Chin J Plant Ecol ›› 2009, Vol. 33 ›› Issue (5): 833-841.DOI: 10.3773/j.issn.1005-264x.2009.05.001
• Research Articles • Next Articles
ZHANG Zhi-Dong1,2, ZANG Run-Guo2,*()
Received:
2008-07-23
Accepted:
2009-04-09
Online:
2009-07-23
Published:
2009-09-30
Contact:
ZANG Run-Guo
ZHANG Zhi-Dong, ZANG Run-Guo. MODELLING THE SPATIAL DISTRIBUTION OF ABOVEGROUND BIOMASS BASED ON VEGETATION INDEX IN A TROPICAL FOREST IN BAWANG- LING, HAINAN ISLAND, SOUTH CHINA[J]. Chin J Plant Ecol, 2009, 33(5): 833-841.
植被指数 Vegetation indices | 缩写 Abbreviation | 公式 Formula |
---|---|---|
归一化差异植被指数 Normalized difference vegetation index | NDVI | (NIR-R)/(NIR+R) |
短红外湿度植被指数 Moisture vegetation index using Landsat’s band 5 | MVI5 | (NIR-SWIR)/(NIR+SWIR) |
中红外湿度植被指数 Moisture vegetation index using Landsat’s band 7 | MVI7 | (NIR-MIR)/(NIR+MIR) |
比值植被指数 Ratio vegetation index | RVI | NIR/R |
Table 1 The vegetation index
植被指数 Vegetation indices | 缩写 Abbreviation | 公式 Formula |
---|---|---|
归一化差异植被指数 Normalized difference vegetation index | NDVI | (NIR-R)/(NIR+R) |
短红外湿度植被指数 Moisture vegetation index using Landsat’s band 5 | MVI5 | (NIR-SWIR)/(NIR+SWIR) |
中红外湿度植被指数 Moisture vegetation index using Landsat’s band 7 | MVI7 | (NIR-MIR)/(NIR+MIR) |
比值植被指数 Ratio vegetation index | RVI | NIR/R |
NDVI | RVI | MVI7 | MVI5 | |
---|---|---|---|---|
顶极种生物量 Climax species biomass | 0.286* | 0.249* | 0.497** | 0.503** |
先锋种生物量 Pioneer species biomass | 0.194* | 0.214* | 0.109 | 0.117 |
总生物量 Total biomass | 0.284* | 0.246* | 0.511** | 0.505** |
Table 2 Correlations between aboveground biomass and vegetation index
NDVI | RVI | MVI7 | MVI5 | |
---|---|---|---|---|
顶极种生物量 Climax species biomass | 0.286* | 0.249* | 0.497** | 0.503** |
先锋种生物量 Pioneer species biomass | 0.194* | 0.214* | 0.109 | 0.117 |
总生物量 Total biomass | 0.284* | 0.246* | 0.511** | 0.505** |
模型 Model | R2 | F | p |
---|---|---|---|
总生物量 Total biomass Ln(Y)=-53.186+11.325Ln(MVI7) | 0.761 | 42.407 | <0.000 1 |
顶极种生物量 Climax species biomass Ln(Y)= -40.766+9.509Ln(MVI5) | 0.753 | 40.579 | <0.000 1 |
先锋种生物量 Pioneer species biomass Ln(Y)= -36.072+7.674Ln(RVI) | 0.446 | 5.765 | 0.018 |
Table 3 Linear regression models using aboveground biomass as the dependent variables and vegetation indices as the independent variables
模型 Model | R2 | F | p |
---|---|---|---|
总生物量 Total biomass Ln(Y)=-53.186+11.325Ln(MVI7) | 0.761 | 42.407 | <0.000 1 |
顶极种生物量 Climax species biomass Ln(Y)= -40.766+9.509Ln(MVI5) | 0.753 | 40.579 | <0.000 1 |
先锋种生物量 Pioneer species biomass Ln(Y)= -36.072+7.674Ln(RVI) | 0.446 | 5.765 | 0.018 |
[1] |
Boyd DS, Foody GM, Curran PJ (1999). The relationship between the biomass of Cameroonian tropical forests and radiation reflected in middle infrared wavelengths (3.0-5.0 μm). International Journal of Remote Sensing, 20, 1017-1023.
DOI URL |
[2] |
Boyd DS, Foody GM, Curran PJ, Lucas RM, Honzák M (1996). An assessment of radiance in Landsat TM middle and thermal infrared wavebands for the detection of tropical forest regeneration. International Journal of Remote Sensing, 17, 249-261.
DOI URL |
[3] |
Carlson T, Ripley D (1997). On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, 62, 241-252.
DOI URL |
[4] |
Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004). Error propogation and scaling for tropical forest biomass estimates. Philosophical Transactions of the Royal Society of London, Series B, 359, 409-420.
DOI URL PMID |
[5] |
Chave J, Riéra B, Dubois MA (2001). Estimation of biomass in a neotropical forest of French Guiana: spatial and temporal variability. Journal of Tropical Ecology, 17, 79-96.
DOI URL |
[6] |
Coomes DA, Grubb PJ (2003). Colonization, tolerance, competition and seed-size variation within functional groups. Trends in Ecology & Evolution, 18, 283-291.
DOI URL |
[7] |
Dalling JW, Hubbell SP (2002). Seed size, growth rate and gap microsite conditions as determinants of recruitment success for pioneer species. Journal of Ecology, 90, 557-568.
DOI URL |
[8] |
Dogan H, Dogan M (2006). A new approach to diversity indices―Modeling and mapping plant biodiversity of nallihan (A3-Ankara/Turkey) forest ecosystem in frame of geographic information systems. Biodiversity and Conservation, 15, 855-878.
DOI URL |
[9] |
Dong J, Kaufmann RK, Myneni RB, Tucker CJ, Kauppi PE, Liski J, Buermann W, Alexeyev V, Hughes MK (2003). Remote sensing estimates of boreal and temperate forest woody biomass: carbon pools, sources, and sinks. Remote Sensing of Environment, 84, 393-410.
DOI URL |
[10] | ESRI (2003). ARCGIS. Environmental Systems Research Institute, Inc., Redcands, California,USA. |
[11] |
Foody GM, Boyd DS, Cutler MEJ (2003). Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85, 463-474.
DOI URL |
[12] |
Foody GM, Cutler ME, McMorrow J, Pelz D, Tangki H, Boyd DS, Douglas I (2001). Mapping the biomass of Bornean tropical rain forest from remotely sensed data. Global Ecology and Biogeography, 10, 379-387.
DOI URL |
[13] |
Freitas SR, Mello MCS, Cruz CBM (2005). Relationships between forest structure and vegetation indices in Atlantic rainforest. Forest Ecology and Management, 218, 353-362.
DOI URL |
[14] |
Gamon JA, Field CB, Goulden ML, Griffin KL, Hartley AE, Joel G, Penuelas J, Valentini R (1995). Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecological Applications, 5, 28-41.
DOI URL |
[15] |
Garkoti SC (2008). Estimates of biomass and primary productivity in a high-altitude maple forest of the west central Himalayas. Ecological Research, 23, 41-49.
DOI URL |
[16] |
Haripriya G (2000). Estimates of biomass in Indian forests. Biomass and Bioenergy, 19, 245-258.
DOI URL |
[17] |
Houghton RA, Skole DL, Nobre CA, Hackler JL, Lawrence KT, Chomentowski WH (2000). Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature, 403, 301-304.
DOI URL PMID |
[18] | Jiang YX (蒋有绪), Wang BS (王伯荪), Zang RG (臧润国), Jin JH (金建华), Liao WB (廖文波) (2002). Biodiversity and Mechanism of Maintenance of the Tropical Forest in Hainan Island(海南岛热带林生物多样性及其形成机制). Science Press, Beijing, 219-324. (in Chinese) |
[19] |
Kitayama K, Itow S (1999). Aboveground biomass and soil nutrient pools of a Scalesia pedunculata montane forest on Santa Cruz, Galápagos. Ecological Research, 14, 405-408.
DOI URL |
[20] |
Köhler P, Ditzer T, Huth A (2000). Concepts for the aggregation of tropical tree species into functional types and application to Sabah’s lowland rain forest. Journal of Tropical Ecology, 16, 591-602.
DOI URL |
[21] | Li YD (李意德) (1993). Comparative analysis for biomass measurement of tropical mountain rain forest in Hainan Island, China. Acta Ecologica Sinica (生态学报), 13, 313-320. (in Chinese with English abstract) |
[22] | Li SY (李素英), Li XB (李晓兵), Ying G (莺歌), Fu N (符娜) (2007). Vegetation indexes-biomass models for typical semi-arid steppe—A case study for Xilinhot in Northern China. Journal of Plant Ecology (Chinese Version)(植物生态学报), 31, 23-31. (in Chinese with English abstract) |
[23] |
Lu D, Mausel P, Brondizio E, Moran E (2004). Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management, 198, 149-167.
DOI URL |
[24] | Lu Y (陆阳), Li MG (李鸣光), Huang YW (黄雅文), Chen ZH (陈章和), Hu YJ (胡玉佳) (1986). Vegetation of Bawangling gibbon natural reserve, in Hainan Island. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 10, 106-114. (in Chinese with English abstract) |
[25] |
Phua MH, Saito H (2003). Estimation of biomass of a mountainous tropical forest using Landsat TM data. Canadian Journal of Remote Sensing, 29, 429-440.
DOI URL |
[26] |
Saatchi SS, Houghton RA, Dos Santos Alvala RC, Soares JV, Yu Y (2007). Distribution of aboveground live biomass in the Amazon basin. Global Change Biology, 13, 816-837.
DOI URL |
[27] | SPSS (2004). SPSS for windows, Version 13.0. Chicago. |
[28] |
Swaine MD, Whitmore TC (1988). On the definition of ecological species groups in tropical forests. Vegetatio, 75, 81-86.
DOI URL |
[29] |
Tan K, Piao S, Peng C, Fang J (2007). Satellite-based estimation of biomass carbon stocks for northeast China’s forests between 1982 and 1999. Forest Ecology and Management, 240, 114-121.
DOI URL |
[30] |
Todd SW, Hoffer RM, Milchunas DG (1998). Biomass estimation on grazed and ungrazed rangelands using spectral indices. International Journal of Remote Sensing, 19, 427-438.
DOI URL |
[31] |
Vanclay JK (1995). Growth models for tropical forests: a synthesis of models and methods. Forest Science, 41, 7-42.
DOI URL |
[32] |
Verburg R, van Eijk-Bos C (2003). Effects of selective logging on tree diversity, composition and plant functional type patterns in a Bornean rain forest. Journal of Vegetation Science, 14, 99-110.
DOI URL |
[33] | Wang ZX (王正兴), Liu C (刘闯), Huete AL (2003). From AVHRR-NDVI to MODIS-EVI: advances in vegetation index research. Acta Ecologica Sinica (生态学报), 23, 979-987. (in Chinese with English abstract) |
[34] | Zang RG (臧润国), An SQ (安树青), Tao JP (陶建平), Jiang YX (蒋有绪), Wang BX (王伯荪) (2004). Biodiversity and Mechanism of Maintenance of the Tropical Forest in Hainan Island (海南岛热带林生物多样性维持机制). Science Press,Beijing, 1-169. (in Chinese) |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea [J]. Chin J Plant Ecol, 2024, 48(4): 445-458. |
[3] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[4] | WU Han, BAI Jie, LI Jun-Li, Guli JIAPAER, BAO An-Ming. Study of spatio-temporal variation in fractional vegetation cover and its influencing factors in Xinjiang, China [J]. Chin J Plant Ecol, 2024, 48(1): 41-55. |
[5] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[6] | CHEN Xue-Ping, ZHAO Xue-Yong, ZHANG Jing, WANG Rui-Xiong, LU Jian-Nan. Variation of NDVI spatio-temporal characteristics and its driving factors based on geodetector model in Horqin Sandy Land, China [J]. Chin J Plant Ecol, 2023, 47(8): 1082-1093. |
[7] | ZHANG Hui-Ling, ZHANG Yao-Yi, PENG Qing-Qing, YANG Jing, NI Xiang-Yin, WU Fu-Zhong. Variations of trace-elements resorption efficiency in leaves of different tree species as affected by life forms in a mid-subtropical common garden [J]. Chin J Plant Ecol, 2023, 47(7): 978-987. |
[8] | WAN Chun-Yan, YU Jun-Rui, ZHU Shi-Dan. Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species [J]. Chin J Plant Ecol, 2023, 47(10): 1386-1397. |
[9] | MIAO Li-Juan, ZHANG Yu-Yang, CHUAI Xiao-Wei, BAO Gang, HE Yu, ZHU Jing-Wen. Effects of climatic factors and their time-lag on grassland NDVI in Asian drylands [J]. Chin J Plant Ecol, 2023, 47(10): 1375-1385. |
[10] | HAO Qing, HUANG Chang. A review of forest aboveground biomass estimation based on remote sensing data [J]. Chin J Plant Ecol, 2023, 47(10): 1356-1374. |
[11] | ZHU Yu-Ying, ZHANG Hua-Min, DING Ming-Jun, YU Zi-Ping. Changes of vegetation greenness and its response to drought-wet variation on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(1): 51-64. |
[12] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[13] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[14] | WEN Ke, YAO Huan-Mei, GONG Zhu-Qing, NA Ze-Lin, WEI Yi-Ming, HUANG Yi, CHEN Hua-Quan, LIAO Peng-Ren, TANG Li-Ping. Influence of inundation frequency change on enhanced vegetation index of wetland vegetation in Poyang Lake, China [J]. Chin J Plant Ecol, 2022, 46(2): 148-161. |
[15] | HUANG Kuai-Kuai, HU Gang, PANG Qing-Ling, ZHANG Bei, HE Ye-Yong, HU Cong, XU Chao-Hao, ZHANG Zhong-Hua. Effects of grazing on species composition and community structure of shrub tussock in subtropical karst mountains, southwest China [J]. Chin J Plant Ecol, 2022, 46(11): 1350-1363. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn