Chin J Plant Ecol ›› 2016, Vol. 40 ›› Issue (11): 1124-1135.DOI: 10.17521/cjpe.2016.0110
Special Issue: 生态化学计量
• Research Articles • Previous Articles Next Articles
Qiao-Shu-Yi WANG, Cheng-Yang ZHENG*(), Xin-Yang ZHANG, Fa-Xu ZENG, Juan XING
Received:
2016-03-24
Accepted:
2016-05-17
Online:
2016-11-10
Published:
2016-11-25
Contact:
Cheng-Yang ZHENG
Qiao-Shu-Yi WANG, Cheng-Yang ZHENG, Xin-Yang ZHANG, Fa-Xu ZENG, Juan XING. Impacts of nitrogen addition on foliar nitrogen and phosphorus stoichiometry in a subtropical evergreen broad-leaved forest in Mount Wuyi[J]. Chin J Plant Ecol, 2016, 40(11): 1124-1135.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2016.0110
Fig. 1 Effects of N addition on foliar N concentrations, P concentrations and N:P ratios in different functional groups (mean ± SE). CK, LN, MN and HN indicate that N addition were 0, 50, 100 and 150 kg N?hm-2?a-1, respectively. Different lowercase letters indicate significant differences between treatments at p < 0.05 levels. A, D, G, Trees. B, E, H, Shrubs. C, F, I, Understory plants.
Fig. 2 Effects of N addition on foliar N concentrations of nine species (mean ± SE). A, Castanopsis carlesii. B, Machilus pauhoi. C, Cunninghamia lanceolata. D, Dendropanax dentiger. E, Eurya japonica. F, Rhododendron henryi. G, Amomum villosum. H, Woodwardia japonica. I, Leucobryum chlorophyllosum. CK, LN, MN and HN indicate that N addition were 0, 50, 100 and 150 kg N?hm-2?a-1, respectively. Different lowercase letters indicate significant differences between treatments at p < 0.05 levels.
Fig. 3 Effects of N addition on foliar P concentrations of nine species (mean ± SE). A, Castanopsis carlesii. B, Machilus pauhoi. C, Cunninghamia lanceolata. D, Dendropanax dentiger. E, Eurya japonica. F, Rhododendron henryi. G, Amomum villosum. H, Woodwardia japonica. I, Leucobryum chlorophyllosum. CK, LN, MN and HN indicate that N addition were 0, 50, 100 and 150 kg N?hm-2?a-1, respectively. Different lowercase letters indicate significant differences between treatments at p < 0.05 levels.
Fig. 4 Effects of N addition on foliar N:P ratios of nine species (mean ± SE). A, Castanopsis carlesii. B, Machilus pauhoi. C, Cunninghamia lanceolata. D, Dendropanax dentiger. E, Eurya japonica. F, Rhododendron henryi. G, Amomum villosum. H, Woodwardia japonica. I, Leucobryum chlorophyllosum. CK, LN, MN and HN indicate that N addition were 0, 50, 100 and 150 kg N?hm-2?a-1, respectively. Different lowercase letters indicate significant differences between treatments at p < 0.05 levels.
Fig. 5 Correlations between the relative effect of foliar N:P ratios and the relative effect of N or P concentrations. HN, LN, MN indicate that N addition were 150, 50 and 100 kg N·hm-2·a-1, respectively.
土层深度 Soil depth (cm) | 处理 Treatment | 全碳 Total C (mg?g-1) | 全氮 Total N (mg?g-1) | 全磷 Total P (mg?g-1) | N:P N:P ratios | pH |
---|---|---|---|---|---|---|
0-5 | CK | 47.44 ± 9.22 | 3.39 ± 0.02 | 0.41 ± 0.02a | 8.28 ± 0.30a | 4.27 ± 0.22 |
LN | 49.53 ± 3.69 | 3.65 ± 0.11 | 0.47 ± 0.02b | 7.83 ± 0.07ab | 4.43 ± 0.15 | |
MN | 43.75 ± 3.53 | 3.24 ± 0.10 | 0.43 ± 0.01ab | 7.54 ± 0.12b | 4.42 ± 0.19 | |
HN | 45.59 ± 5.64 | 3.32 ± 0.16 | 0.46 ± 0.02ab | 7.26 ± 0.22b | 4.45 ± 0.06 | |
5-10 | CK | 36.93 ± 7.59 | 2.62 ± 0.20 | 0.39 ± 0.02 | 6.75 ± 0.21a | 4.40 ± 0.17 |
LN | 36.27 ± 3.25 | 2.81 ± 0.09 | 0.43 ± 0.02 | 6.57 ± 0.31a | 4.49 ± 0.14 | |
MN | 28.38 ± 5.53 | 2.32 ± 0.17 | 0.40 ± 0.02 | 5.76 ± 0.18b | 4.44 ± 0.14 | |
HN | 31.37 ± 2.13 | 2.44 ± 0.08 | 0.41 ± 0.01 | 6.04 ± 0.22ab | 4.58 ± 0.06 |
Table 1 Soil nutrient status under different N addition treatments (mean ± SE)
土层深度 Soil depth (cm) | 处理 Treatment | 全碳 Total C (mg?g-1) | 全氮 Total N (mg?g-1) | 全磷 Total P (mg?g-1) | N:P N:P ratios | pH |
---|---|---|---|---|---|---|
0-5 | CK | 47.44 ± 9.22 | 3.39 ± 0.02 | 0.41 ± 0.02a | 8.28 ± 0.30a | 4.27 ± 0.22 |
LN | 49.53 ± 3.69 | 3.65 ± 0.11 | 0.47 ± 0.02b | 7.83 ± 0.07ab | 4.43 ± 0.15 | |
MN | 43.75 ± 3.53 | 3.24 ± 0.10 | 0.43 ± 0.01ab | 7.54 ± 0.12b | 4.42 ± 0.19 | |
HN | 45.59 ± 5.64 | 3.32 ± 0.16 | 0.46 ± 0.02ab | 7.26 ± 0.22b | 4.45 ± 0.06 | |
5-10 | CK | 36.93 ± 7.59 | 2.62 ± 0.20 | 0.39 ± 0.02 | 6.75 ± 0.21a | 4.40 ± 0.17 |
LN | 36.27 ± 3.25 | 2.81 ± 0.09 | 0.43 ± 0.02 | 6.57 ± 0.31a | 4.49 ± 0.14 | |
MN | 28.38 ± 5.53 | 2.32 ± 0.17 | 0.40 ± 0.02 | 5.76 ± 0.18b | 4.44 ± 0.14 | |
HN | 31.37 ± 2.13 | 2.44 ± 0.08 | 0.41 ± 0.01 | 6.04 ± 0.22ab | 4.58 ± 0.06 |
[1] | Aber JD, McDowell W, Nadelhoffer KJ, Magill AH, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited.Bioscience, 48, 921-934. |
[2] | Aber JD, Melillo JM (1989). Nitrogen saturation in northern forest ecosystems.Bioscience, 39, 378-386. |
[3] | Aerts R (1996). Nutrient resorption from senescing leaves of perennials: Are there general patterns?Journal of Ecology, 84, 597-608. |
[4] | Aerts R, Caluwe HD, Beltman B (2003). Is the relation between nutrient supply and biodiversity co-determined by the type of nutrient limitation?Oikos, 101, 489-498. |
[5] | Aerts R, Peijl MJVD (1993). A simple model to explain the dominance of low productive perennials in nutrient poor habitats.Oikos, 66, 144-147. |
[6] | Ågren GI (2004). The C:N:P stoichiometry of autotrophs— Theory and observations.Ecology Letters, 7, 185-191. |
[7] | Ågren GI, Wetterstedt JÅM, Billberger MFK (2012). Nutrient limitation on terrestrial plant growth—modeling the interaction between nitrogen and phosphorus.New Phytologist, 194, 953-960. |
[8] | Braun S, Thomas VFD, Quiring R, Flückiger W (2010). Does nitrogen deposition increase forest production? The role of phosphorus.Environmental Pollution, 158, 2043-2052. |
[9] | Cui Q, Lü XT, Wang QB, Han XG (2010). Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe.Plant and Soil, 334, 209-219. |
[10] | Demars BOL, Edwards AC (2007). Tissue nutrient concentrations in freshwater aquatic macrophytes: High inter-taxon differences and low phenotypic response to nutrient supply.Freshwater Biology, 52, 2073-2086. |
[11] | Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC, Lawrence M, Galy-Lacaux C, Rast S, Shindell D, Stevenson D, Noije TV, Atherton C, Bell N, Bergman D, Butler T, Cofala J, Collins B, Doherty R, Ellingsen K, Galloway J, Gauss M, Montanaro V, Müller JF, Pitari G, Rodriguez J, Sanderson M, Solmon F, Strahan S, Schultz M, Sudo K, Szopa S, Wild O (2006). Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation.Global Biogeochemical Cycles, 20, 16615. |
[12] | Duval BD, Dijkstra P, Natali SM, Megonigal JP, Ketterer ME, Drake BG, Lerdau MT, Gordon G, Anbar AD, Hungate BA (2011). Plant-soil distribution of potentially toxic elements in response to elevated atmospheric CO2.Environmental Science & Technology, 45, 2570-2574. |
[13] | Elliott KJ, White AS (1994). Effects of light, nitrogen, and phosphorus on red pine seedling growth and nutrient use efficiency.Forest Science, 40, 47-58. |
[14] | Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142. |
[15] | Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ (2010a). Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change.New Phytologist, 186, 593-608. |
[16] | Elser JJ, Peace AL, Kyle M, Wojewodzic M, Mccrackin ML, Andersen T, Hessen DO (2010b). Atmospheric nitrogen deposition is associated with elevated phosphorus limitation of lake zooplankton.Ecology Letters, 13, 1256-1261. |
[17] | Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weide LJ (2000). Biological stoichiometry from genes to ecosystems.Ecology Letters, 3, 540-550. |
[18] | Fang JY, Guo ZD, Hu HF, Kato T, Muraoka H, Son Y (2014). Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.Global Change Biology, 20, 2019-2030. |
[19] | Fang YT, Mo JM, Zhou GY, Gundersen P, Li DJ, Jiang YQ (2004). The short-term responses of soil available nitrogen of Dinghushan forests to simulated N deposition in subtropical China.Acta Ecologica Sinica, 24, 2353-2359. (in Chinese with English abstract)[方运霆, 莫江明, 周国逸, Gundersen P, 李德军, 江远清 (2004). 南亚热带森林土壤有效氮含量及其对模拟氮沉降增加的初期响应. 生态学报, 24, 2353-2359.] |
[20] | Fujita Y, Robroek BJM, Ruiter PCD, Heil GW, Wassen MJ (2010). Increased N affects P uptake of eight grassland species: The role of root surface phosphatase activity.Oikos, 119, 1665-1673. |
[21] | Galloway JN, Dentener FJ, Capone DG, Boyer EW, Howarth RW, Seitzinger SP, Vöosmarty CJ (2004). Nitrogen cycles: Past, present and future.Biogeochemistry, 70, 153-226. |
[22] | Galloway JN, Sutton MA (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions.Science, 320, 889-892. |
[23] | Gao SP, Li JX, Xu MC, Chen X, Dai J (2007). Leaf N and P stoichiometry of common species in successional stages of the evergreen broad-leaved forest in Tiantong National Forest Park, Zhejiang Province, China.Acta Ecologica Sinica, 27, 947-952. (in Chinese with English abstract)[高三平, 李俊祥, 徐明策, 陈熙, 戴洁 (2007). 天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征. 生态学报, 27, 947-952.] |
[24] | Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266. |
[25] | Güsewell S, Koerselman W (2002). Variation in nitrogen and phosphorus concentrations of wetland plants.Perspectives in Plant Ecology Evolution & Systematics, 5, 37-61. |
[26] | Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytologist, 168, 377-385. |
[27] | Han WX, Fang JY, Reich PB, Woodward FI, Wang ZH (2011). Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China.Ecology Letters, 14, 788-796. |
[28] | He JS, Wang L, Dan FBF, Wang XP, Ma WH, Fang JY (2008). Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes.Oecologia, 155, 301-310. |
[29] | Huang WJ, Zhou GY, Liu JX, Zhang DQ, Xu ZH, Liu SZ (2012). Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest.Environmental Pollution, 168, 113-120. |
[30] | Irakli L, Elser JJ (2011). The origins of the red field nitrogento- phosphorus ratio are in a homoeostatic protein-to-rRNA ratio.Ecology Letters, 14, 244-250. |
[31] | Jeyasingh PD, Weider LJ, Sterner RW (2009). Genetically- based trade-offs in response to stoichiometric food quality influence competition in a keystone aquatic herbivore.Ecology Letters, 12, 1229-1237. |
[32] | Kathleen KT, Vitousek PM (2001). Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian Rain Forests. Ecology, 82, 946-954. |
[33] | Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450. |
[34] | Liu JX, Huang WJ, Zhou G, Zhang D, Liu S, Li Y (2013). Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests.Global Change Biology, 19, 208-216. |
[35] | Lu XK, Mo JM, Gilliam FS, Zhou GY, Fang YT (2010). Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest.Global Change Biology, 16, 2688-2700. |
[36] | Magill AH, Aber JD, Berntson GM, Mcdowell WH, Nadelhoffer KJ, Melillo JM, Steudler P (2000). Long-term nitrogen additions and nitrogen saturation in two temperate forests.Ecosystems, 3, 238-253. |
[37] | Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, Mcdowell WH, Melillo JM, Steudler P (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard forest LTER, Massachusetts, USA.Forest Ecology & Management, 196, 7-28. |
[38] | Mahowald N, Jickells TD, Baker AR, Artaxo P, Benitez-Nelson CR, Bergametti G, Bond TC, Chen Y, Cohen DD, Herut B, Kubilay N, Losno R, Luo C, Maenhaut W, McGee KA, Okin GS, Siefert RL, Tsukuda S (2008). Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts.Global Biogeochemical Cycles, 22, 37-42. |
[39] | Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems.New Phytologist, 193, 696-704. |
[40] | Mcnulty SG, Boggs J, Aber JD, Rustad L, Magill A (2005). Red spruce ecosystem level changes following 14 years of chronic N fertilization.Forest Ecology & Management, 219, 279-291. |
[41] | Mo JM, Li DJ, Gundersen P (2008). Seedling growth response of two tropical tree species to nitrogen deposition in southern China.European Journal of Forest Research, 127, 275-283. |
[42] | Nilsson LO, Wallander H (2003). Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization.New Phytologist, 158, 409-416. |
[43] | Reich PB (2003). The evolution of plant functional variation: Traits, spectra and strategies.International Journal of Plant Sciences, 164, 143-164. |
[44] | Reich PB, Bowman WD (1999). Generality of leaf trait relationships: A test across six biomes.Ecology, 80, 1955-1969. |
[45] | Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006. |
[46] | Rowe EC, Smart SM, Kennedy VH, Emmett BA, Evans CD (2008). Nitrogen deposition increases the acquisition of phosphorus and potassium by heather calluna vulgaris.Environmental Pollution, 155, 201-207. |
[47] | Sardans J, Rivas-Ubach A, Peñuelas J (2012). The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives.Perspectives in Plant Ecology Evolution & Systematics, 14, 33-47. |
[48] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, USA. |
[49] | Tessier JT, Raynal DJ (2003). Use of nitrogen to phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation.Journal of Applied Ecology, 40, 523-534. |
[50] | Thompson K, Parkinson JA, Band SR, Spencer RE (1997). A comparative study of leaf nutrient concentrations in a regional herbaceous flora.New Phytologist, 136, 679-689. |
[51] | Tilman D (1990). Constraints and tradeoffs: Toward a predictive theory of competition and succession.Oikos, 58, 3-15. |
[52] | Townsend AR, Bustamante MMC (2007). Controls over foliar N:P ratios in tropical rain forests.Ecology, 88, 107-118. |
[53] | Treseder KK (2008). Nitrogen additions and microbial biomass: A meta-analysis of ecosystem studies.Ecology Letters, 11, 1111-1120. |
[54] | Treseder KK, Vitousek PM (2001). Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests.Ecology, 82, 946-954. |
[55] | Vitousek PM, Stephen P, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: Mechanisms, implications and nitrogen-phosphorus interactions.Ecological Applications, 20, 5-15. |
[56] | Vitousek PM, Tilman DG (1997). Technical report: Human alteration of the global nitrogen cycle: Sources and consequences.Ecological Applications, 7, 737-750. |
[57] | Wright RF, Rasmussen L (1998). Introduction to the NITREX and EXMAN projects.Forest Ecology & Management, 101, 1-7. |
[1] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[2] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[3] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[4] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[5] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[6] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[7] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[8] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
[9] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[10] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[11] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[12] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[13] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
[14] | YANG Jian-Qiang, DIAO Hua-Jie, HU Shu-Ya, WANG Chang-Hui. Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China [J]. Chin J Plant Ecol, 2021, 45(7): 780-789. |
[15] | WU Yun-Tao, YANG Sen, WANG Xin, HUANG Jun-Sheng, WANG Bin, LIU Wei-Xing, LIU Ling-Li. Responses of soil nitrogen in different soil organic matter fractions to long-term nitrogen addition in a semi-arid grassland [J]. Chin J Plant Ecol, 2021, 45(7): 790-798. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn