Chin J Plant Ecol ›› 2013, Vol. 37 ›› Issue (7): 611-619.DOI: 10.3724/SP.J.1258.2013.00063
• Research Articles • Previous Articles Next Articles
YANG Xiao-Dong1,2,YAN En-Rong1,2,*(),ZHANG Zhi-Hao1,2,SUN Bao-Wei1,2,HUANG Hai-Xia1,2,Ali ARSHAD1,2,MA Wen-Ji1,2,SHI Qing-Ru1,2
Received:
2013-03-18
Accepted:
2013-05-22
Online:
2013-03-18
Published:
2013-07-05
Contact:
YAN En-Rong
YANG Xiao-Dong,YAN En-Rong,ZHANG Zhi-Hao,SUN Bao-Wei,HUANG Hai-Xia,Ali ARSHAD,MA Wen-Ji,SHI Qing-Ru. Tree architecture of overlapping species among successional stages in evergreen broad-leaved forests in Tiantong region, Zhejiang Province, China[J]. Chin J Plant Ecol, 2013, 37(7): 611-619.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2013.00063
Fig. 1 Variation in tree architectures of overlapping species among successional stages in Beilun site. Different letters in each line indicate significant differences among successional stages. S1, S2 and S3 represent early, middle and later successional stage, respectively.
Fig. 2 Variation in tree architectures of overlapping species among successional stages in Nanshan site. Different letters in each line indicate significant differences among successional stages. S1, S2 and S3 represent early, middle and later successional stage, respectively.
Fig. 3 Variation in tree architectures of overlapping species among successional stages in Tiantong site. Different letters in each line indicate significant differences among successional stages. S1, S2 and S3 represent early, middle and later successional stage, respectively.
演替阶段 Succession stage | 小灌木层 Shrublet layer (tree height < 2 m) | 灌木层 Shrub layer (2 m < tree height < 4 m) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | 物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | ||||||||
α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | ||||||
BS1 | 檵木 Loropetalum chinensis | 6 | 66.0 | 33.0 | 0.0 | 33.0 | 66.0 | 连蕊茶 Camellia fraterna | - | - | - | - | - | - | |
BS2 | - | 20.0 | 80.0 | 0.0 | 50.0 | 50.0 | 4 | 0.0 | 33.0 | 66.0 | 100.0 | 0.0 | |||
BS3 | 4 | - | - | - | - | - | 4 | 40.0 | 60.0 | 0.0 | 100.0 | 0.0 | |||
NS1 | 连蕊茶 Camellia fraterna | 13 | 20.0 | 80.0 | 0.0 | 44.9 | 46.1 | 7 | 28.6 | 71.4 | 0.0 | 57.1 | 42.9 | ||
NS2 | 3 | - | - | - | - | - | 8 | 0.0 | 100.0 | 0.0 | 73.3 | 26.7 | |||
NS3 | 13 | 7.7 | 84.6 | 7.7 | 80.0 | 20.0 | 28 | 10.4 | 87.6 | 2.0 | 76.9 | 23.1 | |||
TS1 | 窄基红褐柃 Eurya rubiginosa | 5 | 60.0 | 20.0 | 20.0 | 0.0 | 100.0 | - | - | - | - | - | - | ||
TS2 | 27 | 0.0 | 39.0 | 61.0 | 8.7 | 91.3 | 6 | 7.1 | 92.9 | 0.0 | 33.3 | 66.7 | |||
TS3 | 5 | 0.0 | 75.0 | 25.0 | 60.0 | 40.0 | 24 | 0.0 | 100.0 | 0.0 | 57.1 | 42.9 |
Table 1 Pattern of proportion in each of branch stretch direction and leaf convergence types in both shrublet and shrub layers through forest succession
演替阶段 Succession stage | 小灌木层 Shrublet layer (tree height < 2 m) | 灌木层 Shrub layer (2 m < tree height < 4 m) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | 物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | ||||||||
α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | ||||||
BS1 | 檵木 Loropetalum chinensis | 6 | 66.0 | 33.0 | 0.0 | 33.0 | 66.0 | 连蕊茶 Camellia fraterna | - | - | - | - | - | - | |
BS2 | - | 20.0 | 80.0 | 0.0 | 50.0 | 50.0 | 4 | 0.0 | 33.0 | 66.0 | 100.0 | 0.0 | |||
BS3 | 4 | - | - | - | - | - | 4 | 40.0 | 60.0 | 0.0 | 100.0 | 0.0 | |||
NS1 | 连蕊茶 Camellia fraterna | 13 | 20.0 | 80.0 | 0.0 | 44.9 | 46.1 | 7 | 28.6 | 71.4 | 0.0 | 57.1 | 42.9 | ||
NS2 | 3 | - | - | - | - | - | 8 | 0.0 | 100.0 | 0.0 | 73.3 | 26.7 | |||
NS3 | 13 | 7.7 | 84.6 | 7.7 | 80.0 | 20.0 | 28 | 10.4 | 87.6 | 2.0 | 76.9 | 23.1 | |||
TS1 | 窄基红褐柃 Eurya rubiginosa | 5 | 60.0 | 20.0 | 20.0 | 0.0 | 100.0 | - | - | - | - | - | - | ||
TS2 | 27 | 0.0 | 39.0 | 61.0 | 8.7 | 91.3 | 6 | 7.1 | 92.9 | 0.0 | 33.3 | 66.7 | |||
TS3 | 5 | 0.0 | 75.0 | 25.0 | 60.0 | 40.0 | 24 | 0.0 | 100.0 | 0.0 | 57.1 | 42.9 |
演替阶段 Succession stage | 亚乔木层 Subtree layer (4 m < tree height < 8 m) | 乔木层 Tree layer (tree height > 8 m) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | 物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | ||||||||
α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | ||||||
BS1 | 木荷 Schima superba | 4 | 100.0 | 0.0 | 0.0 | 0.0 | 100.0 | 木荷 Schima superba | - | - | - | - | - | - | |
BS2 | 4 | 100.0 | 0.0 | 0.0 | 33.3 | 66.6 | 18 | 100.0 | 0.0 | 0.0 | 17.6 | 82.4 | |||
BS3 | 3 | 50.0 | 50.0 | 0.0 | 100.0 | 0.0 | 4 | 100.0 | 0.0 | 0.0 | 50.0 | 50.0 | |||
NS1 | 栲 Castanopsis fargesii | 6 | 100.0 | 0.0 | 0.0 | 16.7 | 83.3 | 木荷 Schima superba | - | 100.0 | 0.0 | 0.0 | 0.0 | 100.0 | |
NS2 | - | - | - | - | - | - | 13 | 30.0 | 60.0 | 10.0 | 61.5 | 38.5 | |||
NS3 | 5 | 33.3 | 50.0 | 17.7 | 100.0 | 0.0 | 10 | 23.1 | 69.2 | 7.7 | 60.0 | 40.0 | |||
TS1 | 木荷 Schima superba | - | 14.3 | 57.1 | 28.6 | 100.0 | 0.0 | 木荷 Schima superba | - | - | - | - | - | - | |
TS2 | 7 | - | - | - | - | - | 26 | 18.5 | 40.7 | 40.8 | 0.0 | 100.0 | |||
TS3 | 3 | 0.0 | 0.0 | 100.0 | 100.0 | 0.0 | 3 | 0.0 | 0.0 | 100.0 | 100.0 | 0.0 |
Table 2 Pattern of proportion in each of branch stretch direction and leaf convergence type in both subtree and tree layers through forest succession
演替阶段 Succession stage | 亚乔木层 Subtree layer (4 m < tree height < 8 m) | 乔木层 Tree layer (tree height > 8 m) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | 物种 Species | 个体数 Individual number | 枝条伸展方向的比例 Proportion of branch stretch direction (%) | 叶片聚集类型的比例 Proportion of leaf convergence type (%) | ||||||||
α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | α < 30° | α > 60° | 60° > α > 30° | 分散 Dispersed | 聚集 Clumped | ||||||
BS1 | 木荷 Schima superba | 4 | 100.0 | 0.0 | 0.0 | 0.0 | 100.0 | 木荷 Schima superba | - | - | - | - | - | - | |
BS2 | 4 | 100.0 | 0.0 | 0.0 | 33.3 | 66.6 | 18 | 100.0 | 0.0 | 0.0 | 17.6 | 82.4 | |||
BS3 | 3 | 50.0 | 50.0 | 0.0 | 100.0 | 0.0 | 4 | 100.0 | 0.0 | 0.0 | 50.0 | 50.0 | |||
NS1 | 栲 Castanopsis fargesii | 6 | 100.0 | 0.0 | 0.0 | 16.7 | 83.3 | 木荷 Schima superba | - | 100.0 | 0.0 | 0.0 | 0.0 | 100.0 | |
NS2 | - | - | - | - | - | - | 13 | 30.0 | 60.0 | 10.0 | 61.5 | 38.5 | |||
NS3 | 5 | 33.3 | 50.0 | 17.7 | 100.0 | 0.0 | 10 | 23.1 | 69.2 | 7.7 | 60.0 | 40.0 | |||
TS1 | 木荷 Schima superba | - | 14.3 | 57.1 | 28.6 | 100.0 | 0.0 | 木荷 Schima superba | - | - | - | - | - | - | |
TS2 | 7 | - | - | - | - | - | 26 | 18.5 | 40.7 | 40.8 | 0.0 | 100.0 | |||
TS3 | 3 | 0.0 | 0.0 | 100.0 | 100.0 | 0.0 | 3 | 0.0 | 0.0 | 100.0 | 100.0 | 0.0 |
演替阶段 Succession stage | 小灌木层 Shrublet layer (tree height < 2 m) | 灌木层 Shrub layer (2 m < tree height < 4 m) | 亚乔木层 Subtree layer (4 m < tree height < 8 m) | 乔木层 Tree layer (tree height > 8 m) |
---|---|---|---|---|
前期 Early | 2.02 ± 0.76A | 2.64 ± 0.85A | 4.75 ± 0.41A | - |
中期 Middle | 1.90 ± 0.62A | 2.56 ± 0.86A | 4.67 ± 0.58A | 4.86 ± 0.42A |
后期 Later | 1.81 ± 0.62A | 2.51 ± 0.95A | 4.69 ± 0.46A | 4.84 ± 0.35A |
Table 3 Crown exposure index in four vertical layers among successional communities (mean ± SE)
演替阶段 Succession stage | 小灌木层 Shrublet layer (tree height < 2 m) | 灌木层 Shrub layer (2 m < tree height < 4 m) | 亚乔木层 Subtree layer (4 m < tree height < 8 m) | 乔木层 Tree layer (tree height > 8 m) |
---|---|---|---|---|
前期 Early | 2.02 ± 0.76A | 2.64 ± 0.85A | 4.75 ± 0.41A | - |
中期 Middle | 1.90 ± 0.62A | 2.56 ± 0.86A | 4.67 ± 0.58A | 4.86 ± 0.42A |
后期 Later | 1.81 ± 0.62A | 2.51 ± 0.95A | 4.69 ± 0.46A | 4.84 ± 0.35A |
[1] |
Anten NPR, Schieving F (2010). The role of wood mass density and mechanical constraints in the economy of tree architecture. The American Naturalist, 175, 250-260.
URL PMID |
[2] | Ashton PS (1958). Light intensity measurements in rain forest near Santarem, Brazil. Journal of Ecology, 45, 65-70. |
[3] | Bazzaz FA, Pickett STA (1980). Physiological ecology of tropical succession: a comparative review. Annual Review of Ecology and Systematics, 11, 287-310. |
[4] |
Clark JS (2010). Individuals and the variation needed for high species diversity in forest trees. Science, 327, 1129-1132.
URL PMID |
[5] |
Davies SJ, Ashton PS (1999). Phenology and fecundity in 11 sympatric pioneer species of Macaranga (Euphorbiaceae) in Borneo. American Journal of Botany, 86, 1786-1795.
URL PMID |
[6] | England JR, Attiwill PM (2006). Changes in leaf morphology and anatomy with tree age and height in the broadleaved evergreen species, Eucalyptus regnans F. Muell. Trees, 20, 79-90. |
[7] |
Enquist BJ, West GB, Charnov EL, Brown JH (1999). Allometric scaling of production and life-history variation in vascular plants. Nature, 401, 907-911.
DOI URL |
[8] | Givnish TJ (1988). Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology, 15, 63-92. |
[9] | Horn HS (1971). The Adaptive Geometry of Trees. Princeton University Press, Princeton. |
[10] |
Iida Y, Kohyama TS, Kobo T, Kassim AR, Poorter L, Sterck F, Potts MD (2011). Tree architecture and life-history strategies across 200 co-occurring tropical tree species. Functional Ecology, 25, 1260-1268.
DOI URL |
[11] |
Liu CC, Liu YG, Guo K (2011). Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in karst habitats. Chinese Journal of Plant Ecology, 35, 1070-1082. (in Chinese with English abstract)
DOI URL |
[ 刘长成, 刘玉国, 郭柯 (2011). 四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应. 植物生态学报, 35, 1070-1082.]
DOI URL |
|
[12] |
King DA (1996). Allometry and life history of tropical trees. Journal of Tropical Ecology, 12, 25-44.
DOI URL |
[13] |
King DA, Davies SJ, Nur Supardi MN, Tan S (2005). Tree growth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia. Functional Ecology, 19, 445-453.
DOI URL |
[14] |
Kohyama T (1993). Size-structured tree populations in gap-dynamic forest―the forest architecture hypothesis for the stable coexistence of species. Journal of Ecology, 81, 131-143.
DOI URL |
[15] |
Kohyama T, Suzuki E, Partomihardjo T, Yamada T, Kubo T (2003). Tree species differentiation in growth, recruitment and allometry in relation to maximum height in a Bornean mixed dipterocarp forest. Journal of Ecology, 91, 797-806.
DOI URL |
[16] |
Koch GW, Sillett SC, Jennings GM, Davis SD (2004). The limits to tree height. Nature, 428, 851-854.
DOI URL PMID |
[17] |
McCulloh KA, Johnson DM, Meinzer FC, Voelker SL, Lachenbruch H, Domec JC (2012). Hydraulic architecture of two species differing in wood density: opposing strategies in co-occurring tropical pioneer trees. Plant, Cell & Environment, 35, 116-125.
URL PMID |
[18] |
McCulloh KA, Meinzer FC, Sperry JS, Lachenbruch B, Voelker SL, Woodruff DR, Domec JC (2011). Comparative hydraulic architecture of tropical tree species representing a range of successional stages and wood density. Oecologia, 167, 27-37.
URL PMID |
[19] | Muller-Landau HC (2004). Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica, 36, 20-32. |
[20] |
Niklas KJ, Spatz HC (2004). Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proceedings of the National Academy of Sciences of the United States of America, 101, 15661-15663.
DOI URL PMID |
[21] |
Olson ME, Aguirre-Hernández R, Rosell JA (2009). Universal foliage-stem scaling across environments and species in dicot trees: plasticity, biomechanics and Corner’s rules. Ecology Letters, 12, 210-219.
DOI URL PMID |
[22] |
Poorter L, Bongers F, Sterck FJ, Wöll H (2003). Architecture of 53 rain forest tree species differing in adult stature and shade tolerance. Ecology, 84, 602-608.
DOI URL |
[23] |
Poorter L, Bongers L, Bongers F (2006). Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecology, 87, 1289-1301.
URL PMID |
[24] |
Poorter L, McDonald I, Alarcón A, Fichtler E, Licona JC, Peña-Claros M, Sterck F, Villegas Z, Sass-Klaassen U (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185, 481-492.
DOI URL PMID |
[25] |
Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, Ibarra- Manriquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology, 89, 1908-1920.
DOI URL PMID |
[26] |
Price CA, Enquist BJ (2007). Scaling mass and morphology in leaves: an extension of the WBE model. Ecology, 88, 1132-1141.
DOI URL PMID |
[27] | Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. BioScience, 47, 235-242. |
[28] |
Savage VM, Bentley LP, Enquist BJ, Sperry JS, Smith DD, Reich PB, von Allmen EI (2010). Hydraulic trade-offs and space filling enable better predictions of vascular structure and function in plants. Proceedings of the National Academy of Sciences of the United States of America, 107, 22722-22727.
URL PMID |
[29] | Shukla RP, Ramakrishnan PS (1986). Architecture and growth strategies of tropical trees in relation to successional status. Journal of Ecology, 74, 33-46. |
[30] | Song YC, Wang XR (1995). Vegetation and Flora of Tiantong National Forest Park in Zhejiang Province. Shanghai Scientific and Technical Document Publishing House, Shanghai. 1-16. |
[ 宋永昌, 王祥荣 (1995). 浙江天童国家森林公园的植被和区系. 上海科学技术文献出版社, 上海. 1-16.] | |
[31] |
Steppe K, Cochard H, Lacointe A, Améglio T (2012). Could rapid diameter changes be facilitated by a variable hydraulic conductance? Plant, Cell & Environment, 35, 150-157.
DOI URL PMID |
[32] |
Sterck FJ, Bongers F, Newbery DM (2001). Tree architecture in a Bornean lowland rain forest: intraspecific and interspecific patterns. Plant Ecology, 153, 279-292.
DOI URL |
[33] |
Thomas SC (1996). Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees. American Journal of Botany, 83, 556-566.
DOI URL |
[34] | Wang BY, Feng YL (2005). Effects of growth light intensities on photosynthesis in seedlings of two tropical rain forest species. Acta Ecologica Sinica, 25, 23-30. (in Chinese with English abstract) |
[ 王博轶, 冯玉龙 (2005). 生长环境光强对两种热带雨林树种幼苗光合作用的影响. 生态学报, 25, 23-30.] | |
[35] | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159. |
[36] | Woodruff DR, Bond BJ, Meinzer FC (2004). Does turgor limit growth in tall trees? Plant, Cell & Environment, 27, 229-236. |
[37] | Wright SJ, Jaramillo MA, Pavon J, Condit R, Hubbell SP, Foster RB (2005). Reproductive size thresholds in tropical trees: variation among individuals, species and forests. Journal of Tropical Ecology, 21, 307-315. |
[38] |
Wright SJ, Kitajima K, Kraft NJ, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, Salvador CM, Zanne AE (2010). Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 91, 3664-3674.
DOI URL PMID |
[39] | Yan ER, Wang XH, Guo M, Zhong Q, Zhou W, Li YF (2009). Temporal patterns of net soil N mineralization and nitrification through secondary succession in the subtropical forests of eastern China. Plant and Soil, 320, 181-194. |
[40] |
Yan ER, Wang XH, Huang JJ (2006). Shifts in plant nutrient use strategies under secondary forest succession. Plant and Soil, 289, 187-197.
DOI URL |
[41] | Yan ER, Wang XH, Zhou W (2008). N:P stoichiometry in secondary succession in evergreen broad-leaved forest, Tiantong, East China. Journal of Plant Ecology (Chinese Version), 32, 13-22. (in Chinese with English abstract) |
[ 阎恩荣, 王希华, 周武 (2008). 天童常绿阔叶林演替系列植物群落的N:P化学计量特征. 植物生态学报, 32, 13-22.] | |
[42] |
Zan QJ, Li MG, Wang BS, Zhou XY (2000). Dynamics of community structure in successional process of needle and broad-leaved mixed forest in Heishiding of Guangdong. Chinese Journal of Applied Ecology, 11, 1-4. (in Chinese with English abstract)
URL PMID |
[ 昝启杰, 李鸣光, 王伯荪, 周先叶 (2000). 黑石顶针阔叶混交林演替过程中群落结构动态. 应用生态学报, 11, 1-4.]
URL PMID |
[1] | NIU Yi-Di, CAI Ti-Jiu. Changes in species diversity and influencing factors in secondary forest succession in northern Da Hinggan Mountains [J]. Chin J Plant Ecol, 2024, 48(3): 349-363. |
[2] | YANG An-Na, LI Zeng-Yan, MOU Ling, YANG Bai-Yu, SAI Bi-Le, ZHANG Li, ZHANG Zeng-Ke, WANG Wan-Sheng, DU Yun-Cai, YOU Wen-Hui, YAN En-Rong. Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai [J]. Chin J Plant Ecol, 2024, 48(3): 377-389. |
[3] | ZHU Hua. Vegetation geography of evergreen broad-leaved forests in Yunnan, southwestern China [J]. Chin J Plant Ecol, 2021, 45(3): 224-241. |
[4] | HE Qiang. Biotic interactions and ecosystem dynamics under global change: from theory to application [J]. Chin J Plant Ecol, 2021, 45(10): 1075-1093. |
[5] | MO Dan, WANG Zhen-Meng, ZUO You-Lu, XIANG Shuang. Trade-off between shooting and leaf developing of woody species saplings in subtropical evergreen broad-leaved forests [J]. Chin J Plant Ecol, 2020, 44(10): 995-1006. |
[6] | FAN Hai-Dong, CHEN Hai-Yan, WU Yan-Nan, LIU Jian-Feng, XU De-Yu, CAO Jia-Yu, YUAN Quan, TAN Bin, LIU Xiao-Tong, XU Jia, WANG Guo-Min, HAN Wen-Juan, LIU Li-Bin, NI Jian. Community characteristics of main vegetation types on the southern slope of Beishan Mountain in Jinhua, Zhejiang, China [J]. Chin J Plant Ecol, 2019, 43(10): 921-928. |
[7] | GU Xiang, ZHANG Shi-Ji, LIU Zhao-Dan, LI Lei-Da, CHEN Jin-Lei, WANG Liu-Fang, FANG Xi. Effects of vegetation restoration on soil organic carbon concentration and density in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2018, 42(5): 595-608. |
[8] | Shun ZOU, Guo-Yi ZHOU, Qian-Mei ZHANG, Shan XU, Xin XIONG, Yan-Ju XIA, Shi-Zhong LIU, Ze MENG, Guo-Wei CHU. Long-term (1992-2015) dynamics of community composition and structure in a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve [J]. Chin J Plant Ecol, 2018, 42(4): 442-452. |
[9] | Han-Dong WEN, Lu-Xiang LIN, Jie YANG, Yue-Hua HU, Min CAO, Yu-Hong LIU, Zhi-Yun LU, You-Neng XIE. Species composition and community structure of a 20 hm2 plot of mid-mountain moist evergreen broad-leaved forest on the Mts. Ailaoshan, Yunnan Province, China [J]. Chin J Plant Ecol, 2018, 42(4): 419-429. |
[10] | Yan-Tao ZHAO, Ming-Shan XU, Zhi-Hao ZHANG, Liu-Li ZHOU, Qing-Qing ZHANG, ARSHAD Ali, Yan-Jun SONG, En-Rong YAN. Hydraulic architecture of evergreen broad-leaved woody plants at different successional stages in Tiantong National Forest Park, Zhejiang Province, China [J]. Chin J Plant Ecol, 2016, 40(2): 116-126. |
[11] | Qiao-Shu-Yi WANG, Cheng-Yang ZHENG, Xin-Yang ZHANG, Fa-Xu ZENG, Juan XING. Impacts of nitrogen addition on foliar nitrogen and phosphorus stoichiometry in a subtropical evergreen broad-leaved forest in Mount Wuyi [J]. Chin J Plant Ecol, 2016, 40(11): 1124-1135. |
[12] | SUN Bao-Wei, YANG Xiao-Dong, ZHANG Zhi-Hao, MA Wen-Ji, Ali ARSHAD, HUANG Hai-Xia, YAN En-Rong. Relationships between soil carbon pool and vegetation carbon return through succession of evergreen broad-leaved forests in Tiantong region, Zhejiang Province, Eastern China [J]. Chin J Plant Ecol, 2013, 37(9): 803-810. |
[13] | LIU Jun, YANG Qing-Pei, SONG Qing-Ni, YU Ding-Kun, YANG Guang-Yao, QI Hong-Yan, SHI Jian-Min. Strategy of fine root expansion of Phyllostachys pubescens population into evergreen broad- leaved forest [J]. Chin J Plant Ecol, 2013, 37(3): 230-238. |
[14] | XIA Yang-Jie, TANG Jian-Qiang, ZHANG Guang-Fu, HUANG Chao, MENG Feng-Qun, SUN Shu-Cun. First and second sets of shoots in five evergreen woody species from Tiantong National Forest Park of Zhejiang, China [J]. Chin J Plant Ecol, 2013, 37(3): 220-229. |
[15] | XU Yue, YANG Xiao-Dong, XIE Yi-Ming, XU Yi-Lu, Scott X CHANG, YAN En-Rong. Twig size-number trade-off among woody plants in Tiantong region, Zhejiang Province of China [J]. Chin J Plant Ecol, 2012, 36(12): 1268-1276. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn