Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (1): 14-22.DOI: 10.17521/cjpe.2015.0002
Special Issue: 生态化学计量
• Orginal Article • Previous Articles Next Articles
CHANG Chen-Hui, WU Fu-Zhong, YANG Wan-Qin*(), TAN Bo, XIAO Sa, LI Jun, GOU Xiao-Lin
Received:
2014-07-07
Accepted:
2014-11-06
Online:
2015-01-10
Published:
2015-01-22
Contact:
Wan-Qin YANG
About author:
# Co-first authors
CHANG Chen-Hui,WU Fu-Zhong,YANG Wan-Qin,TAN Bo,XIAO Sa,LI Jun,GOU Xiao-Lin. Changes in log quality at different decay stages in an alpine forest[J]. Chin J Plan Ecolo, 2015, 39(1): 14-22.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2015.0002
项目 Item | 基本特征 Basic characteristics |
---|---|
坡度 Slope degree | 35° |
坡向 Slope aspect | NE 45° |
海拔 Altitude (m) | 3 582 |
树种组成 Species composition | 该林分内岷江冷杉断面积占80%, 方枝柏断面积占林分断面积的20%, 红桦和四川红杉断面积均介于林分总断面积2%-5%。 The proportion of Abies faxoniana basal area to total stand basal area is 80%, and the proportion of Sabina saltuaria basal area to total stand basal area is 20%, while the proportion of the basal area for Betula albosinensis and Larix mastersiana to total stand basal area varied between 2%-5%. |
林分蓄积 Stand volume (t·hm-2) | 337.31 |
粗木质残体储量 Coarse woody debris volume (t·hm-2) | 53 |
土壤特征 Soil characteristics | 雏形土, 土层浅薄, 土体为腐殖质层到母质层的过渡土层。 Soil type is cambisols, with shallow soil depth and tendency of transition from humus layer to parent material layer. |
Table 1 General description of the study sites
项目 Item | 基本特征 Basic characteristics |
---|---|
坡度 Slope degree | 35° |
坡向 Slope aspect | NE 45° |
海拔 Altitude (m) | 3 582 |
树种组成 Species composition | 该林分内岷江冷杉断面积占80%, 方枝柏断面积占林分断面积的20%, 红桦和四川红杉断面积均介于林分总断面积2%-5%。 The proportion of Abies faxoniana basal area to total stand basal area is 80%, and the proportion of Sabina saltuaria basal area to total stand basal area is 20%, while the proportion of the basal area for Betula albosinensis and Larix mastersiana to total stand basal area varied between 2%-5%. |
林分蓄积 Stand volume (t·hm-2) | 337.31 |
粗木质残体储量 Coarse woody debris volume (t·hm-2) | 53 |
土壤特征 Soil characteristics | 雏形土, 土层浅薄, 土体为腐殖质层到母质层的过渡土层。 Soil type is cambisols, with shallow soil depth and tendency of transition from humus layer to parent material layer. |
Fig. 1 Contents of C, N, P in logs of Abies faxoniana at different decay stages (I-V) (mean ± SD, n = 3). Different lowercase letters indicate significant differences among the three log components (i.e. heartwood, sapwood, and bark) (p < 0.05). I, died less than one year prior to sampling, cambium still fresh; II, cambium decayed, a knife blade penetrates a few millimetres; III, a knife blade penetrates less than 2 cm; IV, a knife blade penetrates 2-5 cm; V, a knife blade penetrates all the way.
分解阶段 Decay stage | 心材 Heartwood | 边材 Sapwood | 树皮 Bark |
---|---|---|---|
I | 6 553:16:1 | 43 974:116:1 | 1 829:27:1 |
II | 7 084:19:1 | 19 762:30:1 | 3 022:53:1 |
III | 14 052:100:1 | 4 840:21:1 | 2 724:35:1 |
IV | 7 041:19:1 | 5 210:18:1 | 1 394:38:1 |
V | 5 757:29:1 | 3 453:26:1 | 1 609:71:1 |
Table 2 Variation characteristics of C:N:P in logs of Abies faxoniana at different decay stages
分解阶段 Decay stage | 心材 Heartwood | 边材 Sapwood | 树皮 Bark |
---|---|---|---|
I | 6 553:16:1 | 43 974:116:1 | 1 829:27:1 |
II | 7 084:19:1 | 19 762:30:1 | 3 022:53:1 |
III | 14 052:100:1 | 4 840:21:1 | 2 724:35:1 |
IV | 7 041:19:1 | 5 210:18:1 | 1 394:38:1 |
V | 5 757:29:1 | 3 453:26:1 | 1 609:71:1 |
组分 Component | I | II | III | IV | V | |
---|---|---|---|---|---|---|
C:N | 心材 Heartwood | 411 ± 59a | 386 ± 99a | 166 ± 76b | 373 ± 69a | 275 ± 176ab |
边材 Sapwood | 393 ± 176a | 1 497 ± 89a | 230 ± 54a | 291 ± 77a | 183 ± 135a | |
树皮 Bark | 68 ± 14ab | 59 ± 16bc | 80 ± 20be | 35 ± 21cd | 26 ± 14d | |
C:P | 心材 Heartwood | 6 553 ± 630a | 7 084 ± 33a | 14 052 ± 2 341b | 7 041 ± 49a | 5 757 ± 755a |
边材 Sapwood | 43 974 ± 8 810a | 19 762 ± 11 544b | 4 840 ± 1 461c | 5 210 ± 1 179c | 3 453 ± 270c | |
树皮 Bark | 1 829 ± 326ad | 3 022 ± 69bc | 2 724 ± 186cd | 1 394 ± 916a | 1 609 ± 479a | |
N:P | 心材 Heartwood | 16 ± 1.04a | 19 ± 5.67a | 100 ± 49.71b | 19 ± 3.41a | 29 ± 21.48a |
边材 Sapwood | 116 ± 34.01a | 30 ± 28.37b | 21 ± 6.00b | 18 ± 3.55b | 26 ± 13.81b | |
树皮 Bark | 27 ± 1.19a | 53 ± 13.49ab | 35 ± 7.48a | 38 ± 17.54a | 71 ± 30.80b |
Table 3 Variation characteristics of C:N, C:P and N:P in logs of Abies faxoniana at different decay stages (mean ± SD, n = 3)
组分 Component | I | II | III | IV | V | |
---|---|---|---|---|---|---|
C:N | 心材 Heartwood | 411 ± 59a | 386 ± 99a | 166 ± 76b | 373 ± 69a | 275 ± 176ab |
边材 Sapwood | 393 ± 176a | 1 497 ± 89a | 230 ± 54a | 291 ± 77a | 183 ± 135a | |
树皮 Bark | 68 ± 14ab | 59 ± 16bc | 80 ± 20be | 35 ± 21cd | 26 ± 14d | |
C:P | 心材 Heartwood | 6 553 ± 630a | 7 084 ± 33a | 14 052 ± 2 341b | 7 041 ± 49a | 5 757 ± 755a |
边材 Sapwood | 43 974 ± 8 810a | 19 762 ± 11 544b | 4 840 ± 1 461c | 5 210 ± 1 179c | 3 453 ± 270c | |
树皮 Bark | 1 829 ± 326ad | 3 022 ± 69bc | 2 724 ± 186cd | 1 394 ± 916a | 1 609 ± 479a | |
N:P | 心材 Heartwood | 16 ± 1.04a | 19 ± 5.67a | 100 ± 49.71b | 19 ± 3.41a | 29 ± 21.48a |
边材 Sapwood | 116 ± 34.01a | 30 ± 28.37b | 21 ± 6.00b | 18 ± 3.55b | 26 ± 13.81b | |
树皮 Bark | 27 ± 1.19a | 53 ± 13.49ab | 35 ± 7.48a | 38 ± 17.54a | 71 ± 30.80b |
组分 Component | I | II | III | IV | V | |
---|---|---|---|---|---|---|
木质素:N Lignin:N | 心材 Heartwood | 181 ± 48ab | 179 ± 83ab | 112 ± 52a | 244 ± 44b | 224 ± 95ab |
边材 Sapwood | 218 ± 57a | 773 ± 986a | 143 ± 34a | 237 ± 84a | 212 ± 179a | |
树皮 Bark | 61 ± 16a | 66 ± 19a | 78 ± 19a | 52 ± 38a | 44 ± 15a | |
木质素:P Lignin:P | 心材 Heartwood | 2 882 ± 647a | 3 161 ± 784a | 9 435 ± 577b | 4 609 ± 353c | 5 200 ± 1 259c |
边材 Sapwood | 24 244 ± 4 849a | 10 410 ± 5 464a | 3 028 ± 1 005a | 4 125 ± 789a | 3 824 ± 506a | |
树皮 Bark | 1 643 ± 368a | 3 367 ± 176a | 2 655 ± 165a | 2 022 ± 1 402a | 2 882 ± 309a | |
纤维素:N Cellulose:N | 心材 Heartwood | 276 ± 27a | 248 ± 31ab | 77 ± 52 c | 183 ± 51bd | 100 ± 62cd |
边材 Sapwood | 228 ± 80a | 864 ± 1 167a | 119 ± 28a | 172 ± 21a | 72 ± 35a | |
树皮 Bark | 31 ± 6a | 23 ± 7a | 36 ± 9a | 11 ± 4a | 17 ± 11a | |
纤维素:P Cellulose:P | 心材 Heartwood | 4 403 ± 214ab | 4 701 ± 842a | 6 355 ± 3 463b | 3 417 ± 551ab | 2 102 ± 201a |
边材 Sapwood | 24 771 ± 3 043a | 11 068 ± 6 874a | 2 498 ± 712a | 3 106 ± 479a | 1 519 ± 372a | |
树皮 Bark | 836 ± 169a | 1 187 ± 79a | 1 235 ± 124a | 441 ± 262a | 1 016 ± 437a |
Table 4 Characteristics of lignin:N, lignin:P, cellulose:N and cellulose:P in logs of Abies faxoniana at different decay stages (mean ± SD, n = 3)
组分 Component | I | II | III | IV | V | |
---|---|---|---|---|---|---|
木质素:N Lignin:N | 心材 Heartwood | 181 ± 48ab | 179 ± 83ab | 112 ± 52a | 244 ± 44b | 224 ± 95ab |
边材 Sapwood | 218 ± 57a | 773 ± 986a | 143 ± 34a | 237 ± 84a | 212 ± 179a | |
树皮 Bark | 61 ± 16a | 66 ± 19a | 78 ± 19a | 52 ± 38a | 44 ± 15a | |
木质素:P Lignin:P | 心材 Heartwood | 2 882 ± 647a | 3 161 ± 784a | 9 435 ± 577b | 4 609 ± 353c | 5 200 ± 1 259c |
边材 Sapwood | 24 244 ± 4 849a | 10 410 ± 5 464a | 3 028 ± 1 005a | 4 125 ± 789a | 3 824 ± 506a | |
树皮 Bark | 1 643 ± 368a | 3 367 ± 176a | 2 655 ± 165a | 2 022 ± 1 402a | 2 882 ± 309a | |
纤维素:N Cellulose:N | 心材 Heartwood | 276 ± 27a | 248 ± 31ab | 77 ± 52 c | 183 ± 51bd | 100 ± 62cd |
边材 Sapwood | 228 ± 80a | 864 ± 1 167a | 119 ± 28a | 172 ± 21a | 72 ± 35a | |
树皮 Bark | 31 ± 6a | 23 ± 7a | 36 ± 9a | 11 ± 4a | 17 ± 11a | |
纤维素:P Cellulose:P | 心材 Heartwood | 4 403 ± 214ab | 4 701 ± 842a | 6 355 ± 3 463b | 3 417 ± 551ab | 2 102 ± 201a |
边材 Sapwood | 24 771 ± 3 043a | 11 068 ± 6 874a | 2 498 ± 712a | 3 106 ± 479a | 1 519 ± 372a | |
树皮 Bark | 836 ± 169a | 1 187 ± 79a | 1 235 ± 124a | 441 ± 262a | 1 016 ± 437a |
Fig. 2 Characteristics of lignin, cellulose content and the ratio of lignin to cellulose for various decay stages (I-V) (mean ± SD, n = 3). Different lowercase letters indicate significant differences among the three log components (i.e. heartwood, sapwood, and bark) (p < 0.05). I, died less than one year prior to sampling, cambium still fresh; II, cambium decayed, a knife blade penetrates a few millimetres; III, a knife blade penetrates less than 2 cm; IV, a knife blade penetrates 2-5 cm; V, a knife blade penetrates all the way.
组分 Component | 心材 Heartwood | 边材 Sapwood | 树皮 Bark | |||||
---|---|---|---|---|---|---|---|---|
N | P | N | P | N | P | |||
木质素:纤维素 Lignin:cellulose | 0.573* | -0.125 | 0.528* | 0.481 | 0.442 | -0.027 | ||
木质素 Lignin | 0.522* | -0.106 | 0.302 | 0.532* | -0.400 | -0.551* | ||
纤维素 Cellulose | -0.437 | 0.260 | -0.410 | -0.587* | -0.618* | -0.324 |
Table 5 Pearson correlation analysis among lignin:cellulose, lignin, cellulose and N and P contents in logs of Abies faxoniana at different decay stages
组分 Component | 心材 Heartwood | 边材 Sapwood | 树皮 Bark | |||||
---|---|---|---|---|---|---|---|---|
N | P | N | P | N | P | |||
木质素:纤维素 Lignin:cellulose | 0.573* | -0.125 | 0.528* | 0.481 | 0.442 | -0.027 | ||
木质素 Lignin | 0.522* | -0.106 | 0.302 | 0.532* | -0.400 | -0.551* | ||
纤维素 Cellulose | -0.437 | 0.260 | -0.410 | -0.587* | -0.618* | -0.324 |
1 | Augusto L, Meredieu C, Bert D, Trichet P, Porté A, Bosc A, Lagane F, Loustau D, Pellerin S, Danjon F, Ranger J, Gelpe J (2008). Improving models of forest nutrient export with equations that predict the nutrient concentration of tree compartments. Annals of Forest Science, 65, 808-821. |
2 | Bebber DP, Watkinson SC, Boddy L, Darrah PR (2011). Simulated nitrogen deposition affects wood decomposition by cord-forming fungi. Oecologia, 167, 1177-1184. |
3 | Benner JW, Vitousek PM (2007). Development of a diverse epiphyte community in response to phosphorus fertilization. Ecology Letters, 10, 628-636. |
4 | Cleveland CC, Liptzin D (2007). C:N:P stoichiometry in soil: Is there a ‘‘Redfield ratio’’ for the microbial biomass?Biogeochemistry, 85, 235-252. |
5 | Cowling EB, Merrill W (1966). Nitrogen in wood and its role in wood deterioration. Canadian Journal of Botany, 44, 1539-1554. |
6 | de Aza CH, Turrión MB, Pando V, Bravo F (2011). Carbon in heartwood, sapwood and bark along the stem profile in three Mediterranean Pinus species. Annals of Forest Science, 68, 1067-1076. |
7 | Du FY, Zhang XY, Wang HX (2004). Studies on quantitative assay and degradation law of lignocelluloses. Biotechnology, 14, 46-48. |
8 | Elia M, Potvin C (2003). Assessing inter-and intra-specific variation in trunk carbon concentration for 32 neotropical tree species. Canadian Journal of Forest Research, 33, 1039-1045. |
9 | Feng SH, Cheng SN, Yuan ZS, Leitch M, Xu CB (2013). Valorization of bark for chemicals and materials: A review. Renewable and Sustainable Energy Reviews, 26, 560-578. |
10 | Gonzalez-Polo M, Fernández-Souto A, Austin AT (2013). Coarse woody debris stimulates soil enzymatic activity and litter decomposition in an old-growth temperate forest of Patagonia, Argentina. Ecosystems, 16, 1025-1038. |
11 | Guo P, Wang YQ, Wang YJ, Zhang HL, Wang R, Liu CX (2013). Litterfall mass, nutrient contents, and nutrient release characteristics of typical forests in Jinyun Mountains of China under the background of acid rain. Chinese Journal of Ecology, 32, 2339-2346. |
(in Chinese with English abstract) [郭平, 王云琦, 王玉杰, 张会兰, 王冉, 刘春霞 (2013). 酸雨背景下缙云山典型林分凋落物量和营养元素含量及其释放特征. 生态学杂志, 32, 2339-2346.] | |
12 | Harmon ME, Anderson NH, Franklin JF, Cline SP, Swanson JF, Aumen NG, Solins P, Sedell JR, Gregpry SV, Lienkaemper GW, Lattin JD, Cromack K, Cummins KW (1986). Ecology of coarse woody debris in temperate ecosystem. Advances in Ecological Research, 15, 133-302. |
13 | Huang Y, Shen Y, Zhou M, Ma RS (2003). Decomposition of plant residue as influenced by its lignin and nitrogen. Chinese Journal of Plant Ecology, 27, 183-188. |
(in Chinese with English abstract) [黄耀, 沈雨, 周密, 马瑞升 (2003). 木质素和氮含量对植物残体分解的影响. 植物生态学报, 27, 183-188.] | |
14 | Kueppers LM, Southon J, Baer P, Harte J (2004). Dead wood biomass and turnover time, measured by radiocarbon, along a subalpine elevation gradient. Oecologia, 141, 641-651. |
15 | Laiho R, Prescott CE (2004). Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: A synthesis. Canadian Journal of Forest Research, 34, 763-777. |
16 | Lu RK (1999). Soil and Agrochemical Analytical Methods. China Agricultural Science and Technology Press, Beijing. 296-338. (in Chinese) |
[鲁如坤 (1999). 土壤农化分析方法. 中国农业科技出版社, 北京. 296-338.] | |
17 | Manzoni S, Trofymow JA, Jackson RB, Porporato A (2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80, 89-106. |
18 | Meerts P (2002). Mineral nutrient concentrations in sapwood and heartwood: A literature review. Annals of Forest Science, 59, 713-722. |
19 | Meyer P, Schmidt M (2011). Accumulation of dead wood in abandoned beech (Fagus sylvatica L.) forests in northwestern Germany. Forest Ecology and Management, 261, 342-352. |
20 | Mukhortova LV (2012). Carbon and nutrient release during decomposition of coarse woody debris in forest ecosystems of Central Siberia. Folia Forestalia Polonica, 52, 71-83. |
21 | Parton WJ, Schimel DS, Cole CV, Ojima DS (1987). Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Science Society of America Journal, 51, 1173-1179. |
22 | Romero LM, Smith TJ, Fourqurean JW (2005). Changes in mass and nutrient content of wood during decomposition in a south Florida mangrove forest. Journal of Ecology, 93, 618-631. |
23 | Rouvinen S, Kuuluvainen T, Karjalainen L (2002). Coarse woody debris in old Pinus sylvestris dominated forests along a geographic and human impact gradient in boreal Fennoscandia. Canadian Journal of Forest Research, 32, 2184–2200. |
24 | Rowland AP, Roberts JD (1994). Lignin and cellulose fractionation in decomposition studies using Acid-Detergent Fibre methods. Communications in Soil Science & Plant Analysis, 25, 269-277. |
25 | Schwarze FWMR (2007). Wood decay under the microscope. Fungal Biology Reviews, 21, 133-170. |
26 | Shorohova E, Kapitsa E (2014). Mineralization and fragmentation rates of bark attached to logs in a northern boreal forest. Forest Ecology and Management, 315, 185-190. |
27 | Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009). Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature, 462, 795-799. |
28 | Stanton DE, Huallpa Chávez J, Villegas L, Villasante F, Armesto J, Hedin LO, Horn H (2014). Epiphytes improve host plant water use by microenvironment modification. Functional Ecology, 28, 1274-1283. |
29 | Tinker DB, Knight DH (2000). Coarse woody debris following fire and logging in Wyoming lodgepole pine forests. Ecosystems, 3, 472-483. |
30 | Wardle DA, Walker LR, Bardgett RD (2004). Ecosystem properties and forest decline in contrasting long-term chronosequences. Science, 305, 509-513. |
31 | Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F (2005). Endangered plants persist under phosphorus limitation. Nature, 437, 547-550. |
32 | Watkinson S, Bebber DP, Darrah P, Fricker M, Tlalka M, Boddy L (2006). The role of wood decay fungi in the carbon and nitrogen dynamics of the forest floor. In: Gadd GM ed. Fungi in Biogeochemical Cycles. Cambridge University Press, Cambridge, UK. 151-158. |
33 | Yan ER, Wang XH, Huang JJ (2005). Concept and classification of coarse woody debris in forest ecosystems. Acta Ecologica Sinica, 25, 158-167. |
(in Chinese with English abstract) [闫恩荣, 王希华, 黄建军 (2005). 森林粗死木质残体的概念及其分类. 生态学报, 25, 158-167.] | |
34 | Yang WQ, Wang KY, Kellomäki S, Gong HD (2005). Litter dynamics of three subalpine forests in western Sichuan. Pedosphere, 15, 653-659. |
35 | Yoon TK, Noh NJ, Kim RH, Seo KW, Lee SK, Yi K, Lee IK, Lim JH, Son Y (2011). Mass dynamics of coarse woody debris in an old-growth deciduous forest of Gwangneung, Korea. Forest Science and Technology, 7, 145-150. |
36 | Zhang LM, Wang CK (2010). Carbon and nitrogen release during decomposition of coarse woody debris for eleven temperate tree species in the eastern mountain region of northeast China. Chinese Journal of Plant Ecology, 34, 368-374. |
(in Chinese with English abstract) [张利敏, 王传宽 (2010). 东北东部山区11种温带树种粗木质残体分解与碳氮释放. 植物生态学报, 34, 368-374.] | |
37 | Zhou LW, Dai YC (2012). Recognizing ecological patterns of wood-decaying polypores on gymnosperm and angiosperm trees in northeast China. Fungal Ecology, 5, 230-235. |
[1] | SUN Cai-Li, QIU Mo-Sheng, HUANG Chao-Xiang, WANG Yi-Wei. Characteristics of soil extracellular enzyme activities and their stoichiometry during rocky desertification in southwestern Guizhou, China [J]. Chin J Plant Ecol, 2022, 46(7): 834-845. |
[2] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of microbial nutrient limiting characteristics in rhizosphere and bulk soil of coniferous forests under nitrogen deposition in southwest mountain, China [J]. Chin J Plant Ecol, 2022, 46(4): 473-483. |
[3] | XIAN Ying-Nan, ZHANG Ying, LI Bao-Zhen, LUO Pei, XIAO Run-Lin, WU Jin-Shui. Responses of photosynthetic pigments composition, nitrogen and phosphorus stoichiometric characteristics of Myriophyllum aquaticum to exogenous ammonium [J]. Chin J Plant Ecol, 2022, 46(4): 451-460. |
[4] | 文博 牟 Dang-Hui Xu Xie-Jun WANG 瑞英 张 玉玲 顾 亚飞 苟. Soil carbon, nitrogen, and phosphorus stoichiometry of shrubs along an elevational gradient in the Pailugou watershed [J]. Chin J Plant Ecol, 2022, 46(11): 1422-1431. |
[5] | TIAN Di, YAN Zheng-Bing, FANG Jing-Yun. Review on characteristics and main hypotheses of plant ecological stoichiometry [J]. Chin J Plant Ecol, 2021, 45(7): 682-713. |
[6] | YIN Xiao-Lei, LIU Xu-Yang, JIN Qiang, LI Xian-De, LIN Shao-Ying, YANG Xiang, WANG Wei-Qi, ZHANG Yong-Xun. Effects of different management methods on carbon, nitrogen, and phosphorus contents and their stoichiometric ratios in tea plants [J]. Chin J Plant Ecol, 2021, 45(7): 749-759. |
[7] | XIANG Xiang, HUANG Yong-Mei, YANG Chong-Yao, LI Ze-Qing, CHEN Hui-Ying, PAN Ying-Ping, HUO Jia-Xuan, REN Liang. Effect of altitude on community-level plant functional traits in the Qinghai Lake Basin, China [J]. Chin J Plant Ecol, 2021, 45(5): 456-466. |
[8] | HU Yuan-Liu, CHEN Guo-Yin, CHEN Jing-Wen, SUN Lian-Wei, LI Jian-Ling, DOU Ning, ZHANG De-Qiang, DENG Qi. Effects of long-term simulated acid rain on soil microbial community structure in a monsoon evergreen broad-leaved forest in southern China [J]. Chin J Plant Ecol, 2021, 45(3): 298-308. |
[9] | ZHU Wan-Wan, WANG Pan, XU Yi-Xin, LI Chun-Huan, YU Hai-Long, HUANG Ju-Ying. Soil enzyme activities and their influencing factors in a desert steppe of northwestern China under changing precipitation regimes and nitrogen addition [J]. Chin J Plant Ecol, 2021, 45(3): 309-320. |
[10] | HU Qi-Juan, SHENG Mao-Yin, YIN Jie, BAI Yi-Xin. Stoichiometric characteristics of fine roots and rhizosphere soil of Broussonetia papyrifera adapted to the karst rocky desertification environment in southwest China [J]. Chin J Plant Ecol, 2020, 44(9): 962-972. |
[11] | XIE Meng-Yi, FENG Xiu-Xiu, MA Huan-Fei, HU Han, WANG Jie-Ying, GUO Yao-Xin, REN Cheng-Jie, WANG Jun, ZHAO Fa-Zhu. Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains [J]. Chin J Plant Ecol, 2020, 44(8): 885-894. |
[12] | LIU Shan-Shan, ZHOU Wen-Jun, KUANG Lu-Hui, LIU Zhan-Feng, SONG Qing-Hai, LIU Yun- Tong, ZHANG Yi-Ping, LU Zhi-Yun, SHA Li-Qing. Responses of soil extracellular enzyme activities to carbon input alteration and warming in a subtropical evergreen broad-leaved forest [J]. Chin J Plant Ecol, 2020, 44(12): 1262-1272. |
[13] | XIONG Xing-Shuo, CAI Hong-Yu, LI Yao-Qi, MA Wen-Hong, NIU Ke-Chang, CHEN Di-Ma, LIU Na-Na, SU Xiang-Yan, JING He-Ying, FENG Xiao-Juan, ZENG Hui, WANG Zhi-Heng. Seasonal dynamics of leaf C, N and P stoichiometry in plants of typical steppe in Nei Mongol, China [J]. Chin J Plant Ecol, 2020, 44(11): 1138-1153. |
[14] | LI Jun-Jun, LI Meng-Ru, QI Xing-E, WANG Li-Long, XU Shi-Jian. Response of nutrient characteristics of Achnatherum splendens leaves to different levels of nitrogen and phosphorus addition [J]. Chin J Plant Ecol, 2020, 44(10): 1050-1058. |
[15] | JING Hong-Xia,SUN Ning-Xiao,Muhammad UMAIR,LIU Chun-Jiang,DU Hong-Mei. Stoichiometric characteristics of soils and dominant shrub leaves and their responses to water addition in different seasons in degraded karst areas in Southern Yunnan of China [J]. Chin J Plant Ecol, 2020, 44(1): 56-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn