1987). Winter starch reserves of white oak as predictor of attack by the twolined chestnut borer, Agrilus bilineatus (Weber) (Coleoptera: Buprestidae).Oecologia, 74, 352-355. |
22 | Dunn JP, Lorio PL (1993). Modified water regimes affect photosynthesis, xylem water potential, cambial growth, and resistance of juvenile Pinustaeda L. to Dendroctonus frontalis (Coleoptera: Scolytidae).Environmental Entomology, 22, 948-957. |
23 | Eyles A, Pinkard EA, Mohammed C (2009). Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies.Tree Physiology, 29, 753-764. |
24 | Eyles A, Smith D, Pinkard EA, Smith L, Corkrey R, Elms S, Beadle C, Mohammed C (2011). Photosynthetic responses of fild-grown Pinus radiata trees to artificial and aphid-induced defoliation.Tree Physiology, 31, 592-603. |
25 | Field C, Mooney HA (1986). The photosynthesis-nitrogen relationship in wild plants. In: Givnish TJ ed. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, UK. 25-55. |
26 | Frost CJ, Hunter MD (2008). Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings.New Phytologist, 178, 835-845. |
27 | Galiano L, Martínez-Vilalta J, Lloret F (2011). Carbon reserves and canopy defoliation determine the recovery of Scots pine 4 yr after a drought episode.New Phytologist, 190, 750-759. |
28 | Gaylord ML, Kolb TE, Pockman WT, Plaut JA, Yepez EA, Macalady AK, Pangle RE, McDowell NG (2013). Drought predisposes piñon-juniper woodlands to insect attacks and mortality.New Phytologist, 198, 567-578. |
29 | Gieger T, Thomas FM (2002). Effects of defoliation and drought stress on biomass partitioning and water relations of Quercus robur and Quercus petraea.Basic and Applied Ecology, 3, 171-181. |
30 | Gleason S, Ares A (2004). Photosynthesis, carbohydrate storage and survival of a native and an introduced tree species in relation to light and defoliation.Tree Physiology, 24, 1087-1097. |
31 | Guérard N, Maillard P, Brechet C, Lieutier F, Dreyer E (2007). Do trees use reserve or newly assimilated carbon for their defense reactions? A 13C labeling approach with young Scots pines inoculated with a bark-beetle associated fungus (Ophiostoma brunneo ciliatum).Annals of Forest Science, 64, 601-608. |
32 | Handa T, Korner C, Hättenschwiler S (2005). A test of the treeline carbon limitation hypothesis by in situ CO2 enrichment and defoliation.Ecology, 86, 1288-1300. |
33 | Hart M, Hogg EH, Lieffers VJ (2000). Enhanced water relations of residual foliage following defoliation in Populus tremuloides.Canadian Journal of Botany, 78, 583-590. |
34 | Hicke JA, Logan JA, James P, Ojima DS (2006). Changing temperatures influence suitability for modeled mountain pine beetle (Dendroctonus ponderosae) outbreaks in the western United States.Journal of Geophysical Research Biogeosciences, 111, 81. |
35 | Hoch G, Richter A, Körner C (2003). Non-structural carbon compounds in temperate forest trees.Plant, Cell & Environment, 26, 1067-1081. |
36 | Hogg EH, Brandt JP, Kochtubajda B (2002). Growth and dieback of Aspen forests in northwestern Alberta, Canada, in relation to climate and insects.Canadian Journal of Forest Research, 32, 823-832. |
37 | Honkanen T, Haukioja E, Suomela J (1994). Effects of simulated defoliation and debudding on needle and shoot growth in Scots pine (Pinus sylvestris): Implications of plant source/sink relationships for plant-herbivore studies.Functional Ecology, 8, 631-639. |
38 | Hopmans P, Collett NC, Smith IW, Elms SR (2008). Growth and nutrition of Pinus radiata in response to fertilizer applied after thinning and interaction with defoliation associated with Essigella califomica.Forest Ecology and Management, 255, 2118-2128. |
39 | Huang ZL (2000). The interactions of population dynamics of Thalassodes quadraria and the plant community structure and climate factors in Dinghushan.Chinese Journal of Ecology, 19, 24-27.[黄忠良 (2000). 樟翠尺蛾种群动态与植物群落结构及气候因子的关系. 生态学杂志, 19, 24-27.] |
40 | Huberty AF, Denno RF (2004). Plant water stress and its consequences for herbivorous insects: A new synthesis.Ecology, 85, 1383-1398. |
41 | Huttunen L, Niemelä P, Peltola H, Heiska S, Rousi M, Kellomäki S (2007). Is a defoliated silver birch seedling able to overcompensate the growth under changing climate?Environmental and Experimental Botany, 60, 227-238. |
42 | Jacquet JS, Bosc A, O’Grady A, Jactel H (2014). Combined effects of defoliation and water stress on pine growth and non-structural carbohydrates.Tree Physiology, 34, 367-376 |
43 | Jactel H, Petit J, Desprez-Loustau ML, Delzon S, Piou D, Battisti A, Koricheva J (2012). Drought effects on damage by forest insects and pathogens: A meta-analysis.Global Change Biology, 18, 267-276. |
44 | Jordi W, Schapendonk A, Davelaar E, Stoopen GM, Pot CS, de Visser R, van Rhijn JHA, Gan S, Amasino RM (2000). Increased cytokinin levels in transgenic PSAG12-IPT tobacco plants have large direct and indirect effects on leaf senescence, photosynthesis and N partitioning.Plant, Cell & Environment, 23, 279-289. |
45 | Körner C (2003). Carbon limitation in trees.Journal of Ecology, 91, 4-17. |
46 | Kosola KR, Dickmann DI, Paul EA, Parry D (2001). Repeated insect defoliation effects on growth, nitrogen acquisition, carbohydrates, and root demography of poplars. Oecologia, 129, 65-74. |
47 | Krause SC, Raffa KF (1996). Differential growth and recovery rates following defoliation in related deciduous and evergreen trees.Trees, 10, 308-316. |
48 | Kurz WA, Stinson G, Rampley GJ, Dymond CC, Neilson ET (2008). Risk of natural disturbances makes future contribution of Canada’s forests to the global carbon cycle highly uncertain.Proceedings of the National Academy of Sciences of the United States of America, 105, 1551-1555. |
49 | Lacointe A, Deleens E, Ameglio T, Saint-joanis B, Lelarge C, Vandame M, Song GC, Daudet FA (2004). Testing the branch autonomy theory: A 13C/14C double-labelling experiment on differentially shaded branches.Plant, Cell & Environment, 27, 1159-1168. |
50 | Landhäusser SM, Lieffers VJ (2012). Defoliation increases risk of carbon starvation in root systems of mature aspen.Trees, 26, 653-661. |
51 | Lavigne MB, Little CHA, Major JE (2001). Increasing the sink:source balance enhances photosynthetic rate of 1-year-old balsam fir foliage by increasing allocation of mineral nutrients.Tree Physiology, 21, 417-426. |
52 | Lee H, Overdieck D, Jarvis PG (1998). Biomass, growth and carbon allocation. In: Jarvis PG ed. European Forests and Global Change: The Effects of Rising CO2 and Temperature. Cambridge University Press, Cambridge, UK. 126-191. |
53 | Li H, Hoch G, Körner C (2002). Source/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline.Trees, 16, 331-337. |
54 | Lindroth RL, Kinney KK, Platz CL (1993). Responses of deciduous trees to elevated atmospheric CO2: Productivity, phytochemistry, and insect performance.Ecology, 74, 763-777. |
55 | Lovett GM, Tobiessen P (1993). Carbon and nitrogen assimilation in red oaks (Quercus rubra L.) subject to defoliation and nitrogen stress.Tree Physiology, 12, 259-269. |
56 | MacLean SF (1983). Life cycles and the distribution of psyllids (Homoptera) in arctic and subarctic Alaska.Oikos, 40, 445-451. |
57 | Mäkipää R, Karjalainen T, Pussinen A, Kellomäki S (1999). Effects of climate change and nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone.Canadian Journal of Forest Research, 29, 1490-1501. |
58 | Marshall JD, Waring RH (1985). Predicting fine root production and turnover by monitoring root starch and soil temperature.Canadian Journal of Forest Research, 15, 791-800. |
59 | Maschinski J, Whitham TG (1989). The continuum of plant responses to herbivory: The influence of plant association, nutrient availability, and timing.The American Naturalist, 134, 1-19. |
60 | Mattson WJ, Haack RA (1987). The role of drought in outbreaks of plant-eating insects.BioScience, 37, 110-118. |
61 | May BM, Carlyle JC (2003). Effect of defoliation associated with Essigella californica on growth of mid-rotation Pinus radiata.Forest Ecology and Management, 183, 297-312. |
62 | McDowell N (2011). Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality.Plant Physiology, 155, 1051-1059. |
63 | McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?New Phytologist, 178, 719-739. |
64 | McDowell N, Sevanto S (2010). The mechanisms of carbon starvation: How, when, or does it even occur at all?New Phytologist, 186, 264-266. |
65 | Mediene S, Jordan MO, Pages L, Lebot J, Adamowicz S (2002). The influence of severe shoot pruning on growth, carbon and nitrogen status in young peach trees (Prunus persica).Tree Physiology, 22, 1289-1296. |
66 | Millard P, Sommerkorn M, Grelet GA (2007). Environmental change and carbon limitation in trees: A biochemical, ecophysiological and ecosystem appraisal.New Phytologist, 175, 11-28. |
67 | Mooney HA, Gulmon SL (1982). Constraints on leaf structure and function in reference to herbivory.BioScience, 32, 198-205. |
68 | Mueller-Dumbois D (1987). Natural dieback in forests.Bioscience, 37, 575-583. |
69 | Nambiar EKS, Fife DN (1991). Nutrient retranslocation in temperate conifers.Tree Physiology, 9, 185-207. |
70 | Parker J, Patton RL (1975). Effects of drought and defoliation on some metabolites in roots of black oak seedlings.Canadian Journal of Forest Research, 5, 457-463. |
71 | Petit G, Anfodillo T, Carraro V, Grani F, Carrer M (2011). Hydraulic constraints limit height growth in trees at high altitude.New Phytologist, 189, 241-252. |
72 | Pinkard EA, Battaglia M, Mohammed C (2007). Defoliation and nitrogen effects on photosynthesis and growth of Eucalyptus globulus.Tree Physiology, 27, 1053-1063. |
73 | Pinkard EA, Mohammed C, Beadle CL, Hall MR, Worledge D, Mollon A (2004). Growth responses, physiology and decay associated with pruning plantation-grown Eucalyptus globulus Labill. and E. nitens (Deane and Maiden) Maiden. Forest Ecology and Management, 200, 263-277. |
74 | Piper FI, Fajardo A (2014). Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage.Journal of Ecology, 102, 1101-1111. |
75 | Quentin AG, Beadle CL, O’Grady AP, Pinkard EA (2011). Effects of partial defoliation on closed canopy Eucalyptus globulus Labilladiere: Growth, biomass allocation and carbohydrates. Forest Ecology and Management, 261, 695-702. |
76 | Quentin AG, O’Grady AP, Beadle CL, Mohammed C, Pinkard EA (2012). Interactive effects of water supply and defoliation on photosynthesis, plant water status and growth of Eucalyptus globulus Labill.Tree Physiology, 32, 958-967. |
77 | Quick WP, Chaves MM, Wendler R, David M, Rodrigues ML, Passaharinho JA, Pereira JS, Adcock MD, Leegood RC, Stitt M (1992). The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions.Plant, Cell & Environment, 15, 25-35. |
78 | Roitto M, Markkola A, Julkunen-Tiitto R, Sarjala T, Rautio P, Kuikka K, Tuomi J (2003). Defoliation-induced responses in peroxidases, phenolics, and polyamines in Scots pine (Pinus sylvestris L.) needles.Journal of Chemical Ecology, 29, 1905-1918. |
79 | Rose KE, Atkinson RL, Turnbull LA, Rees M (2009). The costs and benefits of fast living.Ecology Letters, 12, 1379-1384. |
80 | Sala A (2009). Lack of direct evidence for the carbon-starvation hypothesis to explain drought-induced mortality in trees.Proceedings of the National Academy of Sciences of the United States of America, 106(26), E68-E68. |
81 | Sala A, Hoch G (2009). Height-related growth declines in ponderosa pine are not due to carbon limitation.Plant, Cell & Environment, 32, 22-30. |
82 | Sala A, Piper F, Hoch G (2010). Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytologist, 186, 274-281. |
83 | Scholze M, Knorr W, Arnell NW, Prentice I (2006). A climate-change risk analysis for world ecosystems.Proceedings of the National Academy of Sciences of the United States of America, 103, 13116-13120. |
84 | Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang H, Leetmaa A, Lau N, Li C (2007). Model projections of an imminent transition to a more arid climate in southwestern North America.Science, 316, 1181-1184. |
85 | Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014). How do trees die? A test of the hydraulic failure and carbon starvation hypotheses.Plant, Cell & Environment, 37, 153-161. |
86 | Smith A, Stitt M (2007). Coordination of carbon supply and plant growth.Plant, Cell & Environment, 30, 1126-1149. |
87 | Srichuwong S, Jane JL (2007). Physicochemical properties of starch affected by molecular composition and structures: A review.Food Science and Technology, 16, 663-674. |
88 | Stamp N (2003). Out of the quagmire of plant defense hypotheses.Quarterly Review of Biology, 78, 23-55. |
89 | Sullivan JT, Sprague VG (1943). Composition of the roots and stubble of perennial ryegrass following partial defoliation.Plant Physiology, 18, 656-670. |
90 | Susiluoto S, Hilasvuori E, Berninger F (2010). Testing the growth limitation hypothesis for subarctic Scots pine.Journal of Ecology, 98, 1186-1195. |
91 | Sweet GB, Wareing PF (1966). Role of plant growth in regulating photosynthesis.Nature, 210, 77-79. |
92 | Tran JK, Ylioja T, Billings RF, Regniere J, Ayres MP (2007). Impact of minimum winter temperatures on the population dynamics of Dendroctonus frontalis.Ecological Applications, 17, 882-899. |
93 | Trumble JT, Kolodny-Hirsch DM, Ting IP (1993). Plant compensation for arthropod herbivory.Annual Review of Entomology, 38, 93-119. |
94 | Tschaplinski TJ, Blake TJ (1994). Carbohydrate mobilization following shoot defoliation and decapitation in hybrid poplar.Tree Physiology, 14, 141-151. |
95 | Tuomi J, Niemelä P, Haukioja E, Sirén S (1984). Nutrient stress: An explanation for plant antiherbivore responses to defoliation.Oceologia, 61, 208-210. |
96 | Tuomi J, Niemelä P, Siren S (1990). The panglossian paradigm and delayed inducible accumulation of foliar phenolics in moutain birch.Oikos, 59, 399-410. |
97 | Turnbull TL, Adams MA, Warren CR (2007). Increased photosynthesis following partial defoliation of field-grown Eucalyptus globulus seedlings is not caused by increased leaf nitrogen.Tree Physiology, 27, 1481-1492. |
98 | van der Heyden F, Stock W (1995). Nonstructural carbohydrate allocation following different frequencies of simulated browsing in 3 semiarid shrubs.Oecologia, 102, 238-245. |
99 | Vanderklein DW, Reich PB (1999). The effect of defoliation intensity and history on photosynthesis, growth and carbon reserves of two conifers with contrasting leaf lifespans and growth habits.New Phytologist, 144, 121-132. |
100 | Volenec JJ, Ourry A, Joern BC (1996). A role for nitrogen reserves in forage regrowth and stress tolerance.Physiologia Plantarum, 97, 185-193. |
101 | Wareing PF, Patrick J (1975). Source-sink relations and the partition of assimilates in the plant. In: Cooper EJ ed. Photosynthesis and Productivity in Different Environments. Cambridge University Press, Cambridge, UK. 481-499. |
102 | Wiley E, Huepenbecker S, Casper BB, Helliker BR (2013). The effects of defoliation on carbon allocation: Can carbon limitation reduce growth in favour of storage?Tree Physiology, 33, 1216-1228 |
103 | Willaume M, Pagès L (2006). How periodic growth pattern and source/sink relations affect growth in oak tree seedlings.Journal of Experimental Botany, 57, 815-826. |
104 | Wingler A, von Schaeven A, Leegood RC, Lea PJ, Quick WP, (1998). Regulation of leaf senescence by cytokinin, sugars, and light.Plant Physiology, 116, 329-335. |
105 | Woodruff DR, Meinzer FC (2011). Water stress, shoot growth and storage of non-structural carbohydrates along a tree height gradient in a tall conifer. Plant, Cell & Environment, 34, 1920-1930. |
106 | Zhou GY, Wei XH, Wu YP, Liu SG, Huang YH, Yan JH, Zhang DQ, Zhang QM, Liu JX, Meng Z, Wang CL, Chu GW, Liu SZ, Tang XL, Liu XD (2011). Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China.Global Change Biology, 17, 3736-3746. |
107 | Zwieniecki MA, Holbrook NM (2009). Confronting Maxwell’s demon: Biophysics of xylem embolism repair.Trends in Plant Science, 14, 530-534. |
[1] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[4] | 白皓然 侯盟 刘艳杰. 少花蒺藜草入侵与干旱对羊草草原生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[5] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[6] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[7] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[8] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[9] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[10] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[11] | 张雨鉴, 刘艳红. 林火干扰下的树木生理及主要影响因素[J]. 植物生态学报, 2024, 48(3): 269-286. |
[12] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[13] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[14] | 吴瀚, 白洁, 李均力, 古丽•加帕尔, 包安明. 新疆地区植被覆盖度时空变化及其影响因素分析[J]. 植物生态学报, 2024, 48(1): 41-55. |
[15] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19