Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (11): 1165-1171.DOI: 10.3724/SP.J.1258.2012.01165
Previous Articles Next Articles
SHI Zhao-Yong1,2,*(), WANG Fa-Yuan1, MIAO Yan-Fang1
Received:
2012-06-26
Revised:
2012-08-28
Online:
2012-06-26
Published:
2012-11-09
Contact:
SHI Zhao-Yong
SHI Zhao-Yong, WANG Fa-Yuan, MIAO Yan-Fang. Responses of net primary productivity to air temperature change in forests dominated by different mycorrhizal strategies[J]. Chin J Plant Ecol, 2012, 36(11): 1165-1171.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.01165
Fig. 1 Responses of total net primary productivity (NPP) of forests with different mycorrhizal associations to change of mean annual air temperature. A, Arbuscular mycorrhiza. B, Arbuscular mycorrhiza + ectomycorrhiza. C, Arbuscular mycorrhiza + ectomycorrhiza + ectendomycorrhiza. D, Ectomycorrhiza. E, Ectomycorrhiza + ectendomycorrhiza. F, Ectom- ycorrhiza + ectendomycorrhiza + nonmycorrhiza.
Fig. 2 Responses of above- (ρ) and below-ground (○) net primary productivity (NPP) of forests with different mycorrhizal associations to change of mean annual air temperature. A, Arbuscular mycorrhiza. B, Arbuscular mycorrhiza + ectomycorrhiza. C, Arbuscular mycorrhiza + ectomycorrhiza + ectendomycorrhiza. D, Ectomycorrhiza. E, Ectomycorrhiza + ectendomycorrhiza. F, Ectomycorrhiza + ectendomycorrhiza + nonmycorrhiza. ya (solid line) and yb (broken line) mean the regression of above- and below-ground NPP, respectively.
Fig. 3 Responses of net primary productivity (NPP) of main stem (ρ) and tree leaf (○) of forests with different mycorrhizal associations to change of mean annual air temperature. A, Arbuscular mycorrhiza. B, Arbuscular mycorrhiza + ectomycorrhiza. C, Arbuscular mycorrhiza + ectomycorrhiza + ectendomycorrhiza. D, Ectomycorrhiza. E, Ectomycorrhiza + ectendomycorrhiza. F, Ectomycorrhiza + ectendomycorrhiza + nonmycorrhiza. ys (solid line) and y1 (broken line) mean the regression of NPP of main stem and tree leaf, respectively.
菌根类型 Mycorrhizal type | n | 拟合方程 Fitting equation | R2 | p |
---|---|---|---|---|
AM | 10 | y = -2.9385x + 267.40 | 0.021 5 | 0.686 0 |
AM + ECM | 31 | y = -0.3899x + 120.85 | 0.000 5 | 0.905 0 |
AM + ECM + EEM | 13 | y = 16.1080x + 50.47 | 0.676 0 | 0.391 0 |
ECM | 70 | y = 3.3956x + 112.94 | 0.077 3 | <0.001 0 |
ECM + EEM | 15 | y = -2.1853x + 146.55 | 0.011 9 | 0.699 0 |
ECM + EEM + NM | 24 | y = 2.9318x + 93.18 | 0.099 1 | 0.134 0 |
Table 1 Fitting equation of response of net primary productivity (NPP) of fine roots of forest dominated by different mycorrhizal associations to change of mean annual air temperature
菌根类型 Mycorrhizal type | n | 拟合方程 Fitting equation | R2 | p |
---|---|---|---|---|
AM | 10 | y = -2.9385x + 267.40 | 0.021 5 | 0.686 0 |
AM + ECM | 31 | y = -0.3899x + 120.85 | 0.000 5 | 0.905 0 |
AM + ECM + EEM | 13 | y = 16.1080x + 50.47 | 0.676 0 | 0.391 0 |
ECM | 70 | y = 3.3956x + 112.94 | 0.077 3 | <0.001 0 |
ECM + EEM | 15 | y = -2.1853x + 146.55 | 0.011 9 | 0.699 0 |
ECM + EEM + NM | 24 | y = 2.9318x + 93.18 | 0.099 1 | 0.134 0 |
1 | Antoninka A, Wolf JE, Bowker M, Classen AT, Johnson NC ( 2009). Linking above- and belowground respon- ses to global change at community and ecosystem scales. Global Change Biology, 15, 914-929. |
2 | Brown S, Sathaye J, Canell M, Kauppi PE ( 1996). Mitigation of carbon emission to the atmosphere by forest management. Commonwealth Forestry Review, 75, 80-91. |
3 | Cornelissen JHC, Aerts R, Cerabolini B, Werger M, van der Heijden M ( 2001). Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia, 129, 611-619. |
4 | Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, Kahmen A, Mack MC, McLauchlan KK, Michelsen A, Nardoto GB, Pardo LH, Peñuelas J, Reich PB, Schuur EAG, Stock WD, Templer PH, Virginia RA, Welker JM, Wright IJ ( 2009). Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availabi- lity. New Phytologist, 183, 980-992. |
5 | Fang JY ( 方精云), Chen AP ( 陈安平), Zhao SQ ( 赵淑青), Ci LJ ( 慈龙骏 ) (2002). Estimating biomass carbon of China’s forests: supplementary notes on report published in Science (291: 2320-2322) by Fang et al. (2001). Acta Phytoecologica Sinica (植物生态学报), 26, 243-249. (in Chinese with English abstract) |
6 | Fang JY ( 方精云), Ke JH ( 柯金虎), Tang ZY ( 唐志尧), Chen AP ( 陈安平 ) ( 2001). Implications and estimations of four terrestrial productivity parameters. Acta Phytoecologica Sinica (植物生态学报), 25, 414-419. (in Chinese with English abstract) |
7 | Hicke JA, Asner GP, Randerson JT, Tucker C, Los S, Birdsey R, Jenkins JC, Field C ( 2002). Trends in North American net primary productivity derived from satellite observations, 1982-1998. Global Biogeochemical Cycles, 16, 1018-1031. |
8 | Lieth H, Whittaker RH ( 1975). Primary Productivity of the Biosphere. Springer-Verlag, New York. |
9 | Liu RJ ( 刘润进), Chen YL ( 陈应龙 ) (2007). Mycorr- hizology (菌根学). Science Press, Beijing. (in Chinese) |
10 | Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papale D, Piao SL, Schulze ED, Wingate L, Matteucci G, Aragao L, Aubinet M, Beer C, Bernhofer C, Black KG, Bonal D, Bonnefond JM, Chambers J, Ciais P, Cook B, Davis KJ, Dolman AJ, Gielen B, Goulden M, Grace J, Granier A, Grelle A, Griffis T, Grünwald T, Guidolotti G, Hanson PJ, Harding RD, Hollinger Y, Hutyra LR, Kolari P, Kruijt B, Kutsch W, Lagergren F, Laurila T, Law BE, Le Maire G, Lindroth A, Loustau D, Malhi Y, Mateus J, Migliavacca M, Misson L, Montagnani L, Moncrieff J, Moors E, Munger JW, Nikinmaa E, Ollinger SV, Pita G, Rebmann C, Roupsard O, Saigusa N, Sanz MJ, Seufert G, Sierra C, Smith ML, Tang J, Valentini R, Vesala T, Janssens IA ( 2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509-2537. |
11 | Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW ( 2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560-1563. |
12 | Pate JS, Stewart GR, Unkovich M ( 1993). 15N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilization, life form, mycorrhizal status and N2-fixing abilities of component species. Plant, Cell & Environment, 16, 365-373. |
13 | Piao SL, Fang JY, Zhou LM, Zhu B, Tan K, Tao S (2005). Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochemical Cycles, 19, GB2027, doi: 10.1029/2004GB002274. |
14 | Read DJ ( 1991). Mycorrhizas in ecosystems. Experientia, 47, 376-391. |
15 | Shi ZY ( 石兆勇), Liu DH ( 刘德鸿), Wang FY ( 王发园), Ding XD ( 丁效东 ) ( 2012). Effect of mycorrhizal strategy on net primary productivity of trees in global forest ecosystem. Ecology and Environmental Sciences (生态环境学报), 21, 404-408. (in Chinese with English abstract) |
16 | Smith SE, Read DJ ( 2008). Mycorrhizal Symbiosis 3rd edn. Elsevier Ltd., London. |
17 | van der Heijden M, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR ( 1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72. |
18 | Vargas R, Baldocchi DD, Querejeta JI, Curtis PS, Hasse- lquist NJ, Janssens IA, Allen MF, Montagnani L ( 2010). Ecosystem CO2 fluxes of arbuscular and ectomycorrhizal dominated vegetation types are differentially influenced by precipitation and temperature. New Phytologist, 185, 226-236. |
19 | Vogt KA, Grier CC, Meier CE, Edmonds RL ( 1982). Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in Western Washington. Ecology, 63, 370-380. |
20 | Zhao MS, Running SW ( 2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940-943. |
[1] | Qingshui Yu xiaofeng ni Jiangling Zhu Zhi-Yao TANG Jing-Yun FANG. Effects of 10 years of nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in two tropical rainforests in the Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | 建 周 Han Wang. A review of forest size structure studies: from statistical description to theoretical deduction [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[3] | FU Liang-Chen, DING Zong-Ju, TANG Mao, ZENG Hui, ZHU Biao. Rhizosphere effects of Betula platyphylla and Quercus mongolica and their seasonal dynamics in Dongling Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(4): 508-522. |
[4] | ZHANG Yu-Jian, LIU Yan-Hong. Tree physiology and major influencing factors under forest fires [J]. Chin J Plant Ecol, 2024, 48(3): 269-286. |
[5] | YANG An-Na, LI Zeng-Yan, MOU Ling, YANG Bai-Yu, SAI Bi-Le, ZHANG Li, ZHANG Zeng-Ke, WANG Wan-Sheng, DU Yun-Cai, YOU Wen-Hui, YAN En-Rong. Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai [J]. Chin J Plant Ecol, 2024, 48(3): 377-389. |
[6] | XUE Zhi-Fang, LIU Tong, WANG Li-Sheng, SONG Ji-Hu, CHEN Hong-Yang, XU Ling, YUAN Ye. Community structure and characteristics of plain valley forests in main tributaries of Ertix River Basin, China [J]. Chin J Plant Ecol, 2024, 48(3): 390-402. |
[7] | LIU Cong-Cong, HE Nian-Peng, LI Ying, ZHANG Jia-Hui, YAN Pu, WANG Ruo-Meng, WANG Rui-Li. Current and future trends of plant functional traits in macro-ecology [J]. Chin J Plant Ecol, 2024, 48(1): 21-40. |
[8] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[9] | YUAN Ya-Ni, ZHOU Zhe, CHEN Bin-Zhou, GUO Yao-Xin, YUE Ming. Differential ecological strategies in functional traits among coexisting tree species in a Quercus aliena var. acuteserrata forest [J]. Chin J Plant Ecol, 2023, 47(9): 1270-1277. |
[10] | ZHANG Ying, ZHANG Chang-Hong, WANG Qi-Tong, ZHU Xiao-Min, YIN Hua-Jun. Difference of soil carbon sequestration between rhizosphere and bulk soil in a mountain coniferous forest in southwestern China under nitrogen deposition [J]. Chin J Plant Ecol, 2023, 47(9): 1234-1244. |
[11] | ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden [J]. Chin J Plant Ecol, 2023, 47(7): 978-987. |
[12] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[13] | ZHANG Zhong-Yang, SONG Xi-Qiang, REN Ming-Xun, ZHANG Zhe. Ecological functions of vascular epiphytes in habitat construction [J]. Chin J Plant Ecol, 2023, 47(7): 895-911. |
[14] | ZHANG Qi, FENG Ke, CHANG Zhi-Hui, HE Shuang-Hui, XU Wei-Qi. Effects of shrub encroachment on plant and soil microbial in the forest-grassland ecotone [J]. Chin J Plant Ecol, 2023, 47(6): 770-781. |
[15] | DU Ting, CHEN Yu-Lian, BI Jing-Hui, YANG Yu-Ting, ZHANG Li, YOU Cheng-Ming, TAN Bo, XU Zhen-Feng, WANG Li-Xia, LIU Si-Ning, LI Han. Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China [J]. Chin J Plant Ecol, 2023, 47(5): 660-671. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn