Chin J Plant Ecol ›› 2005, Vol. 29 ›› Issue (2): 324-330.DOI: 10.17521/cjpe.2005.0042
• Original article • Previous Articles Next Articles
ZHANG Nai-Hua1, GAO Hui-Yuan1,*(), ZOU Qi
Received:
2003-12-02
Accepted:
2004-04-13
Online:
2005-12-02
Published:
2005-03-10
Contact:
GAO Hui-Yuan
ZHANG Nai-Hua, GAO Hui-Yuan, ZOU Qi. EFFECT OF CALCIUM ON ALLEVIATION OF DECREASED PHOTOSYNTHETIC ABILITY IN SALT-STRESSED MAIZE LEAVES[J]. Chin J Plant Ecol, 2005, 29(2): 324-330.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2005.0042
Fig.1 Effect of 2 mmol·L-1 and 8 mmol·L-1 CaCl2 on Fv/Fm in control and 150 mmol·L-1 NaCl stressed maize leaves (Data are means±SE of four independent measurements at room temperature (25 ℃) ) A:CK B: 150 mmol·L-1 NaCl C: 2 mmol·L-1 Ca2+ D: 150 mmol·L-1NaCl+2 mmol·L-1 Ca2+ E: 8 mmol·L-1 Ca2+ F: 150 mmol·L-1 NaCl+8 mmol·L-1 Ca2+
Fig.2 Effects of different CaCl2 concentration on stomatal conductance (Gs) and net photosynthetic rate (Pn) in control (a, c) and 150 mmol·L-1 NaCl stressed (b, d) maize leaves Measurements were made in 1 000 μmol·m-2·s-1 PFD、360 μmol·mol-1 CO2 and 25 ℃. Data are means ±SE of four independent measurements
Fig.3 Effect of different CaCl2 concentration on (ETR) m (Mehler reaction dependent electron transport rate) and (ETR) t (the total electron transport rate) in control (a, c) and 150 mmol·L-1 NaCl stressed (b, d) maize leaves Measurements were made in 1 000 μmol·m-2·s-1 PFD、360 μmol·mol-1 CO2 and 25 ℃. Data are means±SE of four independent measurementsA:CK B: 2 mmol·L-1 Ca2+ C: 8 mmol·L-1 Ca2+ D: 150 mmol·L-1NaCl E: 150 mmol·L-1NaCl+2 mmol·L-1 Ca2+ F: 150 mmol·L-1 NaCl+8 mmol·L-1 Ca2+
Fig.4 Effect of different CaCl2 concentration on NPQ in control (a) and 150 mmol·L-1 NaCl stressed maize leaves under 2 000 μmol·mol -1CO2, 20%O2 (◆) and 2 000 μmol·mol -1 CO2, 2% O2 (□) Data are means ±SE of four independent measurements at room temperature (25 ℃)
Fig.5 Effect of calcium on SOD activity (a) and APX activity (b) in 150 mmol·L-1 NaCl stressed maize leaves Data are means±SE of four independent measurements at room temperature (25 ℃) A:CK B: 150 mmol·L-1 NaCl C: 150 mmol·L-1 NaCl + 8 mmol·L-1 Ca2+
[1] | Allen R (1995). Dissectionofoxidativestresstoleranceusingtransgenicplants. PlantPhysiology, 107,1049-1054. |
[2] | Asada K (1994). Productionandactionofactiveoxygenspeciesinphotosynthetictissues.In:FoyerCH, MullineauPMeds.CausesofPhotooxidativeStressinPlantsandAmeliorationofDefenceSystem. CRCPress, Florida,77-104. |
[3] | Biechler K, Fock H (1996). EvidenceforthecontributionoftheMehler-peroxidasereactionindissipatingexcesselectronsindrought-stressedwheat. PlantPhysiology, 112,265-272. |
[4] |
Bj rkman O, Demmig-Adams B (1987). PhotonyieldofO2evolutionandchlorophyllfluorescencecharacteristicsat77Kamongvascularplantsofdiverseorigins. Planta, 170,489-504.
DOI URL |
[5] | Cramer GR LuchliA, Polito VS (1985). DisplacementofCa2+ byNa+ fromtheplasmalemmaofrootcells. Aprimaryresponsetosaltstress?PlantPhysiology, 79,207-211. |
[6] | Demmig-Adams B, Adam ⅢWW (1992). Photoprotectionandotherresponseofplanttohighlightstress. AnnualRe viewofPlantPhysiologyandPlantMolecularBiology, 43,599-626. |
[7] | Dieter P (1984). Calmodulinandcalmodulin-mediatedprogressinplants. Plant, CellandEnvironment, 7,371-380. |
[8] | Ehret DL, Redmann RE, Harvey BL, Cipywnyk A (1990). Salinity-inducedcalciumdeficienciesinwheatandbarley. PlantandSoil, 128,143-151. |
[9] | Foyer CH, Noctor G (2000). Oxygenprocessinginphotosyn thesis:regulationandsignaling. TheNewPhytologist, 146,359-388. |
[10] |
Francois LE, Donovan TJ, Maas EV (1991). Calciumdefi ciencyofartichokebudsinrelationtosalinity. HortScience, 26,549-553.
DOI URL |
[11] | Giannopolitis GN, Ries SK (1977). SuperoxidedismutaseⅠ.Occurrenceinhigherplants. PlantPhysiology, 59,309-315. |
[12] | Greenway H, Munns R (1980). Mechanismsofsalttoleranceinnon-halophytes. AnnualReviewofPlantPhysiology, 31,149-190. |
[13] | Gong M, Chen SN, Song YQ, Li ZG (1997). Effectsofcalci umandcalmodulinonintrinsicheattoleranceinrelationtoantioxidantsystemsinmaizeseedlings. AustralianJournalofPlantPhysiology, 24,371-379. |
[14] | Kent LM, Luchli A (1985). Germinationandseedlinggrowthofcotton:salinity-calciuminteractions. Plant, CellandEn vironment, 8,155-159. |
[15] | Lu CM, Zhang JH (1998). Effectsofwaterstressonphoto synthesis, chlorophyllfluorescenceand photoinhibitioninwheatplants. AustralianJournalofPlantPhysiology, 25,883-892. |
[16] |
Muranaka S, Shimizu K, Kato M (2002). Ionicandosmoticeffectsofsalinityonsingle-leafphotosynthesisintwowheatcultivarswithdifferentdroughttolerance. Photosynthetica, 40,201-207.
DOI URL |
[17] | Nakamura YK, Tanaka E Ohta, SakataM (1990). Protec tiveeffectsofexternalCa2+ onelongationandintracellularconcentrationofK+ inintactmungbeanrootsunderhighNaClstress. PlantandCellPhysiology, 31,815-821. |
[18] | Nakano Y, Asada K (1981). Hydrogenperoxideisscavengedbyascorbate-specific peroxidaseinspinachchloroplasts. PlantandCellPhysiology, 22,867-880. |
[19] | Simon PM, Bonzon HG, Marme D (1984). SubchloroplasticlocalizationofNANkinaseactivity:evidenceforaCa2+, calmodulin-dependentactivityattheenvelopeandforaCa2+,calmodulin-dependentactivityinthestromaofpeachloroplasts. FEBSLetters, 159,332-338. |
[20] | Weise C, Shi LB, Heber U (1998). OxygenreductionintheMehlerreactionisinsufficienttoprotectphotosystemsⅠandⅡofleavesagainst photoinactivation. PhysiologiaPlan tarum, 102,437-446. |
[21] | Willmer CM, Mansfield TA (1969). Acriticalexaminationoftheuseofdetachedepidermisinstudiesofstomatalphysiolo gy. TheNewPhytologist, 68,363-375. |
[22] | Xu DQ, Shen YK (1999). Lightstress:photoinhibitionofphotosynthesisinplantsundernaturalcobditions.In:Pes sarakliMed. HandbookofPlantandCropStress2ndedn. MarcelDekker, NewYork,483-497. |
[1] | CHENG Ke-Xin, DU Yao, LI Kai-Hang, WANG Hao-Chen, YANG Yan, JIN Yi, HE Xiao-Qing. Genetic mechanism of interaction between maize and phyllospheric microbiome [J]. Chin J Plant Ecol, 2024, 48(2): 215-228. |
[2] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[3] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[4] | LIU Hai-Yan, ZANG Sha-Sha, ZHANG Chun-Xia, ZUO Jin-Cheng, RUAN Zuo-Xi, WU Hong-Yan. Photochemical reaction of photosystem II in diatoms under phosphorus starvation and its response to high light intensity [J]. Chin J Plant Ecol, 2023, 47(12): 1718-1727. |
[5] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[6] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[7] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
[8] | WU Hong-Min, SHUANG Sheng-Pu, ZHANG Jin-Yan, CUN Zhu, MENG Zhen-Gui, LI Long-Gen, SHA Ben-Cai, CHEN Jun-Wen. Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity [J]. Chin J Plant Ecol, 2021, 45(4): 404-419. |
[9] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[10] | LI Jing, WANG Xin, WANG Zhen-Hua, WANG Bin, WANG Cheng-Zhang, DENG Mei-Feng, LIU Ling-Li. Effects of ozone and aerosol pollution on photosynthesis of poplar leaves [J]. Chin J Plant Ecol, 2020, 44(8): 854-863. |
[11] | LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu. Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming [J]. Chin J Plant Ecol, 2020, 44(12): 1203-1214. |
[12] | LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207. |
[13] | LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898. |
[14] | CHENG Han-Ting, LI Qin-Fen, LIU Jing-Kun, YAN Ting-Liang, ZHANG Qiao-Yan, WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plant Ecol, 2018, 42(5): 585-594. |
[15] | ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment [J]. Chin J Plant Ecol, 2018, 42(2): 229-239. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn