Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (1): 45-53.DOI: 10.3724/SP.J.1258.2014.00005
Special Issue: 生态系统碳水能量通量; 土壤呼吸
• Research Articles • Previous Articles Next Articles
WU Jun-Jun, YANG Zhi-Jie*(), LIU Xiao-Fei, XIONG De-Cheng, LIN Wei-Sheng, CHEN Chao-Qi, WANG Xiao-Hong
Received:
2013-10-21
Accepted:
2013-12-05
Online:
2014-10-21
Published:
2014-01-15
Contact:
YANG Zhi-Jie
WU Jun-Jun, YANG Zhi-Jie, LIU Xiao-Fei, XIONG De-Cheng, LIN Wei-Sheng, CHEN Chao-Qi, WANG Xiao-Hong. Analysis of soil respiration and components in Castanopsis carlesiiand Cunninghamia lanceolataplantations[J]. Chin J Plant Ecol, 2014, 38(1): 45-53.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00005
试验地 Study site | 土壤深度 Soil depth (cm) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 容重 Bulk density (g·cm-3) | pH | 年凋落物量 Annual litter-fall biomass (t·hm-2) |
---|---|---|---|---|---|---|---|
米槠人工林 Castanopsis carlesii plantation | 0-10 | 29.84 | 1.97 | 0.48 | 1.12 | 4.40 | 5.91 |
10-20 | 17.90 | 1.36 | 0.52 | 1.24 | 4.10 | ||
杉木人工林 Cunninghamia lanceolata plantation | 0-10 | 22.91 | 1.51 | 0.36 | 1.20 | 4.87 | 3.40 |
10-20 | 14.47 | 1.01 | 0.31 | 1.35 | 4.64 |
Table 1 Major characteristics of study sites and surface soil (0-20 cm depth) properties
试验地 Study site | 土壤深度 Soil depth (cm) | 有机碳 Organic carbon (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 容重 Bulk density (g·cm-3) | pH | 年凋落物量 Annual litter-fall biomass (t·hm-2) |
---|---|---|---|---|---|---|---|
米槠人工林 Castanopsis carlesii plantation | 0-10 | 29.84 | 1.97 | 0.48 | 1.12 | 4.40 | 5.91 |
10-20 | 17.90 | 1.36 | 0.52 | 1.24 | 4.10 | ||
杉木人工林 Cunninghamia lanceolata plantation | 0-10 | 22.91 | 1.51 | 0.36 | 1.20 | 4.87 | 3.40 |
10-20 | 14.47 | 1.01 | 0.31 | 1.35 | 4.64 |
Fig. 1 Annual dynamics of soil respiration rate (RS), hetero- trophic respiration rate (RH), and autotrophic respiration rate (RA) in Castanopsis carlesii and Cunninghamia lanceolata plantations (mean ± SD).
米槠人工林 Castanopsis carlesii plantation | 杉木人工林 Cunninghamia lanceolata plantation | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERA | ERH | ERS | ERA | ERH | ERS | |||||||||||||||
年通量 Annual CO2 efflux (t C·hm-2·a-1) | 4.00 ± 0.77 | 8.32 ± 0.52 | 12.30 ± 0.80 | 2.18 ± 0.88 | 6.88 ± 1.23 | 9.06 ± 0.82 | ||||||||||||||
ERA和ERH在ERS中的比例(%) The proportion of ERH and ERAto ERS (%) | 32.5 | 67.5 | 100.0 | 24.1 | 75.9 | 100.0 | ||||||||||||||
Q10 | 3.74 | 1.92 | 2.41 | 3.00 | 1.82 | 2.12 |
Table 2 Annual CO2 efflux of soil respiration and partitioning of the components and the temperature sensitivity of soil respiration (Q10) (mean ± SD)
米槠人工林 Castanopsis carlesii plantation | 杉木人工林 Cunninghamia lanceolata plantation | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERA | ERH | ERS | ERA | ERH | ERS | |||||||||||||||
年通量 Annual CO2 efflux (t C·hm-2·a-1) | 4.00 ± 0.77 | 8.32 ± 0.52 | 12.30 ± 0.80 | 2.18 ± 0.88 | 6.88 ± 1.23 | 9.06 ± 0.82 | ||||||||||||||
ERA和ERH在ERS中的比例(%) The proportion of ERH and ERAto ERS (%) | 32.5 | 67.5 | 100.0 | 24.1 | 75.9 | 100.0 | ||||||||||||||
Q10 | 3.74 | 1.92 | 2.41 | 3.00 | 1.82 | 2.12 |
RS= aebT | RS= aW + b | RS= aebTWc | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | c | R2 | ||
米槠人工林 Castanopsis carlesii plantation | RA | 0.047 | 0.154 | 0.734** | 1.693 | -0.027 | 0.025 | 0.021 | 0.186 | 0.055 | 0.701** |
RH | 0.616 | 0.065 | 0.582** | 1.184 | 0.055 | 0.149 | 0.160 | 0.087 | 0.312 | 0.677** | |
RS | 0.573 | 0.088 | 0.703** | 3.774 | -0.014 | 0.002 | 0.181 | 0.119 | 0.197 | 0.727** | |
杉木人工林 Cunninghamia lanceolata plantation | RA | 0.094 | 0.110 | 0.657** | 0.653 | 0.015 | 0.044 | 0.069 | 0.094 | 0.256 | 0.652** |
RH | 0.528 | 0.060 | 0.792** | 1.738 | -0.001 | 0.000 | 0.278 | 0.066 | 0.127 | 0.720** | |
RS | 0.593 | 0.075 | 0.779** | 2.103 | 0.029 | 0.038 | 0.323 | 0.079 | 0.194 | 0.785** |
Table 3 Parameters for different models showing the relationships of soil respiration with soil temperature (T) and soil water content (W)
RS= aebT | RS= aW + b | RS= aebTWc | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
a | b | R2 | a | b | R2 | a | b | c | R2 | ||
米槠人工林 Castanopsis carlesii plantation | RA | 0.047 | 0.154 | 0.734** | 1.693 | -0.027 | 0.025 | 0.021 | 0.186 | 0.055 | 0.701** |
RH | 0.616 | 0.065 | 0.582** | 1.184 | 0.055 | 0.149 | 0.160 | 0.087 | 0.312 | 0.677** | |
RS | 0.573 | 0.088 | 0.703** | 3.774 | -0.014 | 0.002 | 0.181 | 0.119 | 0.197 | 0.727** | |
杉木人工林 Cunninghamia lanceolata plantation | RA | 0.094 | 0.110 | 0.657** | 0.653 | 0.015 | 0.044 | 0.069 | 0.094 | 0.256 | 0.652** |
RH | 0.528 | 0.060 | 0.792** | 1.738 | -0.001 | 0.000 | 0.278 | 0.066 | 0.127 | 0.720** | |
RS | 0.593 | 0.075 | 0.779** | 2.103 | 0.029 | 0.038 | 0.323 | 0.079 | 0.194 | 0.785** |
气候带 Climatic zone | 植被类型 Vegetation type | 方法 Method | RA/RS (%) | 参考文献 Reference |
---|---|---|---|---|
寒温带 Cold temperate zone | 挪威云杉林 Picea abies forest | 环割 Tree-girdling | 53 | H?gberget al., |
枹栎林 Quercus serrataforest | 壕沟 Trench | 23 | Tomotsune et al., | |
温带 Temperate zone | 落叶林 Deciduous forest | 环割 Tree-girdling | 50 | Levy-Varon et al., |
冷杉林 Abies holophyllaforest | 壕沟 Trench | 34 | Lee et al., | |
落叶林 Deciduous forest | 壕沟 Trench | 31 | Lee et al., | |
蒙古栎林 Quercus mongolicaforest | 壕沟 Trench | 67 | Wang &Yang, | |
山杨林 Populus davidiana forest | 壕沟 Trench | 77 | Wang &Yang, | |
阔叶林 Broad-leaved forest | 壕沟 Trench | 69 | Wang &Yang, | |
山杨和白桦混交林 Populus davidianaand Betula platyphyllamixed forest | 壕沟 Trench | 62 | Wang &Yang, | |
红松林 Pinus koraiensisforest | 壕沟 Trench | 83 | Wang &Yang, | |
落叶松林 Larix gmeliniiforest | 壕沟 Trench | 52 | Wang &Yang, | |
锐齿栎林 Quercus acutidentata forest | 壕沟 Trench | 18.4-39.9 | Luan et al., | |
杨树林 Hybrid poplar forest | 壕沟 Trench | 37 | Saurette et al., | |
亚热带 Subtropical zone | 杉木林 Cunninghamia lanceolataforest | 壕沟 Trench | 33 | Tian et al., |
次生林 Secondary forest | 壕沟 Trench | 31 | Shen et al., | |
锥栗林 Castanopsis chinensis forest | 壕沟和排除根系 Trench and root exclusion | 52-56 | Yi et al., | |
马尾松林 Pinus massoniana forest | 壕沟和排除根系 Trench and root exclusion | 55-63 | Yi et al., | |
马尾松和木荷混交林 Pinus massonianaand Schima superbamixed forest | 壕沟和排除根系 Trench and root exclusion | 54-59 | Yi et al., | |
马尾松林 Pinus massoniana forest | 壕沟 Trench | 39.48 | Han et al., | |
针阔叶混交林 Coniferous and broad-leaved mixed forest | 壕沟 Trench | 33.29 | Han et al., | |
季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 壕沟 Trench | 44.52 | Han et al., | |
杉木林 Cunninghamia lanceolata forest | 壕沟 Trench | 24.1 | 本研究 This study | |
米槠林 Castanopsis carlesii forest | 壕沟 Trench | 32.5 | 本研究 This study | |
热带 Tropical zone | 低地雨林 Lowland tropical forest | 壕沟 Trench | 38 | Sayer & Tanner, |
桉树林 Eucalyptus forest | 壕沟 Trench | 48 | Marsden et al., | |
多树草原 Woody savannas | 壕沟 Trench | 63 | Butler et al., |
Table 4 Proportions of annual CO2 efflux through autotrophic respiration of forest soil to soil respiration in different climate zones
气候带 Climatic zone | 植被类型 Vegetation type | 方法 Method | RA/RS (%) | 参考文献 Reference |
---|---|---|---|---|
寒温带 Cold temperate zone | 挪威云杉林 Picea abies forest | 环割 Tree-girdling | 53 | H?gberget al., |
枹栎林 Quercus serrataforest | 壕沟 Trench | 23 | Tomotsune et al., | |
温带 Temperate zone | 落叶林 Deciduous forest | 环割 Tree-girdling | 50 | Levy-Varon et al., |
冷杉林 Abies holophyllaforest | 壕沟 Trench | 34 | Lee et al., | |
落叶林 Deciduous forest | 壕沟 Trench | 31 | Lee et al., | |
蒙古栎林 Quercus mongolicaforest | 壕沟 Trench | 67 | Wang &Yang, | |
山杨林 Populus davidiana forest | 壕沟 Trench | 77 | Wang &Yang, | |
阔叶林 Broad-leaved forest | 壕沟 Trench | 69 | Wang &Yang, | |
山杨和白桦混交林 Populus davidianaand Betula platyphyllamixed forest | 壕沟 Trench | 62 | Wang &Yang, | |
红松林 Pinus koraiensisforest | 壕沟 Trench | 83 | Wang &Yang, | |
落叶松林 Larix gmeliniiforest | 壕沟 Trench | 52 | Wang &Yang, | |
锐齿栎林 Quercus acutidentata forest | 壕沟 Trench | 18.4-39.9 | Luan et al., | |
杨树林 Hybrid poplar forest | 壕沟 Trench | 37 | Saurette et al., | |
亚热带 Subtropical zone | 杉木林 Cunninghamia lanceolataforest | 壕沟 Trench | 33 | Tian et al., |
次生林 Secondary forest | 壕沟 Trench | 31 | Shen et al., | |
锥栗林 Castanopsis chinensis forest | 壕沟和排除根系 Trench and root exclusion | 52-56 | Yi et al., | |
马尾松林 Pinus massoniana forest | 壕沟和排除根系 Trench and root exclusion | 55-63 | Yi et al., | |
马尾松和木荷混交林 Pinus massonianaand Schima superbamixed forest | 壕沟和排除根系 Trench and root exclusion | 54-59 | Yi et al., | |
马尾松林 Pinus massoniana forest | 壕沟 Trench | 39.48 | Han et al., | |
针阔叶混交林 Coniferous and broad-leaved mixed forest | 壕沟 Trench | 33.29 | Han et al., | |
季风常绿阔叶林 Monsoon evergreen broad-leaved forest | 壕沟 Trench | 44.52 | Han et al., | |
杉木林 Cunninghamia lanceolata forest | 壕沟 Trench | 24.1 | 本研究 This study | |
米槠林 Castanopsis carlesii forest | 壕沟 Trench | 32.5 | 本研究 This study | |
热带 Tropical zone | 低地雨林 Lowland tropical forest | 壕沟 Trench | 38 | Sayer & Tanner, |
桉树林 Eucalyptus forest | 壕沟 Trench | 48 | Marsden et al., | |
多树草原 Woody savannas | 壕沟 Trench | 63 | Butler et al., |
[1] | Adachi M, Bekku YS, Rashidah W, Okuda T, Koizumi H (2006). Differences in soil respiration between different tropical ecosystems. Applied Soil Ecology, 34,258-265. |
[2] |
Bond-Lamberty B, Thomson A (2010). Temperature-associated increases in the global soil respiration record. Nature, 464,579-583.
DOI URL PMID |
[3] | Bond-Lamberty B, Wang CK, Gower ST (2004). A global relationship between the heterotrophic and autotrophic components of soil respiration? Global Change Biology, 10,1756-1766. |
[4] | Borken W, Xu YJ, Davidson EA, Beese F (2002). Site and temporal variation of soil respiration in European beech, Norway spruce and Scots pine forests. Global Change Biology, 8,1205-1216. |
[5] | Butler A, Meir P, Saiz G, Maracahipes L, Marimon BS, Grace J (2012). Annual variation in soil respiration and its component parts in two structurally contrasting woody savannas in Central Brazil. Plant and Soil, 352,129-142. |
[6] | Carbone MS, Trumbore SE (2007). Contribution of new photosynthetic assimilates to respiration by perennial grasses and shrubs: residence times and allocation patterns. New Phytologist, 176,124-135. |
[7] | Chen GS, Yang YS, Lü PP (2008). Regional patterns of soil respiration in China’s forests. Acta Ecologica Sinica, 28,1748-1761. (in Chinese with English abstract) |
[ 陈光水, 杨玉盛, 吕萍萍 (2008). 中国森林土壤呼吸模式. 生态学报, 28,1748-1761.] | |
[8] | Comstedt D, Boström B, Ekblad A (2011). Autotrophic and heterotrophic soil respiration in a Norway spruce forest: estimating the root decomposition and soil moisture effects in a trenching experiment. Biogeochemistry, 104,121-132. |
[9] | Craine JM, Fierer N, McLauchlan K (2010). Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nature Geoscience, 3,854-857. |
[10] | Dannoura M, Maillard P, Fresneau C, Plain C, Berveiller D, Gerant D, Chipeaux C, Bosc A, Ngao J, Damesin C, Loustau D, Epron D (2011). In situ assessment of the velocity of carbon transfer by tracing 13C in trunk CO 2 efflux after pulse labelling: variations among tree species and seasons. New Phytologist, 190,181-192. |
[11] | Davidson EA, Janssens IA, Luo YQ (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q 10. Global Change Biology, 12,154-164. |
[12] | Fang C, Moncrieff JB (2001). The dependence of soil CO 2 efflux on temperature. Soil Biology & Biochemistry, 33,155-165. |
[13] | Fischer DG, Hart SC, LeRoy CJ, Whitham TG (2007). Variation in below-ground carbon fluxes along a Populus hybridization gradient. New Phytologist, 176,415-425. |
[14] | Fu SL, Cheng WX, Susfalk R (2002). Rhizosphere respiration varies with plant species and penology, a greenhouse pot experiment. Plant and Soil, 239,133-140. |
[15] |
Gaumont-Guay D, Black TA, Barr AG, Jassal RS, Nesic Z (2008). Biophysical controls on rhizospheric and heterotrophic components of soil respiration in a boreal black spruce stand. Tree Physiology, 28,161-171.
DOI URL PMID |
[16] | Gaumont-Guay D, Black TA, Mccaughey H, Barr AG, Krishnan P, Jassal RS, Nesic Z (2009). Soil CO 2 efflux in contrasting boreal deciduous and coniferous stands and its contribution to the ecosystem carbon balance. Global Change Biology, 15,1302-1319. |
[17] | Han TF, Zhou YG, Li YL, Liu XJ, Zhang DQ (2011). Partitioning soil respiration in lower subtropical forests at different successional stages in southern China. Chinese Journal of Plant Ecology, 35,946-954. (in Chinese with English abstract) |
[ 韩天丰, 周国逸, 李跃林, 刘菊秀, 张德强 (2011). 中国南亚热带森林不同演替阶段土壤呼吸的分离量化. 植物生态学报, 35,946-954.] | |
[18] | Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48,115-146. |
[19] | Högberg P, Bhupinderpal-Sing h, Löfvenius MO, Nordgren A (2009). Partitioning of soil respiration into its autotrophic and heterotrophic components by means of tree-girdling in old boreal spruce forest. Forest Ecology and Management, 257,1764-1767. |
[20] |
Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Löfvenius MO, Read DJ (2001). Large-scale forest girdling shows that current photosy- nthesis drives soil respiration. Nature, 411,789-792.
URL PMID |
[21] |
Högberg P, Read DJ (2006). Towards a more plant physiological perspective on soil ecology. Trends in Ecology and Evolution, 21,548-554.
DOI URL PMID |
[22] | Janssens IA, Carrara A, Ceulemans R (2004). Annual Q 10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Global Change Biology, 10,161-169. |
[23] | Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas-fir stand. Global Change Biology, 14,1305-1318. |
[24] |
Johnson D, Phoenix GK, Grime JP (2008). Plant community composition, not diversity, regulates soil respiration in grasslands. Biology Letters, 4,345-348.
URL PMID |
[25] |
Karhu K, Fritze H, Hämäläinen K, Vanhala P, Jungner H, Oinonen M, Sonninen E, Tuomi M, Spetz P, Kitunen V, Liski J (2010). Temperature sensitivity of soil carbon fractions in boreal forest soil. Ecology, 91,370-376.
DOI URL PMID |
[26] | Kutsch LW, Staack A, Wötzel J, Middelhoff U, Kappen L (2001). Field measurements of root respiration and total soil respiration in an alder forest. New Phytologist, 150,157-168. |
[27] | Kuzyakov Y (2006). Sources of CO 2 efflux from soil and review of partitioning methods. Soil Biology & Biochemistry, 38,425-488. |
[28] | Kuzyakov Y, Gabrichkova O (2010). Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology, 16,3386-3406. |
[29] | Laik R, Kumar K, Das DK, Chaturvedi OP (2009). Labile soil organic matter pools in a calciorthent after 18 years of afforestation by different plantations. Applied Soil Ecology, 42,71-78. |
[30] | Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernier PY, Robitaille G (2003). Soil respiration responses to tempera- ture are controlled more by roots than by decomposition in balsam fir ecosystems. Canadian Journal of Forest Research, 33,1744-1753. |
[31] |
Lee NY, Koo JW, Noh NJ, Kim J, Son Y (2010). Autotrophic and heterotrophic respiration in needle fir and Quercus- dominated stands in a cool-temperate forest, central Korea. Journal of Plant Research, 123,485-495.
DOI URL PMID |
[32] |
Levy-Varon JH, Schuster WSF, Griffin KL (2012). The autotrophic contribution to soil respiration in a northern temperate deciduous forest and its response to stand disturbance. Oecologia, 169,211-220.
DOI URL PMID |
[33] | Liu Q (2012). The Amount and Nutrient Dynamics of Litterfall in Mid-subtropical Forest with Different Regeneration Patterns. Master degree dissertation, Fujian Normal University, Fuzhou. (in Chinese with English abstract) |
[ 刘强 (2012). 中亚热带不同更新方式森林凋落物数量及养分动态. 硕士学位论文, 福建师范大学, 福州.] | |
[34] | Luan JW, Liu SR, Wang JX, Zhu XL, Shi ZM (2011). Rhizospheric and heterotrophic respiration of a warm-tem- perate oak chronosequence in China. Soil Biology & Biochemistry, 43,503-512. |
[35] | Marsden C, Nouvellon Y, M’Bou AT, Saint-Andre L, Jourdan C, Kinana A, Epron D (2008). Two independent estimations of stand-level root respiration on clonal Eucalyptus stands in Congo: up scaling of direct measurements on roots versus the trenched-plot technique. New Phytologist, 177,676-687. |
[36] | Mikan CJ, Schimel JP, Doyle AP (2002). Temperature controls of microbial respiration in arctic tundra soils above and below freezing. Soil Biology & Biochemistry, 34,1785-1795. |
[37] | Moren AS, Lindroth A (2000). CO 2 exchange at the floor of a boreal forest. Agricultural and Forest Meteorology, 101,1-14. |
[38] | Moyano FE, Kutsch WL, Schulze ED (2007). Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biology & Biochemistry, 39,843-853. |
[39] | Ngao J, Longdoz B, Granier A, Epron D (2007). Estimation of autotrophic and heterotrophic components of soil respiration by trenching is sensitive to corrections for root decomposition and changes in soil water content. Plant and Soil, 301,99-110. |
[40] | Nordgren A, Löfvenius MO, Högberg MN, Mellander PE, Högberg P (2003). Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant, Cell & Environment, 26,1287-1296. |
[41] | Raich JW, Potter CS, Bhagawati D (2002). Inter annual variability in global soil respiration, 1980-94. Global Change Biology, 8,800-812. |
[42] | Reichstein M, Rey A, Freibauer A, Tenhunen J, Valentini R, Banza J, Casals P, Cheng YF, Grünzweig JM, Irvine J, Joffre R, Law BE, Loustau D, Miglietta F, Oechel W, Ourcival JM, Pereira JS, Peressotti A, Ponti F, Qi Y, Rambal S, Rayment M, Romanya J, Rossi F, Tedeschi V, Tirone G, Xu M, Yakir D (2003). Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemistry Cycles, 17,1104-1119. |
[43] | Rey A, Pegoraro E, Tedeschi V, Parri ID, Jarvis PG, Valentini R (2002). Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biology, 8,851-886. |
[44] | Ryan MG, Law BE (2005). Interpreting, measuring, and modeling soil respiration. Biogeochemistry, 73,3-27. |
[45] | Saurette DD, Chang SX, Thomas BR (2008). Autotrophic and heterotrophic respiration rates across a chronosequence of hybrid poplar plantations in northern Alberta. Canadian Journal of Soil Science, 88,261-272. |
[46] | Sayer EJ, Tanner EV (2010). A new approach to trenching experiments for measuring root-rhizosphere respiration in a lowland tropical forest. Soil Biology & Biochemistry, 42,347-352. |
[47] | Schindlbacher A, Zechmeister-Boltenstern S, Jandl R (2009). Carbon losses due to soil warming: Do autotrophic and heterotrophic soil respiration respond equally? Global Change Biology, 15,901-913. |
[48] | Shen XS, Chen ST, Hu ZH, Shi YS, Zhang Y (2011). Investigation of heterotrophic and autotrophic components of soil respiration in a secondary forest in subtropical China. Environmental Science, 32,3181-3187. (in Chinese with English abstract) |
[ 沈小帅, 陈书涛, 胡正华, 史燕姝, 张勇 (2011). 亚热带次生林土壤自养和异养呼吸研究. 环境科学, 32,3181-3187.] | |
[49] | Subke JA, Inglima I, Cotrufo MF (2006). Trends and metho-dological impacts in soil CO 2 efflux partitioning: a meta- analytical review. Global Change Biology, 12,921-943. |
[50] | Sulzman EW, Brant JB, Bowden RD, Lajtha K (2005). Contribution of aboveground litter, belowground litter and rhizosphere respiration to total soil CO 2 efflux in an old growth coniferous forest. Biogeochemistry, 73,231-256. |
[51] | Tang JW, Bolstad PV, Martin JG (2009). Soil carbon fluxes and stocks in a Great Lakes forest chronosequence. Global Change Biology, 15,145-155. |
[52] | Tian DL, Wang GJ, Peng YY, Yan WD, Fang X, Zhu F, Chen XY (2011). Contribution of autotrophic and heterotrophic respiration to soil CO 2 efflux in Chinese fir plantations. Australian Journal of Botany, 59,26-31. |
[53] | Tierney GL, Fahey TJ, Groffman PM, Hardy JP, Fitzhugh RD, Driscoll CT, Yavitt JB (2003). Environmental control of fine root dynamics in a northern hardwood forest. Global Change Biology, 9,670-679. |
[54] | Tomotsune M, Yoshitake S, Watanabe S, Koizumi H (2013). Separation of root and heterotrophic respiration within soil respiration by trenching, root biomass regression and root excising methods in a cool-temperate deciduous forest in Japan. Ecological Research, 28,259-269. |
[55] | Vasconcelos SS, Zarin DJ, Capanu M, Littell R, Davidson EA, Ishida FY, Santos EB, Araújo MM, Aragão DV, Rangel-Vasconcelos LGT, Oliveira F, McDowell WH, de Carvalho CJR (2004). Moisture and substrate availability constrain soil trace gas fluxes in an eastern Amazonian regrowth forest. Global Biogeochemical Cycles, 18,1-10. |
[56] | Wang CK, Yang JY (2007). Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Global Change Biology, 13,123-131. |
[57] | Wang W, Chen WL, Wang SP (2010). Forest soil respiration and its heterotrophic and autotrophic components: global patterns and responses to temperature and precipitation. Soil Biology & Biochemistry, 42,1236-1244. |
[58] | Widen B, Majdi H (2001). Soil CO 2 efflux and root respiration at three sites in a mixed pine and spruce forest: seasonal and diurnal variation. Canadian Journal of Forest Research, 31,786-796. |
[59] |
Yang YS, Chen GS, Guo JF, Xie JS, Wang XG (2007). Soil respiration and carbon balance in a subtropical native forest and two managed plantations. Plant Ecology, 193,71-84.
DOI URL |
[60] | Yang YS, Chen GS, Lin P, Huang RZ, Chen YX, He ZM (2003). Fine root distribution, seasonal pattern and produc- tion in a native forest and monoculture plantations in subtropical China. Acta Ecologica Sinica, 23,1719-1730. |
[61] | Yi ZG, Fu SL, Yi WM, Zhou GY, Mo JM, Zhang DQ, Ding MM, Wang XM, Zhou LX (2007). Partitioning soil respi- ration of subtropical forests with different successional stages in south China. Forest Ecology and Management, 243,178-186. |
[1] | SHEN Jian, HE Zong-Ming, DONG Qiang, GAO Shi-Lei, LIN Yu. Effects of mild fire on soil respiration rate and abiotic factors in coastal sandy plantation [J]. Chin J Plant Ecol, 2023, 47(7): 1032-1042. |
[2] | YANG Ze, null null, TAN Xing-Ru, YOU Cui-Hai, WANG Yan-Bing, YANG Jun-Jie, HAN Xing-Guo, CHEN Shi-Ping. Effects of nitrogen addition amount and frequency on soil respiration and its components in a temperate semiarid grassland [J]. Chin J Plant Ecol, 2020, 44(10): 1059-1072. |
[3] | YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364. |
[4] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
[5] | LI Wei-Jing, CHEN Shi-Ping, ZHANG Bing-Wei, TAN Xing-Ru, WANG Shan-Shan, YOU Cui-Hai. Partitioning of soil respiration components and evaluating the mycorrhizal contribution to soil respiration in a semiarid grassland [J]. Chin J Plan Ecolo, 2018, 42(8): 850-862. |
[6] | Yong BAO, Ying GAO, Xiao-Min ZENG, Ping YUAN, You-Tao SI, Yue-Min CHEN, Ying-Yi CHEN. Relationships between carbon and nitrogen contents and enzyme activities in soil of three typical subtropical forests in China [J]. Chin J Plant Ecol, 2018, 42(4): 508-516. |
[7] | WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plant Ecol, 2018, 42(3): 382-396. |
[8] | Zhi-Cheng ZHU, Yin HUANG, Feng-Wei XU, Wen XING, Shu-Xia ZHENG, Yong-Fei BAI. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland [J]. Chin J Plant Ecol, 2017, 41(9): 938-952. |
[9] | Xiao-Gai GE, Ben-Zhi ZHOU, Wen-Fa XIAO, Xiao-Ming WANG, Yong-Hui CAO, Ming YE. Effects of biochar addition on dynamics of soil respiration and temperature sensitivity in a Phyllostachys edulis forest [J]. Chin J Plant Ecol, 2017, 41(11): 1177-1189. |
[10] | Qiang ZHANG, Jia-Xiang LI, Zong-Qiang XIE. Effects of nitrogen addition on soil respiration of Rhododendron simsii shrubland in the subtropical mountainous areas of China [J]. Chin J Plant Ecol, 2017, 41(1): 95-104. |
[11] | Hu DU, Fu-Ping ZENG, Tong-Qing SONG, Yuan-Guang WEN, Chun-Gan LI, Wan-Xia PENG, Hao ZHANG, Zhao-Xia ZENG. Spatial pattern of soil organic carbon of the main forest soils and its influencing factors in Guangxi, China [J]. Chin J Plant Ecol, 2016, 40(4): 282-291. |
[12] | YAO Hui,HU Xue-Yang,ZHU Jiang-Ling,ZHU Jian-Xiao,JI Cheng-Jun,FANG Jing-Yun. Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing [J]. Chin J Plan Ecolo, 2015, 39(9): 849-856. |
[13] | LI Su,LIU Wen-Yao,SHI Xian-Meng,LIU Shuai,HU Tao,HUANG Jun-Biao,CHEN Xi,SONG Liang,WU Chuan-Sheng. Responses of the distribution of four epiphytic cyanolichens to habitat changes in subtropical forests [J]. Chin J Plan Ecolo, 2015, 39(3): 217-228. |
[14] | WANG Qing-Kui,LI Yan-Peng,ZHANG Fang-Yue,HE Tong-Xin. Short-term nitrogen fertilization decreased root and microbial respiration in a young Cunninghamia lanceolata plantation [J]. Chin J Plan Ecolo, 2015, 39(12): 1166-1175. |
[15] | WANG Ming, LIU Xing-Tu, ZHANG Ji-Tao, LI Xiu-Jun, WANG Guo-Dong, LU Xin-Rui, LI Xiao-Yu. Spatio-temporal variations of soil respiration in five typical plant communities in the meadow steppe of the western Songnen Plain, China [J]. Chin J Plant Ecol, 2014, 38(4): 396-404. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn