Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (11): 1197-1204.DOI: 10.3724/SP.J.1258.2012.01197
Previous Articles Next Articles
MA Cheng-En1, KONG De-Liang2,*(), CHEN Zheng-Xia3, GUO Jun-Fei4
Received:
2012-07-27
Revised:
2012-09-30
Online:
2012-07-27
Published:
2012-11-09
Contact:
KONG De-Liang
MA Cheng-En, KONG De-Liang, CHEN Zheng-Xia, GUO Jun-Fei. Root growth into litter layer and its impact on litter decomposition: a review[J]. Chin J Plant Ecol, 2012, 36(11): 1197-1204.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.01197
1 | Achat DL, Bakker MR, Trichet P ( 2008). Rooting patterns and fine root biomass of Pinus pinaster assessed by trench wall and core methods. Journal of Forest Research, 13, 165-175. |
2 | Agerer R ( 2001). Exploration types of ectomycorrhizae. Mycorrhiza, 11, 107-114. |
3 | Allison SD, Gartner TB, Mack MC, McGuire K, Treseder K ( 2010). Nitrogen alters carbon dynamics during early succession in boreal forest. Soil Biology & Biochemistry, 42, 1157-1164. |
4 | Austin AT, Vivanco L ( 2006). Plant litter decomposition in a semi-arid ecosystem controlled by photodegradation. Nature, 442, 555-558. |
5 | Baumann K, Marschner P, Smernik RJ, Baldock JA ( 2009). Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biology & Biochemistry, 41, 1966-1975. |
6 | Berg B, McClaugherty C ( 2008). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration 2nd edn. Springer- Verlag, Berlin. |
7 | Berglund SL, Ågren GI ( 2011). When will litter mixtures decompose faster or slower than individual litters? A model for two litters. Oikos, 121, 1112-1120. |
8 | Chen SS ( 陈莎莎), Liu HY ( 刘鸿雁), Guo DL ( 郭大立 ) ( 2010). Litter stocks and chemical quality of natural birch forests along temperature and precipitation gradients in eastern Inner Mongolia, China. Chinese Journal of Plant Ecology (植物生态学报), 34, 1007-1015. (in Chinese with English abstract) |
9 | Cheng L, Booker FL, Tu C, Burkey KO, Zhou LS, Shew HD, Rufty TW, Hu SJ ( 2012). Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science, 337, 1084-1087. |
10 | Cheng WX ( 2009). Rhizosphere priming effect: its functional relationships with microbial turnover, evapotranspiration, and C-N budgets. Soil Biology & Biochemistry, 41, 1795-1801. |
11 | Chivenge P, Vanlauwe B, Gentile R, Six J ( 2011). Organic resource quality influences short-term aggregate dynamics and soil organic carbon and nitrogen accumulation. Soil Biology & Biochemistry, 43, 657-666. |
12 | Craine JM, Morrow C, Fierer N ( 2007). Microbial nitrogen limitation increases decomposition. Ecology, 88, 2105-2113. |
13 | Croft SA, Hodge A, Pitchford JW ( 2012). Optimal root proliferation strategies: the roles of nutrient heterogeneity, competition and mycorrhizal networks. Plant and Soil, 351, 191-206. |
14 | Dijkstra FA, Cheng WX ( 2007). Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecology Letters, 10, 1046-1053. |
15 | Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H ( 2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 109, 2666-2671. |
16 | Fontaine S, Bardoux G, Abbadie L, Mariotti A ( 2004). Carbon input to soil may decrease soil carbon content. Ecology Letters, 7, 314-320. |
17 | Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C ( 2007). Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature, 450, 277-280. |
18 | Fontaine S, Henault C, Aamor A, Bdioui N, Bloor JMG, Maire V, Mary B, Revaillot S, Maron PA ( 2011). Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect. Soil Biology and Biochemistry, 43, 86-96. |
19 | Freschet GT, Aerts R, Cornelissen JHC ( 2012). Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. Journal of Ecology, 100, 619-630. |
20 | Fu SL, Cheng WX, Susfalk R ( 2002). Rhizosphere respiration varies with plant species and phenology: a greenhouse pot experiment. Plant and Soil, 239, 133-140. |
21 | Fujimaki R, McGonigle TP, Takeda H ( 2004). Soil micro- habitat effects on fine roots of Chamaecyparis obtusa Endl.: a field experiment using root ingrowth cores. Plant and Soil, 266, 325-332. |
22 | Gavito ME, Olsson PA ( 2003). Allocation of plant carbon to foraging and storage in arbuscular mycorrhizal fungi. FEMS Microbiology Ecology, 45, 181-187. |
23 | Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ ( 2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6, 751-765. |
24 | Guo DL, Mitchell RJ, Hendricks JJ ( 2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457. |
25 | Guo DL, Xia MX, Wei X, Chang WJ, Liu Y, Wang ZQ ( 2008). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683. |
26 | Hättenschwiler S, Coq S, Barantal S, Handa IT ( 2011). Leaf traits and decomposition in tropical rainforests: revisiting some commonly held views and towards a new hypothesis. New Phytologist, 189, 950-965. |
27 | Hättenschwiler S, Jørgensen HB ( 2010). Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. Journal of Ecology, 98, 754-763. |
28 | Hilli S, Stark S, Derome J ( 2010). Litter decomposition rates in relation to litter stocks in boreal coniferous forests along climatic and soil fertility gradients. Applied Soil Ecology, 46, 200-208. |
29 | Hobbie SE ( 2005). Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems, 8, 644-656. |
30 | Hobbie SE ( 2008). Nitrogen effects on decomposition: a five-year experiment in eight temperate sites. Ecology, 89, 2633-2644. |
31 | Hodge A ( 2001). Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. New Phytologist, 151, 725-734. |
32 | Hodge A ( 2004). The plastic plant: root responses to heterogeneous supplies of nutrients. New Phytologist, 162, 9-24. |
33 | Hodge A ( 2009). Root decisions. Plant, Cell & Environment, 32, 628-640. |
34 | Hodge A, Helgason T, Fitter AH ( 2010). Nutritional ecology of arbuscular mycorrhizal fungi. Fungal Ecology, 3, 267-273. |
35 | Hoosbeek MR, Li YT, Scarascia-Mugnozza GE ( 2006). Free atmospheric CO2 enrichment (FACE) increased labile and total carbon in the mineral soil of a short rotation poplar plantation. Plant and Soil, 281, 247-254. |
36 | Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze E-D, Tang J, Law BE ( 2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322. |
37 | Jentschke G, Brandes B, Kuhn AJ, Schröder WH, Godbold DL ( 2001). Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytologist, 149, 327-337. |
38 | Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H ( 2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science, 333, 880-882. |
39 | Knorr M, Frey SD, Curtis PS ( 2005). Nitrogen additions and litter decomposition: a meta-analysis. Ecology, 86, 3252-3257. |
40 | Koide RT, Fernandez CW, Peoples MS ( 2011). Can ectomycorrhizal colonization of Pinus resinosa roots affect their decomposition? New Phytologist, 191, 508-514. |
41 | Kuzyakov Y ( 2010). Priming effects: interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371. |
42 | Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Högberg P, Stenlid J, Finlay RD ( 2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173, 611-620. |
43 | Liu LL, Greaver TL ( 2010). A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecology Letters, 13, 819-828. |
44 | Liu P, Huang JH, Sun OJ, Han XG ( 2010). Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia, 162, 771-780. |
45 | Manning P, Morrison SA, Bonkowski M, Bardgett RD ( 2008). Nitrogen enrichment modifies plant community structure via changes to plant-soil feedback. Oecologia, 157, 661-673. |
46 | Manzoni S, Jackson RB, Trofymow JA, Amilcare P ( 2008). The global stoichiometry of litter nitrogen mineralization. Science, 321, 684-686. |
47 | Manzoni S, Trofymow JA, Jackson RB, Porporato A ( 2010). Stoichiometric controls on carbon, nitrogen, and phosphorus dynamics in decomposing litter. Ecological Monographs, 80, 89-106. |
48 | Mayor J, Henkel TW ( 2006). Do ectomycorrhizas alter leaf- litter decomposition in monodominant tropical forests of Guyana? New Phytologist, 169, 579-588. |
49 | Mommer L, van Ruijven J, Jansen C, van de Steeg HM, de Kroon H ( 2012). Interactive effects of nutrient heterogeneity and competition: implications for root foraging theory? Functional Ecology, 26, 66-73. |
50 | Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD ( 2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems, 9, 46-62. |
51 | Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ ( 2009). Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Applied Soil Ecology, 42, 183-190. |
52 | Orwin KH, Kirschbaum MUF, St John MG, Dickie IA ( 2011). Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecology Letters, 14, 493-502. |
53 | Ostertag R, Hobbie SE ( 1999). Early stages of root and leaf decomposition in Hawaiian forests: effects of nutrient availability. Oecologia, 121, 564-573. |
54 | Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B ( 2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364. |
55 | Phillips RP, Finzi AC, Bernhardt ES ( 2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters, 14, 187-194. |
56 | Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AC, Knops J ( 2012). Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecology Letters, 15, 1042-1049. |
57 | Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL ( 2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309. |
58 | Pritsch K, Garbaye J ( 2011). Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Annals of Forest Science, 68, 25-32. |
59 | Rosling A ( 2009). Trees, mycorrhiza and minerals-field relevance of in vitro experiments. Geomicrobiology Journal, 26, 389-401. |
60 | Rosling A, Lindahl BD, Taylor AFS, Finlay RD ( 2004). Mycelial growth and substrate acidification of ectomycorrhizal fungi in response to different minerals. FEMS Microbiology Ecology, 47, 31-37. |
61 | Sayer EJ, Tanner EVJ ( 2010). Experimental investigation of the importance of litterfall in lowland semi-evergreen tropical forest nutrient cycling. Journal of Ecology, 98, 1052-1062. |
62 | Sayer EJ, Tanner EVJ, Cheesman AW ( 2006). Increased litterfall changes fine root distribution in a moist tropical forest. Plant and Soil, 281, 5-13. |
63 | Schlesinger WH, Lichter J ( 2001). Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature, 411, 466-469. |
64 | Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, van Janssens I, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE ( 2011). Persistence of soil organic matter as an ecosystem property. Nature, 478, 49-56. |
65 | Stark S, Hilli S, Willför S, Smeds AI, Reunanen M, Penttinen M, Hautajärvi R ( 2012). Composition of lipophilic compounds and carbohydrates in the accumulated plant litter and soil organic matter in boreal forests. European Journal of Soil Science, 63, 65-74. |
66 | Subke J, Hahn V, Battipaglia G, Linder S, Buchmann N, Cotrufo MF ( 2004). Feedback interactions between needle litter decomposition and rhizosphere activity. Oecologia, 139, 551-559. |
67 | Tiunov AV, Scheu S ( 2005). Arbuscular mycorrhiza and Collembola interact in affecting community composition of saprotrophic microfungi. Oecologia, 142, 636-642. |
68 | Treseder KK ( 2008). Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecology Letters, 11, 1111-1120. |
69 | Vitousek PM, Turner DR, Parton WJ, Sanford RL ( 1994). Litter decomposition on the Mauna Loa environmental matrix, Hawai’i: patterns, mechanisms, and models. Ecology, 75, 418-429. |
70 | Wells JM, Donnelly DP, Boddy L ( 1997). Patch formation and developmental polarity in mycelial cord systems of Phanerochaete velutina on a nutrient-depleted soil. New Phytologist, 136, 653-665. |
71 | Wieder WR, Cleveland CC, Townsend AR ( 2009). Controls over leaf litter decomposition in wet tropical forests. Ecology, 90, 3333-3341. |
72 | Wright SJ, Yavitt JB, Wurzburger N, Turner BL, Tanner EVJ, Sayer EJ, Santiago LS, Kaspari M, Hedin LO, Harms KE, Garcia MN, Corre MD ( 2011). Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology, 92, 1616-1625. |
73 | Xia MX, Guo DL, Pregitzer KS ( 2010). Ephemeral root modules in Fraxinus mandshurica. New Phytologist, 188, 1065-1074. |
74 | Zhu B, Cheng WX ( 2011). Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition. Global Change Biology, 17, 2172-2183. |
[1] | 建 周 Han Wang. A review of forest size structure studies: from statistical description to theoretical deduction [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[3] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[4] | SHI Meng-Jiao, LI Bin, YI Li-Ta, LIU Mei-Hua. Sexual divergence of Populus deltoides seedlings growth and ecophysiological response to drought and rewatering [J]. Chin J Plant Ecol, 2023, 47(8): 1159-1170. |
[5] | WU Chen, CHEN Xin-Yi, LIU Yuan-Hao, HUANG Jin-Xue, XIONG De-Cheng. Effects of warming on fine root growth, mortality and turnover: a review [J]. Chin J Plant Ecol, 2023, 47(8): 1043-1054. |
[6] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[7] | DU Ting, CHEN Yu-Lian, BI Jing-Hui, YANG Yu-Ting, ZHANG Li, YOU Cheng-Ming, TAN Bo, XU Zhen-Feng, WANG Li-Xia, LIU Si-Ning, LI Han. Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China [J]. Chin J Plant Ecol, 2023, 47(5): 660-671. |
[8] | ZHENG Yang, SUN Xue-Guang, XIONG Yang-Yang, YUAN Gui-Yun, DING Gui-Jie. Effects of phyllospheric microorganisms on litter decomposition of Pinus massoniana [J]. Chin J Plant Ecol, 2023, 47(5): 687-698. |
[9] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[10] | LAI Shuo-Tian, WU Fu-Zhong, WU Qiu-Xia, ZHU Jing-Jing, NI Xiang-Yin. Reduced release of labile carbon from Abies fargesii var. faxoniana needle litter after snow removal in an alpine forest [J]. Chin J Plant Ecol, 2023, 47(5): 672-686. |
[11] | ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition [J]. Chin J Plant Ecol, 2023, 47(5): 597-607. |
[12] | LI Xiao-Ling, ZHU Dao-Ming, YU Yu-Rong, WU Hao, MOU Li, HONG Liu, LIU Xue- Fei, BU Gui-Jun, XUE Dan, WU Lin. Effects of simulated nitrogen deposition on growth and decomposition of two bryophytes in ombrotrophic peatland, southwestern Hubei, China [J]. Chin J Plant Ecol, 2023, 47(5): 644-659. |
[13] | LI Hui-Xuan, MA Hong-Liang, YIN Yun-Feng, GAO Ren. Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest [J]. Chin J Plant Ecol, 2023, 47(5): 618-628. |
[14] | WANG Jing-Jing, WANG Jia-Hao, HUANG Zhi-Yun, Vanessa Chiamaka OKECHUKW, HU Die, QI Shan-Shan, DAI Zhi-Cong, DU Dao-Lin. Effects of endophytic nitrogen-fixing bacteria on the growth strategy of an invasive plant Sphagneticola trilobata under different nitrogen levels [J]. Chin J Plant Ecol, 2023, 47(2): 195-205. |
[15] | LIU Mei-Jun, CHEN Qiu-Wen, LÜ Jin-Lin, LI Guo-Qing, DU Sheng. Seasonal dynamics of radial growth and micro-variation in stems of Quercus mongolica var. liaotungensis and Robinia pseudoacacia in loess hilly region [J]. Chin J Plant Ecol, 2023, 47(2): 227-237. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn