Chin J Plant Ecol ›› 2020, Vol. 44 ›› Issue (4): 384-394.DOI: 10.17521/cjpe.2019.0139
Special Issue: 全球变化与生态系统; 生态学研究的方法和技术; 生物地球化学; 微生物生态学
• Reviews • Previous Articles Next Articles
FENG Xiao-Juan1,2,*(),WANG Yi-Yun1,2,LIU Ting1,JIA Juan1,DAI Guo-Hua1,MA Tian1,2,LIU Zong-Guang1
Received:
2019-06-06
Accepted:
2019-08-22
Online:
2020-04-20
Published:
2019-10-21
Contact:
FENG Xiao-Juan ORCID:0000-0002-0443-0628
Supported by:
FENG Xiao-Juan, WANG Yi-Yun, LIU Ting, JIA Juan, DAI Guo-Hua, MA Tian, LIU Zong-Guang. Biomarkers and their applications in ecosystem research[J]. Chin J Plant Ecol, 2020, 44(4): 384-394.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0139
Fig. 2 Examples of typical monomer structures for the main types of biomarkers introduced in this paper. Plant-derived biomarkers: plant wax lipids including long-chain n-alkanes (I) and fatty acids (II), etc. (Otto et al., 2005); cutin monomers such as short-chain ω-hydroxyalkanoic acid (III); lignin phenols such as vanillin (IV) and syringic acid (V), etc. (Thevenot et al., 2010); suberin monomers such as long-chain α,ω-alkanedioic acid (VI; Otto et al., 2005). Micorbial-derived biomarkers: phospholipid fatty acids (PLFAs) such as linoleic acid (VII; Frosteg?rd & B??th, 1996); glycerol dialkyl glycerol tetraethers (GDGTs) such as GDGT-2 (VIII; Schouten et al., 2013); amino sugars, including α-D-glucosamine (IX) and α-D-galactosamine (X), etc. (Joergensen, 2018). In addition, neutral sugars such as α-D-glucose (XI) and amino acids with side chain (R group; XII) can be synthesized by both plants and microbes.
生物标志物 Biomarker | 分子组成 Molecular composition | 提取方法 Extraction method | 研究意义 Research implication | 关键参数 Key parameter |
---|---|---|---|---|
植物蜡质脂类 Plant lipids | 长链(>C20)正构烷烃、脂肪酸、脂肪醇、 固醇等 Long-chain (>C20) n-alkanes, n-alkanoic acids, n-alkanols, steroids, etc. | 溶剂萃取 Solvent extraction | 代表植物来源的脂类 Indicating lipids from terrestrial vegetation | ACL, CPI |
角质单体 Cutin monomers | 短链(C14-C18)羟基-环氧酸 Short-chain (C14-C18) hydroxy- and epoxy acids | 碱式水解 Base hydrolysis | 代表叶片角质来源的脂类 Indicating lipids from leaf cuticles | ω-C16/∑C16, ω-C18/∑C18 |
软木脂单体 Suberin monomers | 长链(C20-C32)脂肪酸、双酸、ω-羟基酸等 Long-chain (C20-C32) aliphatic acids, diacids and ω-hydroxy acids, etc. | 碱式水解 Base hydrolysis | 代表根系和树皮软木脂来源的脂类 Indicating lipids from suberin in roots and barks | |
磷脂脂肪酸 Phospholipid fatty acids (PLFAs) | 短链脂肪酸(<C20) Short-chain fatty acids (<C20) | Bligh-Dyer | 指征活体微生物生物量和群落结构 Indicating microbial biomass and community structure | F/B |
甘油二烷基甘油四醚Glycerol dialkyl glycerol tetraethers (GDGTs) | 类异戊二烯和支链GDGT Isoprenoid and branched GDGTs | 溶剂萃取 Solvent extraction | 古菌和细菌细胞膜脂 Indicating archaeal and bacterial membrane lipids | MBT, CBT |
中性糖 Neutral sugars | 葡萄糖、半乳糖、甘露糖、核糖、木糖和 阿拉伯糖等 Glucose, galactose, mannose. ribose, xylose, arabinose, etc. | 酸式水解 Acid hydrolysis | 区分植物和微生物来源的糖类 Indicating plant- and microbe-derived sugars | GM/AX, RF/AX |
木质素酚类 Lignin phenols | 带甲氧基的酚类化合物 Phenolic compounds with methoxyl groups | 碱性氧化铜氧化法 Alkaline CuO oxidation | 指示维管束植物来源的有机质和木质素氧化程度 Indicating lignin inputs from vascular plants and lignin oxidation stage | S/V, C/V, (Ad/Al)V, (Ad/Al)S |
氨基酸 Amino acids | 天冬氨酸、谷氨酸、丙氨酸等 Aspartic acid, glutamic acid, alanine, etc. | 酸式水解 Acid hydrolysis | 微生物、动植物及其蛋白质的代谢产物 Indicating proteinaceous inputs from microbes, animals and plants | D/L |
氨基糖 Amino sugars | 氨基葡萄糖、氨基半乳糖、甘露糖胺、 胞壁酸 Glucosamine, galactosamine, mannosamine, muramic acid | 酸式水解 Acid hydrolysis | 微生物细胞壁组分, 常指征环境中的微生物残体碳 Components of microbial cell wall; indicating microbial necromass in soils | GluN/MurN |
Table 1 Molecular composition, extraction methods, research implications and key parameters of widely-used biomarkers in ecosystem research
生物标志物 Biomarker | 分子组成 Molecular composition | 提取方法 Extraction method | 研究意义 Research implication | 关键参数 Key parameter |
---|---|---|---|---|
植物蜡质脂类 Plant lipids | 长链(>C20)正构烷烃、脂肪酸、脂肪醇、 固醇等 Long-chain (>C20) n-alkanes, n-alkanoic acids, n-alkanols, steroids, etc. | 溶剂萃取 Solvent extraction | 代表植物来源的脂类 Indicating lipids from terrestrial vegetation | ACL, CPI |
角质单体 Cutin monomers | 短链(C14-C18)羟基-环氧酸 Short-chain (C14-C18) hydroxy- and epoxy acids | 碱式水解 Base hydrolysis | 代表叶片角质来源的脂类 Indicating lipids from leaf cuticles | ω-C16/∑C16, ω-C18/∑C18 |
软木脂单体 Suberin monomers | 长链(C20-C32)脂肪酸、双酸、ω-羟基酸等 Long-chain (C20-C32) aliphatic acids, diacids and ω-hydroxy acids, etc. | 碱式水解 Base hydrolysis | 代表根系和树皮软木脂来源的脂类 Indicating lipids from suberin in roots and barks | |
磷脂脂肪酸 Phospholipid fatty acids (PLFAs) | 短链脂肪酸(<C20) Short-chain fatty acids (<C20) | Bligh-Dyer | 指征活体微生物生物量和群落结构 Indicating microbial biomass and community structure | F/B |
甘油二烷基甘油四醚Glycerol dialkyl glycerol tetraethers (GDGTs) | 类异戊二烯和支链GDGT Isoprenoid and branched GDGTs | 溶剂萃取 Solvent extraction | 古菌和细菌细胞膜脂 Indicating archaeal and bacterial membrane lipids | MBT, CBT |
中性糖 Neutral sugars | 葡萄糖、半乳糖、甘露糖、核糖、木糖和 阿拉伯糖等 Glucose, galactose, mannose. ribose, xylose, arabinose, etc. | 酸式水解 Acid hydrolysis | 区分植物和微生物来源的糖类 Indicating plant- and microbe-derived sugars | GM/AX, RF/AX |
木质素酚类 Lignin phenols | 带甲氧基的酚类化合物 Phenolic compounds with methoxyl groups | 碱性氧化铜氧化法 Alkaline CuO oxidation | 指示维管束植物来源的有机质和木质素氧化程度 Indicating lignin inputs from vascular plants and lignin oxidation stage | S/V, C/V, (Ad/Al)V, (Ad/Al)S |
氨基酸 Amino acids | 天冬氨酸、谷氨酸、丙氨酸等 Aspartic acid, glutamic acid, alanine, etc. | 酸式水解 Acid hydrolysis | 微生物、动植物及其蛋白质的代谢产物 Indicating proteinaceous inputs from microbes, animals and plants | D/L |
氨基糖 Amino sugars | 氨基葡萄糖、氨基半乳糖、甘露糖胺、 胞壁酸 Glucosamine, galactosamine, mannosamine, muramic acid | 酸式水解 Acid hydrolysis | 微生物细胞壁组分, 常指征环境中的微生物残体碳 Components of microbial cell wall; indicating microbial necromass in soils | GluN/MurN |
[1] | Amelung W (2003). Nitrogen biomarkers and their fate in soil. Journal of Plant Nutrition and Soil Science, 166, 677-686. |
[2] | Amelung W, Zhang XD (2001). Determination of amino acid enantiomers in soils. Soil Biology & Biochemistry, 33, 553-562. |
[3] | Bianchi TS, Cui XQ, Blair NE, Burdige DJ, Eglinton TI, Galy V (2018). Centers of organic carbon burial and oxidation at the land-ocean interface. Organic Geochemistry, 115, 138-155. |
[4] |
Bligh E, Dyer W (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911-917.
URL PMID |
[5] | Boecklen WJ, Yarnes CT, Cook BA, James AC (2011). On the use of stable isotopes in trophic ecology. Annual Review of Ecology, Evolution, and Systematics, 42, 411-440. |
[6] | Bull ID, van Bergen PF, Nott CJ, Poulton PR, Evershed RP (2000). Organic geochemical studies of soils from the Rothamsted classical experiments—V. The fate of lipids in different long-term experiments. Organic Geochemistry, 31, 389-408. |
[7] |
Chikaraishi Y, Steffan SA, Ogawa NO, Ishikawa NF, Sasaki Y, Tsuchiya M, Ohkouchi N (2014). High-resolution food webs based on nitrogen isotopic composition of amino acids. Ecology and Evolution, 4, 2423-2449.
URL PMID |
[8] | Coppola AI, Wiedemeier DB, Galy V, Haghipour N, Hanke UM, Nascimento GS, Usman M, Blattmann TM, Reisser M, Freymond CV, Zhao M, Voss B, Wacker L, Schefuß E, Peucker-Ehrenbrink B, Abiven S, Schmidt MWI, Eglinton TI (2018). Global-scale evidence for the refractory nature of riverine black carbon. Nature Geoscience, 11, 584-588. |
[9] | Cotrufo MF, Soong JL, Horton AJ, Campbell EE, Haddix ML, Wall DH, Parton WJ (2015). Formation of soil organic matter via biochemical and physical pathways of litter mass loss. Nature Geoscience, 8, 776-779. |
[10] | Crow SE, Lajtha K, Filley TR, Swanston CW, Bowden RD, Caldwell BA (2009). Sources of plant-derived carbon and stability of organic matter in soil: implications for global change. Global Change Biology, 15, 2003-2019. |
[11] | Dahl J, Moldowan J, Peters K, Claypool G, Rooney M, Michael G, Mello M, Kohnen M (1999). Diamondoid hydrocarbons as indicators of natural oil cracking. Nature, 399, 54-57. |
[12] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
URL PMID |
[13] | Derenne S, Largeau C (2001). A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Science, 166, 833-847. |
[14] | Didyk B, Simoneit B, Brassell SC, Eglinton G (1978). Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature, 272, 216-222. |
[15] | Dittmar T, Fitznar HP, Kattner G (2001). Origin and biogeochemical cycling of organic nitrogen in the eastern Arctic Ocean as evident from D- and L-amino acids. Geochimica et Cosmochimica Acta, 65, 4103-4114. |
[16] |
Dolgova S, Popp BN, Courtoreille K, Espie RHM, Maclean B, McMaster M, Straka JR, Tetreault GR, Wilkie S, Hebert CE (2018). Spatial trends in a biomagnifying contaminant: application of amino acid compound-specific stable nitrogen isotope analysis to the interpretation of bird mercury levels. Environmental Toxicology and Chemistry, 37, 1466-1475.
URL PMID |
[17] | Douglas PMJ, Pagani M, Eglinton TI, Brenner M, Curtis JH, Breckenridge A, Johnston K (2018). A long-term decrease in the persistence of soil carbon caused by ancient Maya land use. Nature Geoscience, 11, 645-651. |
[18] | Eder E, Spielvogel S, Kӧlbl A, Albert G, Kӧgel-Knabner I (2010). Analysis of hydrolysable neutral sugars in mineral soils: improvement of alditol acetylation for gas chromatographic separation and measurement. Organic Geochemistry, 41, 580-585. |
[19] |
Eglinton G, Calvin M (1967). Chemical fossils. Scientific American, 216, 32-43.
URL PMID |
[20] |
Eglinton TI, Aluwihare LI, Bauer JE, Druffel ER, McNichol AP (1996). Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating. Analytical Chemistry, 68, 904-912.
DOI URL PMID |
[21] | Eglinton TI, Eglinton G (2008). Molecular proxies for paleoclimatology. Earth and Planetary Science Letters, 275, 1-16. |
[22] | Feng XJ, Gustafsson O, Holmes RM, Vonk JE, van Dongen BE, Semiletov IP, Dudarev OV, Yunker MB, Macdonald RW, Wacker L, Montlucon DB, Eglinton TI (2015). Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: C-14 characteristics of sedimentary carbon components and their environmental controls. Global Biogeochemical Cycles, 29, 1855-1873. |
[23] | Feng XJ, Simpson AJ, Wilson KP, Dudley Williams D, Simpson MJ (2008). Increased cuticular carbon sequestration and lignin oxidation in response to soil warming. Nature Geoscience, 1, 836-839. |
[24] |
Feng XJ, Vonk JE, van Dongen BE, Gustafsson O, Semiletov IP, Dudarev OV, Wang ZH, Montlucon DB, Wacker L, Eglinton TI (2013). Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proceedings of the National Academy of Sciences of the United States of America, 110, 14168-14173.
URL PMID |
[25] |
Ferrier-Pages C, Leal MC (2019). Stable isotopes as tracers of trophic interactions in marine mutualistic symbioses. Ecology and Evolution, 9, 723-740.
DOI URL PMID |
[26] | Fogel ML, Griffin PL, Newsome SD (2016). Hydrogen isotopes in individual amino acids reflect differentiated pools of hydrogen from food and water in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 113, 201525703. DOI: 10.1073/pnas.1525703113. |
[27] | Frostegård A, Bååth E (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biology and Fertility of Soils, 22, 59-65. |
[28] | Galy V, Eglinton T, France-Lanord C, Sylya S (2011). The provenance of vegetation and environmental signatures encoded in vascular plant biomarkers carried by the Ganges-Brahmaputra rivers. Earth and Planetary Science Letters, 304, 1-12. |
[29] | Glaser B, Turrión MB, Alef K (2004). Amino sugars and muramic acid—Biomarkers for soil microbial community structure analysis. Soil Biology & Biochemistry, 36, 399-407. |
[30] | Gleixner G, Czimczik CJ, Kramer C, Lühker B, Schmidt MW (2001). Plant compounds and their turnover and stabilization as soil organic matter//Schulze ED, Heimann M, Harrison S, Holland E, Lloyd J, Prentice IC, Schimel D. Global Biogeochemical Cycles in the Climate System. Elsevier, Amsterdam, Netherlands. 201-215. |
[31] |
Griepentrog M, Bodé S, Boeckx P, Hagedorn F, Heim A, Schmidt MW (2014). Nitrogen deposition promotes the production of new fungal residues but retards the decomposition of old residues in forest soil fractions. Global Change Biology, 20, 327-340.
URL PMID |
[32] | Gunina A, Kuzyakov Y (2015). Sugars in soil and sweets for microorganisms: review of origin, content, composition and fate. Soil Biology & Biochemistry, 90, 87-100. |
[33] |
Hayes JM, Freeman KH, Popp BN, Hoham CH (1990). Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Organic Geochemistry, 16, 1115-1128.
URL PMID |
[34] | Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kögel-Knabner I, de Leeuw JW, Littke R, Michaelis W, Rullkötter J (2000). The molecularly- uncharacterized component of nonliving organic matter in natural environments. Organic Geochemistry, 31, 945-958. |
[35] | Hedges JI, Mann DC (1979). The characterization of plant tissues by their lignin oxidation products. Geochimica et Cosmochimica Acta, 43, 1803-1807. |
[36] |
Hernes PJ, Kaiser K, Dyda RY, Cerli C (2013). Molecular trickery in soil organic matter: hidden lignin. Environmental Science & Technology, 47, 9077-9085.
URL PMID |
[37] |
Hou JZ, Huang YS, Brodsky C, Alexandre MR, McNichol AP, King JW, Hu FS, Shen J (2010). Radiocarbon dating of individual lignin phenols: a new approach for establishing chronology of Late Quaternary lake sediments. Analytical Chemistry, 82, 7119-7126.
DOI URL PMID |
[38] | Huang XY, Meyers PA (2019). Assessing paleohydrologic controls on the hydrogen isotope compositions of leaf wax n-alkanes in Chinese peat deposits. Palaeogeography, Palaeoclimatology, Palaeoecology, 516, 354-363. |
[39] | Ishikawa NF, Chikaraishi Y, Takano Y, Sasaki Y, Takizawa Y, Tsuchiya M, Tayasu I, Nagata T, Ohkouchi N (2018). A new analytical method for determination of the nitrogen isotopic composition of methionine: its application to aquatic ecosystems with mixed resources. Limnology and Oceanography: Methods, 16, 607-620. |
[40] |
Ishikawa NF, Togashi H, Kato Y, Yoshimura M, Kohmatsu Y, Yoshimizu C, Ogawa NO, Ohte N, Tokuchi N, Ohkouchi N, Tayasu I (2016). Terrestrial-aquatic linkage in stream food webs along a forest chronosequence: multi-isotopic evidence. Ecology, 97, 1146-1158.
URL PMID |
[41] | Jansen B, Wiesenberg GLB (2017). Opportunities and limitations related to the application of plant-derived lipid molecular proxies in soil science. Soil, 3, 211-234. |
[42] | Jex CN, Pate GH, Blyth AJ, Spencer RGM, Hernes PJ, Khan SJ, Baker A (2014). Lignin biogeochemistry: from modern processes to Quaternary archives. Quaternary Science Reviews, 87, 46-59. |
[43] | Joergensen RG (2018). Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 54, 559-568. |
[44] | Kirk TK, Farrell RL (1987). Enzymatic “combustion”: the microbial degradation of lignin. Annual Reviews in Microbiology, 41, 465-501. |
[45] |
Klotzbücher T, Kalbitz K, Cerli C, Hernes PJ, Kaiser K (2016). Gone or just out of sight? The apparent disappearance of aromatic litter components in soils. Soil, 2, 325-335.
DOI URL |
[46] | Kögel-Knabner I (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology & Biochemistry, 34, 139-162. |
[47] |
Kögel-Knabner I (2017). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biology & Biochemistry, 105, A3-A8.
DOI URL |
[48] | Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008). Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171, 61-82. |
[49] |
Lehmann J, Kleber M (2015). The contentious nature of soil organic matter. Nature, 528, 60-68.
DOI URL PMID |
[50] |
Liang C, Balser TC (2012). Warming and nitrogen deposition lessen microbial residue contribution to soil carbon pool. Nature Communications, 3, 1222. DOI: 10.1038/ncomms2224.
DOI URL PMID |
[51] | Liang C, Cheng G, Wixon DL, Balser TC (2011). An Absorbing Markov Chain approach to understanding the microbial role in soil carbon stabilization. Biogeochemistry, 106, 303-309. |
[52] |
Liang C, Schimel JP, Jastrow JD (2017). The importance of anabolism in microbial control over soil carbon storage. Nature Microbiology, 2, 17105. DOI: 10.1038/nmicrobiol.2017.105.
URL PMID |
[53] | Liu H, Liu WG (2015). Relationship of plant leaf wax n-alkanes molecular distribution characteristics and vegetation types. Journal of Earth Environment, 6, 168-179. |
[ 刘虎, 刘卫国 (2015). 植物叶蜡正构烷烃分子分布特征与植被类型的关系. 地球环境学报, 6, 168-179.] | |
[54] | Ma T, Dai GH, Zhu SS, Chen DM, Chen LT, Lü XT, Wang XB, Zhu JT, Zhang YJ, Ma WH, He JS, Bai YF, Han XG, Feng XJ (2019). Distribution and preservation of root- and shoot-derived carbon components in soils across the Chinese-Mongolian grasslands. Journal of Geophysical Research, 124, 420-431. |
[55] |
Ma T, Zhu SS, Wang ZH, Chen DM, Dai GH, Feng BW, Su XY, Hu HF, Li KH, Han WX, Liang C, Bai YF, Feng XJ (2018). Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 9, 3480. DOI: 10.1038/s41467-018-05891-1.
DOI URL PMID |
[56] | McCarthy MD, Benner R, Lee C, Fogel ML (2007). Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochimica et Cosmochimica Acta, 71, 4727-4744. |
[57] | Medina Contreras D, Cantera Kintz J, Sánchez González A, Mancera E (2018). Food web structure and trophic relations in a riverine mangrove system of the tropical eastern Pacific, central coast of Colombia. Estuaries and Coasts, 41, 1511-1521. |
[58] | Ohkouchi N, Chikaraishi Y, Close HG, Fry B, Larsen T, Madigan DJ, McCarthy MD, McMahon KW, Nagata T, Naito YI, Ogawa NO, Popp BN, Steffan S, Takano Y, Tayasu I, Wyatt ASJ, Yamaguchi YT, Yokoyama Y (2017). Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies. Organic Geochemistry, 113, 150-174. |
[59] | Otto A, Shunthirasingham C, Simpson MJ (2005). A comparison of plant and microbial biomarkers in grassland soils from the Prairie Ecozone of Canada. Organic Geochemistry, 36, 425-448. |
[60] | Otto A, Simpson MJ (2005). Degradation and preservation of vascular plant-derived biomarkers in grassland and forest soils from Western Canada. Biogeochemistry, 74, 377-409. |
[61] |
Otto A, Simpson MJ (2006). Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada. Organic Geochemistry, 37, 385-407.
DOI URL |
[62] |
Schmidt MW, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DA, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56.
URL PMID |
[63] | Schouten S, Hopmans EC, Damsté JSS (2013). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: a review. Organic Geochemistry, 54, 19-61. |
[64] | Sollins P, Kramer MG, Swanston C, Lajtha K, Filley T, Aufdenkampe AK, Wagai R, Bowden RD (2009). Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial- and mineral-controlled soil organic matter stabilization. Biogeochemistry, 96, 209-231. |
[65] |
Sowers TD, Holden KL, Coward EK, Sparks DL (2019). Dissolved organic matter sorption and molecular fractionation by naturally occurring bacteriogenic iron (Oxyhydr) oxides. Environmental Science & Technology, 53, 4295-4304.
URL PMID |
[66] |
Steffan SA, Chikaraishi Y, Currie CR, Horn H, Gaines-Day HR, Pauli JN, Zalapa JE, Ohkouchi N (2015). Microbes are trophic analogs of animals. Proceedings of the National Academy of Sciences of the United States of America, 112, 15119-15124.
URL PMID |
[67] | Stevenson FJ (1982). Organic forms of nitrogen//Stevenson FJ. Nitrogen in Agricultural Soils. American Society of Agronomy, Madison. 67-122. |
[68] | Thevenot M, Dignac MF, Rumpel C (2010). Fate of lignins in soils: a review. Soil Biology & Biochemistry, 42, 1200-1211. |
[69] | Tierney J, Schouten S, Pitcher A, Hopmans EC, Sinninghe Damsté JS (2012). Core and intact polar glycerol dialkyl glycerol tetraethers (GDGTs) in Sand Pond, Warwick, Rhode Island (USA): insights into the origin of lacustrine GDGTs. Geochimica et Cosmochimica Acta, 77, 561-581. |
[70] |
Tipple BJ, Berke MA, Doman CE, Khachaturyan S, Ehleringer JR (2013). Leaf-wax n-alkanes record the plant-water environment at leaf flush. Proceedings of the National Academy of Sciences of the United States of America, 110, 2659-2664.
URL PMID |
[71] | Treibs A (1936). Chlorophyll and hemin derivatives in organic mineral substances. Angewandte Chemie, 49, 682-686. |
[72] | van der Voort TS, Zell CI, Hagedorn F, Feng XJ, McIntyre CP, Haghipour N, Graf Pannatier E, Eglintone TI (2017). Diverse soil carbon dynamics expressed at the molecular level. Geophysical Research Letters, 44, 11840-11850. |
[73] |
Wang JZ, Ho SSH, Cao JJ, Huang RJ, Zhou JM, Zhao YZ, Xu HM, Liu SX, Wang GH, Shen ZX, Han YM (2015). Characteristics and major sources of carbonaceous aerosols in PM2. 5 from Sanya, China. Science of the Total Environment, 530-531, 110-119.
DOI URL PMID |
[74] |
Wang YY, Wang H, He JS, Feng XJ (2017). Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nature Communications, 8, 15972. DOI: 10.1038/ncomms15972.
URL PMID |
[75] | Wiesenberg G, Dorodnikov M, Kuzyakov Y (2010). Source determination of lipids in bulk soil and soil density fractions after four years of wheat cropping. Geoderma, 156, 267-277. |
[76] | Wiesenberg G, Schneckenberger K, Schwark L, Kuzyakov Y (2012). Use of molecular ratios to identify changes in fatty acid composition of Miscanthus × giganteus (Greef et Deu.) plant tissue, rhizosphere and root-free soil during a laboratory experiment. Organic Geochemistry, 46, 1-11. |
[77] | Xie SC, Liang B, Guo JQ, Yi Y, Evershed RP, Maddy D, Chambers FM (2003). Biomarkers and the related global change. Quaternary Sciences, 23, 521-528. |
[ 谢树成, 梁斌, 郭建秋, 易轶 , Evershed RP, Maddy D, Chambers FM (2003). 生物标志化合物与相关的全球变化. 第四纪研究, 23, 521-528.] | |
[78] | Xie SC, Wang ZY, Wang HM, Chen FH, An CB (2002). The occurrence of a grassy vegetation over the Chinese Loess Plateau since the last interglacier: the molecular fossil record. Science in China Series D: Earth Sciences, 45, 53-62. |
[79] | Zhang XD, Amelung W (1996). Gas chromatographic determination of muramic acid, glucosamine, mannosamine, and galactosamine in soils. Soil Biology & Biochemistry, 28, 1201-1206. |
[80] | Zhao L, Wu WC, Xu XT, Xu YP (2014). Soil organic matter dynamics under different land use in grasslands in Inner Mongolia (northern China). Biogeosciences, 11, 5103-5113. |
[81] |
Zhao MX, Dupont L, Eglinton G, Teece M (2003). n-Alkane and pollen reconstruction of terrestrial climate and vegetation for N. W. Africa over the last 160 kyr. Organic Geochemistry, 34, 131-143.
DOI URL |
[1] | CHEN Bao-Dong, FU Wei, WU Song-Lin, ZHU Yong-Guan. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling [J]. Chin J Plant Ecol, 2024, 48(1): 1-20. |
[2] | MA Shu-Qin, WANG Zi-Wei, CHEN You-Chao, LU Xu-Yang. Effect of soil organic matter chemical compositions on soil protease and urease activity in alpine grassland soils in Northern Xizang, China [J]. Chin J Plant Ecol, 2021, 45(5): 516-527. |
[3] | LI Hai-Dong, WU Xin-Wei, XIAO Zhi-Shu. Assembly, ecosystem functions, and stability in species interaction networks [J]. Chin J Plant Ecol, 2021, 45(10): 1049-1063. |
[4] | WANG Qing-Qing, GAO Yan, WANG Rong. Review on impacts of global change on food web structure [J]. Chin J Plant Ecol, 2021, 45(10): 1064-1074. |
[5] | GE Ti-Da, WANG Dong-Dong, ZHU Zhen-Ke, WEI Liang, WEI Xiao-Meng, WU Jin-Shui. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem [J]. Chin J Plant Ecol, 2020, 44(4): 360-372. |
[6] | PENG Shu-Shi, YUE Chao, CHANG Jin-Feng. Developments and applications of terrestrial biosphere model [J]. Chin J Plant Ecol, 2020, 44(4): 436-448. |
[7] | ZHANG Liang, WANG Zhi-Lei, XUE Ting-Ting, HAO Xiao-Yun, YANG Chen-Lu, GAO Fei-Fei, WANG Ying, HAN Xing, LI Hua, WANG Hua. Progress in studies of carbon source/sink and emission reduction strategies in vineyard ecosystem [J]. Chin J Plant Ecol, 2020, 44(3): 179-191. |
[8] | Xin-Qi WANG, Chuan-Kuan WANG, Tai-Dong ZHANG. New perspectives on forest soil carbon and nitrogen cycling processes: Roles of arbuscular mycorrhizal versus ectomycorrhizal tree species [J]. Chin J Plan Ecolo, 2017, 41(10): 1113-1125. |
[9] | Kai YUE, Wan-Qin YANG, Yan PENG, Chun-Ping HUANG, Chuan ZHANG, Fu-Zhong WU. Effects of streams on lignin degradation during foliar litter decomposition in an alpine forest [J]. Chin J Plant Ecol, 2016, 40(9): 893-901. |
[10] | ZHANG Bin,ZHU Jian-Jun,LIU Hua-Min,PAN Qing-Min. Effects of extreme rainfall and drought events on grassland ecosystems [J]. Chin J Plant Ecol, 2014, 38(9): 1008-1018. |
[11] | XU Li,YU Shu-Xia,HE Nian-Peng,WEN Xue-Fa,SHI Pei-Li,ZHANG Yang-Jian,DAI Jing-Zhong,WANG Ruo-Meng. Soil C mineralization and temperature sensitivity in alpine grasslands of the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2013, 37(11): 988-997. |
[12] | LIU Xiao-Dong, QIAO Yu-Na, ZHOU Guo-Yi. Controlling action of soil organic matter on soil moisture retention and its availability [J]. Chin J Plant Ecol, 2011, 35(12): 1209-1218. |
[13] | XU Xiao-Feng, TIAN Han-Qin, WAN Shi-Qiang. CLIMATE WARMING IMPACTS ON CARBON CYCLING IN TERRESTRIAL ECOSYSTEMS [J]. Chin J Plant Ecol, 2007, 31(2): 175-188. |
[14] | CHEN Guang-Sheng, TIAN Han-Qin. LAND USE/COVER CHANGE EFFECTS ON CARBON CYCLING IN TERRESTRIAL ECOSYSTEMS [J]. Chin J Plant Ecol, 2007, 31(2): 189-204. |
[15] | ZHU Wei-Xing. CONSIDERATION OF SOIL ECOLOGICAL PROCESSES IN RESTORATION AND SUCCESSION [J]. Chin J Plant Ecol, 2005, 29(3): 479-486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn