Chin J Plant Ecol ›› 2007, Vol. 31 ›› Issue (4): 658-664.DOI: 10.17521/cjpe.2007.0085
• Articles • Previous Articles Next Articles
ZHU Ya-Juan1,2, ALATEN Bao1,3,4, DONG Ming1, HUANG Zhen-Yin1,*()
Received:
2006-07-29
Accepted:
2007-11-05
Online:
2007-07-29
Published:
2007-07-30
Contact:
HUANG Zhen-Yin
ZHU Ya-Juan, ALATEN Bao, DONG Ming, HUANG Zhen-Yin. EFFECTS OF INCREASING WATER OR NUTRIENT SUPPLIES ON REPRODUCTION TRADE-OFFS IN THE NATURAL POPULATIONS OF CLONAL PLANT, HEDYSARUM LAEVE[J]. Chin J Plant Ecol, 2007, 31(4): 658-664.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2007.0085
总生物量 Total biomass | 繁殖 Reproduction | 有性繁殖 Sexual reproduction | 花 Flower 荚果 Fruit |
克隆繁殖 Clonal reproduction | 叶 Leaf 枝 Shoot 根茎 Rhizome | ||
生长 Growtd | 叶 Leaf 枝 Shoot 根茎 Rhizome |
Table 1 The index of biomass measured in the experiments (g)
总生物量 Total biomass | 繁殖 Reproduction | 有性繁殖 Sexual reproduction | 花 Flower 荚果 Fruit |
克隆繁殖 Clonal reproduction | 叶 Leaf 枝 Shoot 根茎 Rhizome | ||
生长 Growtd | 叶 Leaf 枝 Shoot 根茎 Rhizome |
Fig.1 Effects of increasing water supply on biomass (mean±SE) A: 繁殖、生长和总生物量Reproduction, growth and total biomass B: 有性繁殖Sexual reproduction (SR) C: 克隆繁殖Clonal reproduction (CR) D: 生长部分Growth traits of the Hedysarum laeve populations 根据Tukey's检验,各组之内由不同小写字母标记的值之间的差异是显著的(p<0.05)。在样方中,开花和结果的分株为有性繁殖分株,其枝、叶和根茎为生长部分的生物量,花和果实为有性繁殖部分的生物量;未开花的分株为克隆分株,其枝叶和根茎为克隆繁殖的生物量 In each group, bars sharing the same letters are not significantly different (p<0.05) according to Tukey's tests. The ramets with flower or fruit are considered as sexual ramets; their flower and fruit are the biomass of sexual reproduction, and their shoot, leaf and rhizome are the biomass of growth. The ramets without flower or fruit are considered as clonal ramets; their shoot, leaf and rhizome are the biomass of clonal reproduction在生物量的分配比例方面,和对照相比,增加水分对羊柴种群的繁殖,包括有性繁殖和克隆繁殖都产生了显著影响(p<0.05) (表2)。经过增加32和64 mm的水分处理之后,生物量对有性繁殖的分配比例显著减少 (p<0.05);对克隆繁殖的分配比例显著增加(p<0.05);对繁殖部分的总分配(包括有性和克隆繁殖)比例也显著增加 (p<0.05) (表2)。增加32和64 mm水分之后,生物量对花和荚果的分配比例显著减少(p<0.05) (图 2A)。增加水分之后,生物量对克隆分株的叶的分配比例没有显著差异;但是,与对照相比,增加32和64 mm的水分之后,生物量对克隆分株枝的分配显著增加(p<0.05);生物量对克隆分株根茎的分配显著减少(p<0.05) (图2B)。经过不同水平的水分处理之后,生物量对生长部分的叶、枝和根茎的分配比例没有显著差异 (图 2C)。
水分Water (mm) | 0 | 16 | 32 | 64 |
---|---|---|---|---|
有性繁殖Sexual reproduction | 3.40±0.52b | 2.50±0.66b | 1.00±0.32a | 1.20±0.20a |
克隆繁殖Clonal reproduction | 32.8±1.44a | 33.5±3.66ab | 36.8±2.12b | 39±2.62b |
总繁殖Total reproduction | 34.6±1.87a | 31.75±6.14a | 40±2.11b | 39.8±2.89b |
Table 2 Effects of increasing water supply on biomass allocation (%±SE) to reproduction of the Hedysarum laeve populations
水分Water (mm) | 0 | 16 | 32 | 64 |
---|---|---|---|---|
有性繁殖Sexual reproduction | 3.40±0.52b | 2.50±0.66b | 1.00±0.32a | 1.20±0.20a |
克隆繁殖Clonal reproduction | 32.8±1.44a | 33.5±3.66ab | 36.8±2.12b | 39±2.62b |
总繁殖Total reproduction | 34.6±1.87a | 31.75±6.14a | 40±2.11b | 39.8±2.89b |
Fig.2 Effects of increasing water supply on biomass allocation (mean±SE) A: 有性繁殖Sexual reproduction B: 克隆繁殖Clonal reproduction C: 生长部分Growth traits of the Hedysarum laeve populations 图注同图1 Notes see Fig. 1
Fig.3 Effects of increasing nutrient supply on the biomass (mean±SE) A: 繁殖、生长和总生物量Reproduction, growth and total biomass B: 有性繁殖Sexual reproduction (SR) C: 克隆繁殖Clonal reproduction (CR) D: 生长部分的生物量Growth of the Hedysarum laeve populations 图注同图1 Notes see Fig. 1
养分Nutrient (g) | 0 | 30 | 60 | 90 | 120 |
---|---|---|---|---|---|
有性繁殖Sexual reproduction | 3.4±1.0a | 3.6±0.8a | 3.6±0.8a | 3.2±0.8a | 5.0±1.1b |
克隆繁殖Clonal reproduction | 32.8±2.9b | 28.8±2.6b | 27.4±3.2b | 26.6±2.6b | 21.2±1.5a |
总繁殖Total reproduction | 36.2±1.9b | 34.2±2.5b | 30.8±2.9b | 31.6±2.6b | 26.2±2.0a |
Table 3 Effects of increasing nutrient supply on biomass allocation (%±SE) to reproduction of the Hedysarum laeve populations
养分Nutrient (g) | 0 | 30 | 60 | 90 | 120 |
---|---|---|---|---|---|
有性繁殖Sexual reproduction | 3.4±1.0a | 3.6±0.8a | 3.6±0.8a | 3.2±0.8a | 5.0±1.1b |
克隆繁殖Clonal reproduction | 32.8±2.9b | 28.8±2.6b | 27.4±3.2b | 26.6±2.6b | 21.2±1.5a |
总繁殖Total reproduction | 36.2±1.9b | 34.2±2.5b | 30.8±2.9b | 31.6±2.6b | 26.2±2.0a |
Fig.4 Effects of increasing nutrient supply on biomass allocation (mean±SE) A: 有性繁殖Sexual reproduction B: 克隆繁殖Clonal reproduction C: 生长部分 Growth of the Hedysarum laeve populations 图注同图1 Notes see Fig. 1
[1] |
Arizaga SA, Ezcurrra E (2002). Propagation mechanism in Agave macroacantha (Agavaceae), a tropical arid-land succulent rosette. American Journal of Botany, 89, 632-641.
DOI URL PMID |
[2] |
Bates JD, Svejcar T, Miller RF, Angell RA (2006). The effects of precipitation timing on sagebrush steppe vegetation. Journal of Arid Environments, 64, 670-697.
DOI URL |
[3] | Charpentier A, Stuefer JF (1999). Functional specialization of ramets in Scirpus maritimus: splitting the tasks of sexual reproduction, vegetative growth, and resource storage. Plant Ecology, 141, 129-136. |
[4] | Chen YF (陈玉福), Dong M (董鸣) (2000). Genet characters of Hedysarum leave and the character of its ramet population in different habitats in Mu Us sandland. Acta Phytoecologica Sinica (植物生态学报), 24, 40-45. (in Chinese with English abstract) |
[5] | Deng HY (邓红英) (2002). Plant functional types based on the response of dominant plants in Maowusu sand land to the change of simulated precipitation. Journal of Yunnan University (云南大学学报), 24, 75-80. (in Chinese with English abstract) |
[6] | Ericsson O 1997. Clonal life histories and the evolution of seed recruitment. In: Kroon H, Groenendael J eds. The Ecology and Evolution of Clonal Plants. Backbuys Publishers, Leiden, 211-216. |
[7] | Ge S (葛颂), Wang KQ (王可青), Dong M (董鸣) (1999). Genetic diversity and clonal structure in Hedysarum laeve in Mo Us sandland. Acta Botanica Sinica (植物学报), 41, 301-306. (in Chinese with English abstract) |
[8] |
Gillespie IG, Michael ME, Loik E (2004). Pulse events in Great Basin Desert shrublands: physiological responses of Artemisia tridentata and Purshia tridentata seedlings to increased summer precipitation. Journal of Arid Environments, 59, 41-57.
DOI URL |
[9] | He WM (何维明) (2002). Why does asexual generation in Sabina vulgaris population dominate in nature? Acta Phytoecologica Sinica (植物生态学报), 26, 235-238. (in Chinese with English abstract) |
[10] |
Kleumen M, Fischer M, Schmid B (2001). Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. Oikos, 94, 515-524.
DOI URL |
[11] |
Li RF, Zhang AS, Duan SS, Kang LF (2005). Patterns of reproductive allocation in Artemisia halodendron inhabiting two contrasting habitats. Acta Oecologia, 28, 57-64.
DOI URL |
[12] | Liu FH (刘凤红), Liu J (刘建), Dong M (董鸣) (2004). Spatial pattern of sandy vegetation and two dominant clonal semi-shrubs in the Ordos Plateau. Acta Ecologica Sinica (生态学报), 24, 2374-2381. (in Chinese with English abstract) |
[13] | Liu FH (刘凤红), Liu J (刘建), Dong M (董鸣) (2005). Response of biomass allocation to small-scale variation of vegetation coverage in dominant clonal semi-shrubs in the Mu Us Sandland. Acta Ecologica Sinica (生态学报), 24, 3415-3419. (in Chinese with English abstract) |
[14] | Liu ZH (刘智慧), Zhang MZ (张明珍) (1999). The ultrastructure orientation of ATP enzyme viability in Hedysarum laeve root nodule. Journal of Sichuan University (Natural Science Edition) (四川大学学报(自然科学版)), 36, 747-751. (in Chinese with English abstract) |
[15] | Ma YQ (马毓泉) (1989). Flora Intramongolica (内蒙古植物志). Tomus 3. Inner Mongolia People Press, Huhhot, 339. (in Chinese) |
[16] |
Mendoza A, Franco M (1998). Sexual reproduction and clonal growth in Reinhardtia gracilis (Palmae), an understory tropical palm. American Journal of Botany, 85, 521-527.
URL PMID |
[17] |
Ogle K, Reynolds JF (2004). Plant responses to precipitation in desert ecosystems: integrating functional types, pulses, thresholds, and delays. Oecologia, 141, 282-294.
DOI URL |
[18] |
Perkins SR, Owens MK (2003). Growth and biomass allocation of shrub and grass seedlings in response to predicted changes in precipitation seasonality. Plant Ecology, 168, 107-120.
DOI URL |
[19] |
Pino J, Sans FX, Masalles RM (2002). Size-dependent reproductive pattern and short-term reproductive cost in Rumex obtusifolius L. Acta Oecologica, 23, 321-328.
DOI URL |
[20] |
Prati D, Schmid B (2000). Genetic differentiation of life-history traits within populations of the clonal plant Ranunculus reptans. Oikos, 90, 442-456.
DOI URL |
[21] |
Reekie E (1998). An explanation for size-dependent reproductive allocation in Plantago major. Canadian Journal of Botany, 76, 43-50.
DOI URL |
[22] | Roels B, Donders S, Werger M, Dong M (2001). Relation of wind-induced sand displacement to plant biomass and plant sand-binding capacity. Acta Botanica Sinica (植物学报), 43, 979-982. |
[23] |
Ronsheim M, Bever J (2000). Genetic variation and evolutionary trade-offs for sexual and asexual reproductive modes in Allium vineale. American Journal of Botany, 87, 1769-1777.
URL PMID |
[24] |
Sakai S (1995). Optimal resource allocation to vegetative and sexual reproduction of a plant growing in a spatially varying environment. Journal of Theory Biology, 175, 271-282.
DOI URL |
[25] |
Sato T (2002). Size-dependent resource allocation among vegetative propagules and male and female functions in the forest herb Laportea bulbifera. Oikos, 96, 453-462.
DOI URL |
[26] |
Schwinning S, Starr BI, Ehleringer JR (2003). Dominant cold desert plants do not partition warm season precipitation by event size. Oecologia, 136, 252-260.
DOI URL PMID |
[27] |
Schwinning S, Starr BI, Ehleringer JR (2005). Summer and winter drought in a cold desert ecosystem (Colorado Plateau) part Ⅱ. effects on plant carbon assimilation and growth. Journal of Arid Environments, 61, 61-78.
DOI URL |
[28] | Shen WS (沈渭寿) (1998). Distribution patterns of three main air-seedling plant populations in Mu Us sandy land. Journal of Desert Research (中国沙漠), 18, 372-378. (in Chinese with English abstract) |
[29] | Sokal RR, Rohlf EJ (1995). Biometry. Freeman, San Francisco, CA. 887. |
[30] |
Takada T, Nakajima H (1996). The optimal allocation for seed reproduction and vegetative reproduction in perennial plants: an application to the density-dependent transition matrix model. Journal of Theory Biology, 182, 179-191.
DOI URL |
[31] |
Winkler E, Støcklin J (2002). Sexual and vegetative reproduction of Hieracium pilosella L. under competition and disturbance: a grid-based simulation model. Annals of Botany, 89, 525-536.
DOI URL PMID |
[32] | Xiao S (肖洒), Wang G (王刚), Li L (李良) (2003). Adjustment of Artemisia ordosica and Hedysarum laeve's allometric pattern and individual size to the intra-specific competition in Mu us sandland. Journal of Desert Research (中国沙漠), 23, 67-72. (in Chinese with English abstract) |
[33] | Zhang CY (张称意), Yang C (杨持), Dong M (董鸣) (2001). The clonal integration of photosynthates in the rhizomatous half shrub Hedysarum laeve. Acta Ecologica Sinica (生态学报), 21, 1986-1993. (in Chinese with English abstract) |
[34] | Zhang CY (张称意), Yu FH (于飞海), Dong M (董鸣) (2002). Effects of sand burial on the survival, growth and biomass allocation in semi-shrub Hedysarum laeve seedlings. Acta Botanica Sinica (植物学报), 44, 337-343. |
[35] | Zhang XS (张新时) (1994). Principles and optimal models for development of Maowusu Sandy Grassland. Acta Phytoecologica Sinica (植物生态学报). 18, 1-16. (in Chinese with English abstract) |
[36] | Zhong ZC (钟章成) (1995). The reproductive strategy of plant population. Chinese Journal of Ecology (生态学杂志), 14, 37-42. (in Chinese with English abstract) |
[1] | Wei ZHU ZHOU Ou SUN Yi-Ming Gulimire YILIHAMU WANG Ya-Fei YANG Hong-Qing Li-Ming JIA Ben-Ye XI. Dynamic niche partitioning in root water uptake of Populus tomentosa and Robinia pseudo-acacia in mixed forest [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[2] | 小宁 赵 晓楠 田 Li Xin Guang-De LI 有正 郭 Li-Ming JIA JIE DUAN Ben-Ye XI. Analysis of the applicability of Granier’s original equation for calculating the stem sap flux density — take Populus tomentosa as an example [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[3] | . A review of stable hydrogen and oxygen isotopic offset in plant water source research [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[4] | LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization [J]. Chin J Plant Ecol, 2022, 46(9): 1109-1124. |
[5] | WU Min, TIAN Yu, FAN Da-Yong, ZHANG Xiang-Xue. Hydraulic regulation of Populus tomentosa and Acer truncatum under drought stress [J]. Chin J Plant Ecol, 2022, 46(9): 1086-1097. |
[6] | FENG Yin-Cheng, WANG Yun-Qi, WANG Yu-Jie, WANG Kai, WANG Song-Nian, WANG Jie-Shuai. Water vapor fluxes and their relationship with environmental factors in a conifer-broadleaf mixed forest ecosystem in Jinyun Mountain, Chongqing, China [J]. Chin J Plant Ecol, 2022, 46(8): 890-903. |
[7] | WANG Jun-Qiang, LIU Bin, CHANG Feng, MA Zi-Jing, FAN Jia-Hui, HE Xiang-Ju, YOU Si-Xue, Aerziguli ABUDUREXITI, YANG Ying-Ke, SHEN Xin-Yan. Plant functional traits and ecological stoichiometric characteristics under water-salt gradient in the lakeshore zone of Bosten Lake [J]. Chin J Plant Ecol, 2022, 46(8): 961-970. |
[8] | SUN Cai-Li, QIU Mo-Sheng, HUANG Chao-Xiang, WANG Yi-Wei. Characteristics of soil extracellular enzyme activities and their stoichiometry during rocky desertification in southwestern Guizhou, China [J]. Chin J Plant Ecol, 2022, 46(7): 834-845. |
[9] | WANG Guang-Ya, CHEN Bing-Hua, HUANG Yu-Chen, JIN Guang-Ze, LIU Zhi-Li. Effects of growing position on leaflet trait variations and its correlations in Fraxinus mandshurica [J]. Chin J Plant Ecol, 2022, 46(6): 712-721. |
[10] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of microbial nutrient limiting characteristics in rhizosphere and bulk soil of coniferous forests under nitrogen deposition in southwest mountain, China [J]. Chin J Plant Ecol, 2022, 46(4): 473-483. |
[11] | WU Zan, PENG Yun-Feng, YANG Gui-Biao, LI Qin-Lu, LIU Yang, MA Li-Hua, YANG Yuan-He, JIANG Xian-Jun. Effects of land degradation on soil and microbial stoichiometry in Qingzang Plateau alpine grasslands [J]. Chin J Plant Ecol, 2022, 46(4): 461-472. |
[12] | ZHANG Qing, YIN Ben-Feng, LI Ji-Wen, LU Yong-Xing, RONG Xiao-Ying, ZHOU Xiao-Bing, ZHANG Bing-Chang, ZHANG Yuan-Ming. Effects of moss mortality on soil enzyme activities in a temperate desert [J]. Chin J Plant Ecol, 2022, 46(3): 350-361. |
[13] | ZHU Yu-He, XIAO Hong, WANG Bing, WU Ying, BAI Yong-Fei, CHEN Di-Ma. Stoichiometric characteristics of soil carbon, nitrogen and phosphorus along soil depths in response to climatic variables in grasslands on the Mongolia Plateau [J]. Chin J Plant Ecol, 2022, 46(3): 340-349. |
[14] | Yan JIANG Xing-Fang CHEN Xu-Jie YANG. Dynamic changes to aquatic plants in East Lake of Wuhan over recent 30 years based on Landsat images [J]. Chin J Plant Ecol, 2022, 46(12): 1551-1561. |
[15] | Zhou-Tao ZHENG Yang-Jian ZHANG. Variation in ecosystem water use efficiency and its attribution analysis during 1982–2018 in Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(12): 1486-1496. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn