Chin J Plant Ecol ›› 2014, Vol. 38 ›› Issue (10): 1053-1063.DOI: 10.3724/SP.J.1258.2014.00099
• Research Articles • Previous Articles Next Articles
LONG Feng-Ling1,2, LI Yi-Yong1,2, FANG Xiong1,2, HUANG Wen-Juan1,2, LIU Shuang-E1,2, LIU Ju-Xiu1,*()
Received:
2014-03-04
Accepted:
2014-07-28
Online:
2014-03-04
Published:
2021-04-20
Contact:
LIU Ju-Xiu
LONG Feng-Ling, LI Yi-Yong, FANG Xiong, HUANG Wen-Juan, LIU Shuang-E, LIU Ju-Xiu. Effects of elevated CO2 concentration and nitrogen addition on soil carbon stability in southern subtropical experimental forest ecosystems[J]. Chin J Plant Ecol, 2014, 38(10): 1053-1063.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2014.00099
土壤深度 Soil depth (cm) | pH | K | Na | Ca | Mg | P | 有机碳 Organic C | N | 有效磷 Available P |
---|---|---|---|---|---|---|---|---|---|
0-20 | 4.15 (0.15) | 6.30 (0.73) | 0.64 (0.19) | 1.03 (0.22) | 1.03 (0.13) | 0.30 (0.09) | 16.33 (3.42) | 0.52 (0.15) | 2.13 (0.93) |
20-40 | 4.27 (0.15) | 5.03 (1.11) | 0.63 (0.49) | 0.57 (0.27) | 0.84 (0.22) | 0.18 (0.19) | 7.78 (0.91) | 0.36 (0.05) | 0.42 (0.21) |
Table 1 Physical and chemical parameter analysis of the tested soils
土壤深度 Soil depth (cm) | pH | K | Na | Ca | Mg | P | 有机碳 Organic C | N | 有效磷 Available P |
---|---|---|---|---|---|---|---|---|---|
0-20 | 4.15 (0.15) | 6.30 (0.73) | 0.64 (0.19) | 1.03 (0.22) | 1.03 (0.13) | 0.30 (0.09) | 16.33 (3.42) | 0.52 (0.15) | 2.13 (0.93) |
20-40 | 4.27 (0.15) | 5.03 (1.11) | 0.63 (0.49) | 0.57 (0.27) | 0.84 (0.22) | 0.18 (0.19) | 7.78 (0.91) | 0.36 (0.05) | 0.42 (0.21) |
Fig. 1 Changes of soil total organic carbon content in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
Fig. 2 Changes of microbial biomass carbon content in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
Fig. 3 Changes of readily oxidized organic carbon content in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
Fig. 4 Changes of dissolved organic carbon content in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
Fig. 5 Changes of the organic carbon content in the 250- 2000 μm aggregates in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
Fig. 6 Changes of the organic carbon content involved in the 53-250 μm aggregates in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
Fig. 7 Changes of the organic carbon involved in the <53 μm aggregates in different soil layers under different treatments (mean ± SD). Different letters indicate significant differences among treatments in each soil layer (LSD’s multiple range test; p < 0.05). CC, elevated CO2 and ambient N deposition; CK, ambient CO2 and ambient N deposition; CN, elevated CO2 and high N addition; NN, high N addition and ambient CO2.
[1] | Beedlow PA, Tingey DT, Phillips DT, Hogsett WE, Olszyk DM (2004). Rising atmospheric CO2 and carbon sequestration in forests. Frontiers in Ecology and the Environment, 2,315-322. |
[2] | Chantigny MH, Angers DA, Prévost D, Simard RR, Chalifour FP (1999). Dynamics of soluble organic C and C mineralization in cultivated soils with varying N fertilization. Soil Biology & Biochemistry, 31,543-550. |
[3] | Deng Q, Zhou GY, Liu JX, Liu SZ, Duan HL, Chen XM, Zhang DQ (2009). Effects of CO2 enrichment, high nitrogen deposition and high precipitation on a model forest ecosystem in southern China. Chinese Journal of Plant Ecology. Chinese Journal of Plant Ecology, 33,1023-1033. (in Chinese with English abstract) |
[ 邓琦, 周国逸, 刘菊秀, 刘世忠, 段洪浪, 陈小梅, 张德强 (2009). CO2浓度倍增、高氮沉降和高降雨对南亚热带人工模拟森林生态系统土壤呼吸的影响. 植物生态学报, 33,1023-1033.] | |
[4] | Ding YR (2012). Linking Soil Aggregation to Intraaggregate Particulate Organic Matter in Various Vegetated Wetlands of Liaohe Delta: The Implication to Its Stability of Soil Organic Carbon Pool. Master degree dissertation, Qingdao University, Qingdao. 7-9. |
[ 丁玉蓉 (2012). 辽河三角洲不同湿地类型土壤团聚体与颗粒有机质组成及其对土壤碳库的稳定性指示意义. 硕士学位论文, 青岛大学, 青岛. 7-9.] | |
[5] | Duan HL, Liu JX, Deng Q, Chen XM, Zhang DQ (2009). Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems: a mesocosm study. Chinese Journal of Plant Ecology, 33,570-579. (in Chinese with English abstract) |
[ 段洪浪, 刘菊秀, 邓琦, 陈小梅, 张德强 (2009). CO2浓度升高与氮沉降对南亚热带森林生态系统植物生物量积累及分配格局的影响. 植物生态学报, 33,570-579.] | |
[6] | Fang HJ, Cheng SL, Yu GR (2007). Research on process and mechanism of carbon and nitrogen leaching for forest soils. Progress in Geography, 26,29-37. (in Chinese with English abstract) |
[ 方华军, 程淑兰, 于贵瑞 (2007). 森林土壤碳、氮淋失过程及其形成机制研究进展. 地理科学进展, 26,29-37.] | |
[7] | Fontaine S, Bardoux G, Abbadie L, Mariotti M (2004). Carbon input to soil may decrease soil carbon content. Ecology Letters, 7,314-320. |
[8] | Fu BJ, Niu D, Zhao SD (2005). Study on global change and terrestrial ecosystems history and prospect. Advances in Earth Science, 20,556-560. (in Chinese with English abstract) |
[ 傅伯杰, 牛栋, 赵士洞 (2005). 全球变化与陆地生态系统研究: 回顾与展望. 地球科学进展, 20,556-560.] | |
[9] | Guggenberger G (1994). Acidification effects on dissolved organic matter mobility in spruce forest ecosystems. Environment International, 20,31-41. |
[10] | Guggenberger G, Kaiser K (2003). Dissolved organic matter in soil: challenging the paradigm of sorptive preservation. Geoderma, 113,293-310. |
[11] | Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006). Leaching of nitrate from temperate forests effects of air pollution and forest management. Environmental Reviews, 14,1-57. |
[12] | Hall SJ, Matson PA (2003). Nutrient status of tropical rain forests influences soil N dynamics after N additions. Ecological Monographs, 73,107-129. |
[13] |
Hungate BA, Dukes JS, Shaw MR, Luo YQ, Field CB (2003). Nitrogen and climate change. Science, 302,1512-1513.
URL PMID |
[14] | Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Strömgren M, Oijen M, Wallin G (2007). The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 173,463-480. |
[15] | Jastrow JD, Miller RM, Owensby CE (2000). Long-term effects of elevated atmospheric CO2 on below-ground biomass and transformations to soil organic matter in grassland. Plant and Soil, 224,85-97. |
[16] | Kou TJ, Zhu JG, Xie ZB, Liu G, Zeng Q (2009). Effects of elevated atmospheric CO2 and nitrogen level on replacement rate of soil organic carbon in winter wheat field. Acta Pedologica Sinica, 46,459-465. (in Chinese with English abstract) |
[ 寇太记, 朱建国, 谢祖彬, 刘刚, 曾青 (2009). 大气CO2浓度升高和氮肥水平对麦田土壤有机碳更新的影响. 土壤学报, 46,459-465.] | |
[17] | Liu JX, Zhang DQ, Zhou GY, Faivre-Vuillin B, Deng Q, Wang CL (2008). CO2 enrichment increases nutrient leaching from model forest ecosystems in subtropical China. Biogeosciences, 5,1783-1795. |
[18] | Li YY, Huang WJ, Zhao L, Fang X, Liu JX (2012). Effects of elevated CO2 concentration and N deposition on leaf element contents of major native tree species in southern subtropical China. Chinese Journal of Plant Ecology, 36,447-455. (in Chinese with English abstract) |
[ 李义勇, 黄文娟, 赵亮, 方熊, 刘菊秀 (2012). 大气CO2浓度升高和N沉降对南亚热带主要乡土树种叶片元素含量的影响. 植物生态学报, 36,447-455.] | |
[19] | Lu X, Sun L, Hu HQ (2013). Factors affecting the forest soil active organic carbon. Forest Engineering, 29,9-14. (in Chinese with English abstract) |
[ 陆昕, 孙龙, 胡海清 (2013). 森林土壤活性有机碳影响因素. 森林工程, 29,9-14.] | |
[20] |
Luo YQ, Hui DF, Zhang DQ (2006). Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology, 87,53-63.
DOI URL PMID |
[21] | Luo YQ, Su B, Currie WS, Dukes JS, Finzi A, Hartwig U, Hungate B, Mc Murtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 54,731-739. |
[22] | McDowell WH, Magill AH, Aitkenhead-Peterson JA, Aber JD, Merriam JL, Kaushal SS (2004). Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. Forest Ecology and Management, 196,29-41. |
[23] | Pan GX, Zhou P, Li LQ, Zhang XH (2007). Core issues and research progresses of soil science of C sequestration. Acta Pedologica Sinica, 44,327-337. (in Chinese with English abstract) |
[ 潘根兴, 周萍, 李恋卿, 张旭辉 (2007). 固碳土壤学的核心科学问题与研究进展. 土壤学报, 44,327-337.] | |
[24] | Pan HL, Xie ZB, Zhu JG, Liu G, Zhang YL, Cai ZC (2007). Effects of free air CO2 enrichment (FACE) on soil particle composition and C dynamics. Ecology and Environment, 16,269-274. (in Chinese with English abstract) |
[ 潘红丽, 谢祖彬, 朱建国, 刘钢, 张雅丽, 蔡祖聪 (2007). 大气 CO2浓度升高对农田土壤颗粒组成及其碳周转的影响. 生态环境, 16,269-274.] | |
[25] | Qiu QY, Liang GH, Huang DW, Chen XM (2013). Advances in studies on soluble organic carbon in forest soils. Journal of Souhtwest Forestry University, 33,86-96. (in Chinese with English abstract) |
[ 丘清燕, 梁国华, 黄德卫, 陈小梅 (2013). 森林土壤可溶性有机碳研究进展. 西南林业大学学报, 33,86-96.] | |
[26] | Ren R, Mi FJ, Bai NB (2000). A chemometrics analysis on the data of precipitation chemistry of China. Journal of Beijing Polytechnic University, 26,90-95. (in Chinese with English abstract) |
[ 任仁, 米丰杰, 白乃彬 (2000). 中国降水化学数据的化学计量学分析. 北京工业大学学报, 26,90-95.] | |
[27] |
Schlesinger WH, Lichter J (2001). Limited carbon storage in soil and litter of experimental forest plots under increased atmospheric CO2. Nature, 411,466-469.
DOI URL PMID |
[28] | Six J, Elliott E, Paustian K, Doran J (1998). Aggregation and soil organic matter accumulation in cultivated and native grassland soils. Soil Science Society of America Journal, 62,1367-1377. |
[29] | Six J, Conant RT, Paul EA, Paustian K (2002a). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241,155-176. |
[30] | Six J, Callewaert P, Lenders S, de Gryze S, Morris SJ, Gregorich EG, Paul EA, Paustian K (2002b). Measuring and understanding carbon storage in afforested soils by physical fractionation. Soil Science Society of America Journal, 66,1981-1987. |
[31] | Tipping E (1998). Modelling the properties and behaviour of dissolved organic matter in soils. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 87,237-252. |
[32] | Tu LH, Hu TX, Zhang J, Li RH, Dai HZ, Luo SH (2011). Response of soil organic carbon and nutrients to simulated nitrogen deposition in Pleioblastus amarus plantation, Rainy Area of West China. Chinese Journal of Plant Ecology, 35,125-136. (in Chinese with English abstract) |
[ 涂利华, 胡庭兴, 张健, 李仁洪, 戴洪忠, 雒守华 (2011). 模拟氮沉降对华西雨屏区苦竹林土壤有机碳和养分的影响. 植物生态学报, 35,125-136.] | |
[33] | von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006). Stabiliza- tion of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. European Journal of Soil Science, 57,426-445. |
[34] | Wang W, Yang YS, Chen GS, Guo JF, Qian W (2008). Profile distribution and seasonal variation of soil dissolved organic carbon in natural Castanopsis fabric forest in subtropical China. Chinese Journal of Ecology, 27,924-928. (in Chinese with English abstract) |
[ 汪伟, 杨玉盛, 陈光水, 郭剑芬, 钱伟 (2008). 罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化. 生态学杂志, 27,924-928.] | |
[35] | Wang SP, Zhou GS, Gao SH, Guo JP (2003). Distribution of soil labile carbon along the northeast China transect (NECT) and its response to climatic change. Acta Phytoecologica Sinica, 27,780-786. (in Chinese with English abstract) |
[ 王淑平, 周广胜, 高素华, 郭建平 (2003). 中国东北样带土壤活性有机碳的分布及其对气候变化的响应. 植物生态学报, 27,780-786.] | |
[36] | Wu QB, Wang XK, Guo R (2005). Soil organic carbon stability and influencing factors. Chinese Journal of Soil Science, 36,743-747. (in Chinese with English abstract) |
[ 吴庆标, 王效科, 郭然 (2005). 土壤有机碳稳定性及其影响因素. 土壤通报, 36,743-747.] | |
[37] | Xiang WH, Huang ZH, Yan WD, Tian DL, Lei PF (2006). Review on coupling of interactive functions between carbon and nitrogen cycles in forest ecosystems. Acta Ecologica Sinica, 26,2365-2372. (in Chinese with English abstract) |
[ 项文化, 黄志宏, 闫文德, 田大伦, 雷丕锋 (2006). 森林生态系统碳氮循环功能耦合研究综述. 生态学报, 26,2365-2372.] | |
[38] | Xiao SS, Dong YS, Qi YC, Peng Q, He YT, Yang ZJ (2009). Advance in responses of soil organic carbon pool of grassland ecosystem to human effects and global changes. Advances in Earth Science, 24,1138-1148. (in Chinese with English abstract) |
[ 肖胜生, 董云社, 齐玉春, 彭琴, 何亚婷, 杨智杰 (2009). 草地生态系统土壤有机碳库对人为干扰和全球变化的响应研究进展. 地球科学进展, 24,1138-1148.] | |
[39] | Xing JH, Ni HW, Wang JB (2011). Effects of elevated CO2 concentration and N deposition on plant biomass accumulation and allocation in the communities of Deyeuxia angustifolia in Sanjiang Plain. Chinese Agricultural Science Bulletin, 27,49-54. (in Chinese with English abstract) |
[ 邢军会, 倪红伟, 王建波 (2011). 二氧化碳浓度升高与氮沉降对三江平原小叶章群落生物量累积及其分配格局的影响. 中国农学通报, 27,49-54.] | |
[40] | Zhang JZ, Ni HW, Wang JB, Yuan L, Wang HT (2013). Effects of simulated nitrogen deposition and elevated CO2 concentration on soil organic carbon and nitrogen of Deyeuxia Angustifolia community on the Sanjiang Plain. Earth and Environment, 41,216-225. (in Chinese with English abstract) |
[ 张继周, 倪红伟, 王建波, 袁磊, 王宏韬 (2013). 模拟氮沉降和CO2浓度增加对三江平原小叶章群落土壤总有机碳和氮素含量的影响. 地球与环境, 41,216-225.] | |
[41] | Zhao GY, Liu JS, Wang Y, Zhou J (2011). Effects of elevated CO2 on the soil active carbon and microbe of freshwater marsh in Sanjiang Plain. Geography and Geo-Information Science, 27,96-100. (in Chinese with English abstract) |
[ 赵光影, 刘景双, 王洋, 周嘉 (2011). CO2浓度升高对三江平原湿地活性有机碳及土壤微生物的影响. 地理与地理信息科学, 27,96-100.] | |
[42] |
Zhao L, Zhou GY, Zhang DQ, Duan HL, Liu JX (2011). Effects of elevated CO2 concentration and nitrogen deposition on the biomass accumulation and allocation in south subtropical main native tree species and their mixed communities. Chinese Journal of Applied Ecology, 22,1949-1954. (in Chinese with English abstract)
URL PMID |
[ 赵亮, 周国逸, 张德强, 段洪浪, 刘菊秀 (2011). CO2浓度升高和氮沉降对南亚热带主要乡土树种及群落生物量的影响. 应用生态学报, 22,1949-1954.]
PMID |
|
[43] |
Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Han SH, Hu F, Chen GX (2002). The Asian nitrogen cycle case study. AMBIO, 31,79-87.
DOI URL PMID |
[44] | Zhou L, Li BG, Zhou GS (2005). Advances in controlling factors of soil organic carbon. Advances in Earth Science, 20,99-105. (in Chinese with English abstract) |
[ 周莉, 李保国, 周广胜 (2005). 土壤有机碳的主导影响因子及其研究进展. 地球科学进展, 20,99-105.] |
[1] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[2] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[3] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[4] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[5] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[6] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[7] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[8] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
[9] | AN Fan, LI Bao-Yin, ZHONG Quan-Lin, CHENG Dong-Liang, XU Chao-Bin, ZOU Yu-Xing, ZHANG Xue, DENG Xing-Yu, LIN Qiu-Yan. Nitrogen addition affects growth and functional traits of Machilus pauhoi seedlings from different provenances [J]. Chin J Plant Ecol, 2023, 47(12): 1693-1707. |
[10] | GE Ping, LI Ang, WANG Yin-Liu, JIANG Liang-Chao, NIU Guo-Xiang, HASI Muqi’er, WANG Yan-Bing, XUE Jian-Guo, ZHAO Wei, HUANG Jian-Hui. Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe [J]. Chin J Plant Ecol, 2023, 47(11): 1483-1492. |
[11] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[12] | XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition [J]. Chin J Plant Ecol, 2022, 46(7): 811-822. |
[13] | MA Ju-Feng, XIN Min, XU Chen-Chao, ZHU Wan-Ying, MAO Chuan-Zao, CHEN Xin, CHENG Lei. Effects of arbuscular mycorrhizal fungi and nitrogen addition on nitrogen uptake of rice genotypes with different root morphologies [J]. Chin J Plant Ecol, 2021, 45(7): 728-737. |
[14] | YANG Jian-Qiang, DIAO Hua-Jie, HU Shu-Ya, WANG Chang-Hui. Effects of nitrogen addition at different levels on soil microorganisms in saline-alkaline grassland of northern China [J]. Chin J Plant Ecol, 2021, 45(7): 780-789. |
[15] | WU Yun-Tao, YANG Sen, WANG Xin, HUANG Jun-Sheng, WANG Bin, LIU Wei-Xing, LIU Ling-Li. Responses of soil nitrogen in different soil organic matter fractions to long-term nitrogen addition in a semi-arid grassland [J]. Chin J Plant Ecol, 2021, 45(7): 790-798. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn