Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (9): 1007-1015.DOI: 10.3773/j.issn.1005-264x.2010.09.001
Special Issue: 全球变化与生态系统
• Research Articles • Next Articles
CHEN Sha-Sha1, LIU Hong-Yan1,2, GUO Da-Li1,2,*()
Received:
2010-04-22
Accepted:
2010-06-09
Online:
2010-04-22
Published:
2010-10-08
Contact:
GUO Da-Li
CHEN Sha-Sha, LIU Hong-Yan, GUO Da-Li. Litter stocks and chemical quality of natural birch forests along temperature and precipitation gradients in eastern Inner Mongolia, China[J]. Chin J Plant Ecol, 2010, 34(9): 1007-1015.
地点 Site | 缩写 Abbreviation | 经度 Longitude (°) (E) | 纬度 Latitude (°) (N) | 海拔 Altitude (m) | 坡度 Slope (°) | 温度梯度 Temperature gradient | 降水梯度 Precipitation gradient | 胸径 DBH (cm) | 胸高断面积 Basal area (m2·hm-2) | 凋落物现存量 Litter stock (g·m-2) |
---|---|---|---|---|---|---|---|---|---|---|
罕山 Hanshan | HS | 118.71 | 44.19 | 1389.0 | 26 | T4 | Pre3 | 14.8 | 59.7 | 3 614.2 |
太本 Taiben | TB | 118.64 | 44.57 | 1330.0 | 23 | T4 | Pre2 | 23.0 | 48.1 | 3 686.9 |
高力罕 Gaolihan | GLH | 118.35 | 44.85 | 1214.0 | 17 | T4 | Pre1 | 18.2 | 10.6 | 3 194.5 |
海日罕 Hairihan | HRH | 120.33 | 45.99 | 884.8 | 15 | T3 | Pre3 | 7.2 | 12.7 | 1 694.8 |
阿尔昆 A’erkun | AEK | 119.82 | 45.33 | 962.8 | 28 | T3 | Pre2 | 7.6 | 20.0 | 614.5 |
宝日格斯台 Baorigesitai | BRG | 118.92 | 44.99 | 1 176.0 | 16 | T3 | Pre1 | 15.1 | 58.4 | 3 881.0 |
阿尔山 A’ershan | AES | 119.98 | 47.16 | 1 125.0 | 8 | T2 | Pre3 | 9.5 | 35.3 | 3 183.7 |
杜拉尔 Dula’er | DLE | 119.69 | 47.34 | 940.0 | 13 | T2 | Pre2 | 10.8 | 42.8 | 1 520.3 |
罕达盖 Handagai | HDG | 119.47 | 47.45 | 885.5 | 33 | T2 | Pre1 | 9.6 | 36.9 | 2 285.1 |
姑子庙 Guzimiao | GZM | 120.69 | 50.40 | 662.7 | 14 | T1 | Pre3 | 12.3 | 64.6 | 2 760.8 |
小乌尔根 Xiaowu’ergen | XWEG | 120.48 | 50.38 | 633.5 | 26 | T1 | Pre2 | 13.7 | 47.5 | 2 756.4 |
额尔古纳 E’erguna | EEGN | 120.23 | 50.35 | 666.0 | 15 | T1 | Pre1 | 9.4 | 40.2 | 2 370.1 |
Table 1 Site description of 12 sampling sites in Eastern Inner Mongolia
地点 Site | 缩写 Abbreviation | 经度 Longitude (°) (E) | 纬度 Latitude (°) (N) | 海拔 Altitude (m) | 坡度 Slope (°) | 温度梯度 Temperature gradient | 降水梯度 Precipitation gradient | 胸径 DBH (cm) | 胸高断面积 Basal area (m2·hm-2) | 凋落物现存量 Litter stock (g·m-2) |
---|---|---|---|---|---|---|---|---|---|---|
罕山 Hanshan | HS | 118.71 | 44.19 | 1389.0 | 26 | T4 | Pre3 | 14.8 | 59.7 | 3 614.2 |
太本 Taiben | TB | 118.64 | 44.57 | 1330.0 | 23 | T4 | Pre2 | 23.0 | 48.1 | 3 686.9 |
高力罕 Gaolihan | GLH | 118.35 | 44.85 | 1214.0 | 17 | T4 | Pre1 | 18.2 | 10.6 | 3 194.5 |
海日罕 Hairihan | HRH | 120.33 | 45.99 | 884.8 | 15 | T3 | Pre3 | 7.2 | 12.7 | 1 694.8 |
阿尔昆 A’erkun | AEK | 119.82 | 45.33 | 962.8 | 28 | T3 | Pre2 | 7.6 | 20.0 | 614.5 |
宝日格斯台 Baorigesitai | BRG | 118.92 | 44.99 | 1 176.0 | 16 | T3 | Pre1 | 15.1 | 58.4 | 3 881.0 |
阿尔山 A’ershan | AES | 119.98 | 47.16 | 1 125.0 | 8 | T2 | Pre3 | 9.5 | 35.3 | 3 183.7 |
杜拉尔 Dula’er | DLE | 119.69 | 47.34 | 940.0 | 13 | T2 | Pre2 | 10.8 | 42.8 | 1 520.3 |
罕达盖 Handagai | HDG | 119.47 | 47.45 | 885.5 | 33 | T2 | Pre1 | 9.6 | 36.9 | 2 285.1 |
姑子庙 Guzimiao | GZM | 120.69 | 50.40 | 662.7 | 14 | T1 | Pre3 | 12.3 | 64.6 | 2 760.8 |
小乌尔根 Xiaowu’ergen | XWEG | 120.48 | 50.38 | 633.5 | 26 | T1 | Pre2 | 13.7 | 47.5 | 2 756.4 |
额尔古纳 E’erguna | EEGN | 120.23 | 50.35 | 666.0 | 15 | T1 | Pre1 | 9.4 | 40.2 | 2 370.1 |
Fig. 1 Mean C (A-C), N (D-F) and P (G-I) concentrations of different litter layers along precipitation and temperature gradients. T1-T4 represent four annual average air temperature gradients of -3.0, -2.4, 2.3 and 3.2 ℃, respectively. Pre1-Pre3 represent three annual average precipitation gradients of 373, 394 and 415 mm, respectively. Different lower-case letters represent significant differences (p < 0.05) in elemental concentrations of the same layer in a certain precipitation gradient among four temperature gradients. Item that has less than three values has no letter labelled.
L | L × T | L × Pre | L × T × Pre | T | Pre | T × Pre | |
---|---|---|---|---|---|---|---|
碳浓度 C concentration | <0.001 | 0.327 | 0.746 | 0.885 | 0.000 | 0.136 | 0.037 |
氮浓度 N concentration | <0.001 | 0.006 | 0.929 | 0.006 | 0.018 | 0.065 | 0.021 |
磷浓度 P concentration | <0.001 | 0.004 | 0.397 | 0.002 | <0.001 | 0.013 | <0.001 |
可提取物浓度 Extractives concentration | 0.010 | 0.242 | 0.623 | 0.105 | 0.412 | 0.772 | 0.021 |
酸溶性组分浓度 Acid soluble fraction concentration | <0.001 | 0.029 | 0.054 | 0.028 | 0.406 | 0.122 | 0.009 |
酸不溶性组分浓度 Acid insoluble fraction concentration | 0.005 | 0.091 | 0.246 | 0.037 | 0.239 | 0.212 | 0.021 |
碳储量 C stock | <0.001 | 0.018 | 0.173 | 0.017 | 0.018 | 0.446 | 0.003 |
氮储量 N stock | <0.001 | 0.003 | 0.094 | 0.002 | 0.001 | 0.446 | 0.001 |
磷储量 P stock | <0.001 | 0.001 | 0.012 | <0.001 | <0.001 | 0.225 | <0.001 |
Table 2 ANOVA results of the effects of litter layer, temperature and precipitation on the mean concentrations and stocks of C, N, and P, and concentrations of chemical fractions
L | L × T | L × Pre | L × T × Pre | T | Pre | T × Pre | |
---|---|---|---|---|---|---|---|
碳浓度 C concentration | <0.001 | 0.327 | 0.746 | 0.885 | 0.000 | 0.136 | 0.037 |
氮浓度 N concentration | <0.001 | 0.006 | 0.929 | 0.006 | 0.018 | 0.065 | 0.021 |
磷浓度 P concentration | <0.001 | 0.004 | 0.397 | 0.002 | <0.001 | 0.013 | <0.001 |
可提取物浓度 Extractives concentration | 0.010 | 0.242 | 0.623 | 0.105 | 0.412 | 0.772 | 0.021 |
酸溶性组分浓度 Acid soluble fraction concentration | <0.001 | 0.029 | 0.054 | 0.028 | 0.406 | 0.122 | 0.009 |
酸不溶性组分浓度 Acid insoluble fraction concentration | 0.005 | 0.091 | 0.246 | 0.037 | 0.239 | 0.212 | 0.021 |
碳储量 C stock | <0.001 | 0.018 | 0.173 | 0.017 | 0.018 | 0.446 | 0.003 |
氮储量 N stock | <0.001 | 0.003 | 0.094 | 0.002 | 0.001 | 0.446 | 0.001 |
磷储量 P stock | <0.001 | 0.001 | 0.012 | <0.001 | <0.001 | 0.225 | <0.001 |
L1 | L2 | L3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T | Pre | T × Pre | T | Pre | T × Pre | T | Pre | T × Pre | |||
碳浓度 C concentration | > 0.05 | > 0.05 | > 0.05 | 0.001 | > 0.05 | 0.004 | 0.015 | > 0.05 | > 0.05 | ||
氮浓度 N concentration | 0.014 | 0.017 | 0.002 | < 0.001 | 0.022 | 0.004 | > 0.05 | 0.021 | > 0.05 | ||
磷浓度 P concentration | < 0.001 | 0.031 | < 0.001 | < 0.001 | 0.004 | 0.010 | > 0.05 | 0.038 | < 0.001 | ||
可提取物浓度 Extractives concentration | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | 0.002 | > 0.05 | > 0.05 | > 0.05 | ||
酸溶性组分浓度 Acid soluble fraction concentration | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | ||
酸不溶性组分浓度 Acid insoluble fraction concentration | > 0.05 | > 0.05 | > 0.05 | > 0.05 | 0.045 | 0.002 | > 0.05 | > 0.05 | > 0.05 | ||
碳储量 C stock | > 0.05 | 0.035 | > 0.05 | > 0.05 | 0.037 | > 0.05 | 0.003 | 0.024 | 0.002 | ||
氮储量 N stock | 0.044 | > 0.05 | 0.011 | > 0.05 | 0.026 | > 0.05 | < 0.001 | 0.009 | < 0.001 | ||
磷储量 P stock | 0.025 | > 0.05 | 0.020 | > 0.05 | 0.019 | > 0.05 | < 0.001 | 0.002 | 0.001 |
Table 3 ANOVA results of the effects of temperature and precipitation on the concentrations and stocks of C, N, and P, and the concentrations of organic fractions of leaf and litter layers
L1 | L2 | L3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T | Pre | T × Pre | T | Pre | T × Pre | T | Pre | T × Pre | |||
碳浓度 C concentration | > 0.05 | > 0.05 | > 0.05 | 0.001 | > 0.05 | 0.004 | 0.015 | > 0.05 | > 0.05 | ||
氮浓度 N concentration | 0.014 | 0.017 | 0.002 | < 0.001 | 0.022 | 0.004 | > 0.05 | 0.021 | > 0.05 | ||
磷浓度 P concentration | < 0.001 | 0.031 | < 0.001 | < 0.001 | 0.004 | 0.010 | > 0.05 | 0.038 | < 0.001 | ||
可提取物浓度 Extractives concentration | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | 0.002 | > 0.05 | > 0.05 | > 0.05 | ||
酸溶性组分浓度 Acid soluble fraction concentration | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | > 0.05 | ||
酸不溶性组分浓度 Acid insoluble fraction concentration | > 0.05 | > 0.05 | > 0.05 | > 0.05 | 0.045 | 0.002 | > 0.05 | > 0.05 | > 0.05 | ||
碳储量 C stock | > 0.05 | 0.035 | > 0.05 | > 0.05 | 0.037 | > 0.05 | 0.003 | 0.024 | 0.002 | ||
氮储量 N stock | 0.044 | > 0.05 | 0.011 | > 0.05 | 0.026 | > 0.05 | < 0.001 | 0.009 | < 0.001 | ||
磷储量 P stock | 0.025 | > 0.05 | 0.020 | > 0.05 | 0.019 | > 0.05 | < 0.001 | 0.002 | 0.001 |
Fig. 2 Average concentrations of extractives (A), acid soluble fraction (B), and acid insoluble fraction (C) of different litter layers. Different lower-case letters represent significant differences (p < 0.05) in the concentrations of organic fractions among three litter layers. L1- L3 see Table 3.
Fig. 3 Mean concentrations of extractives (A-C), acid soluble fraction (D-F), and acid insoluble fraction (G-I) of different litter layers along precipitation (Pre1-Pre3) and temperature gradients (T1-T4). Different lower-case letters represent significant differences (p < 0.05) in concentrations of organic fractions of the same layer in a certain precipitation gradient among four temperature gradients. Item that has less than three values has no letter labelled. T1-T4, Prel-Pre3, see Fig. 1.
Fig. 4 Mean stocks of C (A-C), N (D-F) and P (G-I) of different litter layers along precipitation (Pre1-Pre3) and temperature gradients (T1-T4). Different lower-case letters represent significant differences (p < 0.05) in the stocks of C, N, and P of the same layer in a certain precipitation gradient among four temperature gradients. Item that has less than three values has no letter labelled. T1-T4, Prel-Pre3, see Fig. 1.
[1] | Alarcon-Gutierrez E, Floch C, Ziarelli F, Albrecht R, Le Petit J, Augur C, Criquet S (2008). Characterization of a Mediterranean litter by C-13 CPMAS NMR: relationships between litter depth, enzyme activities and temperature. European Journal of Soil Science, 59, 486-495. |
[2] | Albers D, Migge S, Schaefer M, Scheu S (2004). Decomposition of beech leaves (Fagus sylvatica) and spruce needles (Picea abies) in pure and mixed stands of beech and spruce. Soil Biology and Biochemistry, 36, 155-164. |
[3] | Almendros G, Dorado J, Gonzalez-Vila FJ, Blanco MJ, Lankes U (2000). C-13 NMR assessment of decomposition patterns during composting of forest and shrub biomass. Soil Biology and Biochemistry, 32, 793-804. |
[4] | Berg B (2000). Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133, 13-22. |
[5] | Gholz HL, Wedin DA, Smitherman SM, Harmon ME, Parton WJ (2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology, 6, 751-765. |
[6] | Graca M, Barlocher F, Gessner M (2005). Methods to Study Litter Decomposition: a Practical Guide. Part 2. Springer, Berlin. 115-120. |
[7] |
Grant RF, Margolis HA, Barr AG, Black TA, Dunn AL, Bernier PY, Bergeron O (2009). Changes in net ecosystem productivity of boreal black spruce stands in response to changes in temperature at diurnal and seasonal time scales. Tree Physiology, 29, 1-17.
URL PMID |
[8] | Hilli S, Stark S, Derome J (2008). Carbon quality and stocks in organic horizons in boreal forest soils. Ecosystems, 11, 270-282. |
[9] | Hobbie SE, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006). Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology, 87, 2288-2297. |
[10] | Jin HL, Su ZZ, Sun LY, Sun Z, Zhang H, Jin LY (2004). Holocene climatic change in Hunshandake Desert. Chinese Science Bulletin, 49, 1730-1735. |
[11] | Kogel-Knabner I (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry, 34, 139-162. |
[12] | Kuo S (1996). Phosphorus. In: Bigham JM ed. Methods of Soil Analysis.Part 3. Chemical Methods. Soil Science Society of America, American Society of Agronomy, Madison, Wis. 869-919. |
[13] | Lin B (林波), Liu Q (刘庆), Wu Y (吴彦), He H (何海) (2004). Advances in the studies of forest litter. Chinese Journal of Ecology (生态学杂志), 23, 60-64. (in Chinese with English abstract) |
[14] | Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007). Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytologist, 173, 611-620. |
[15] | Liu CJ, Westman CJ, Berg B, Kutsch W, Wang GZ, Man RZ, Ilvesniemi H (2004). Variation in litterfall-climate relationships between coniferous and broadleaf forests in Eurasia. Global Ecology and Biogeography, 13, 105-114. |
[16] | Liu WX, Zhang Z, Wan SQ (2009). Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Global Change Biology, 15, 184-195. |
[17] | Melillo JM, Aber JD, Linkins AE, Ricca A, Fry B, Nadelhoffer KJ (1989). Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil, 115, 189-198. |
[18] |
Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Adair EC, Brandt LA, Hart SC, Fasth B (2007). Global-scale similarities in nitrogen release patterns during long-term decomposition. Science, 315, 361-364.
URL PMID |
[19] | Polyakova O, Billor N (2007). Impact of deciduous tree species on litterfall quality, decomposition rates and nutrient circulation in pine stands. Forest Ecology and Management, 253, 11-18. |
[20] | Sjoberg G, Nilsson SI, Persson T, Karlsson P (2004). Degradation of hemicellulose, cellulose and lignin in decomposing spruce needle litter in relation to N. Soil Biology and Biochemistry, 36, 1761-1768. |
[21] | Wang CK (王传宽), Yang JY (杨金艳) (2005). Carbon dioxide fluxes from soil respiration and woody debris decomposition in boreal forests. Acta Ecologica Sinica (生态学报), 25, 633-638. (in Chinese with English abstract) |
[22] | Welp LR, Randerson JT, Liu HP (2007). The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agricultural and Forest Meteorology, 147, 172-185. |
[23] | Zhang DQ (张德强), Yu QF (余清发), Kong GH (孔国辉), Zhang YC (张佑倡) (1998). Chemical properties of forest floor litter in Dinghushan monsoon evergreen broadleaved forest. Acta Ecologica Sinica (生态学报), 18, 96-100. (in Chinese with English abstract) |
[24] | Zhong GH (钟国辉), Xin XB (辛学兵) (2004). Chemical properties of litter in dark coniferous forest of Sejila Mountains in Tibet. Chinese Journal of Applied Ecology (应用生态学报), 15, 167-169. (in Chinese with English abstract) |
[1] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[2] | CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China [J]. Chin J Plant Ecol, 2023, 47(9): 1245-1255. |
[3] | ZHONG Qi, LI Zeng-Yan, MA Wei, KUANG Yu-Xiao, QIU Ling-Jun, LI Yun-Jie, TU Li-Hua. Effects of nitrogen addition and litter manipulations on leaf litter decomposition in western edge of Sichuan Basin, China [J]. Chin J Plant Ecol, 2023, 47(5): 629-643. |
[4] | ZHENG Yang, SUN Xue-Guang, XIONG Yang-Yang, YUAN Gui-Yun, DING Gui-Jie. Effects of phyllospheric microorganisms on litter decomposition of Pinus massoniana [J]. Chin J Plant Ecol, 2023, 47(5): 687-698. |
[5] | DU Ting, CHEN Yu-Lian, BI Jing-Hui, YANG Yu-Ting, ZHANG Li, YOU Cheng-Ming, TAN Bo, XU Zhen-Feng, WANG Li-Xia, LIU Si-Ning, LI Han. Effects of forest gap on losses of total phenols and condensed tannins of foliar litter in a subalpine forest of western Sichuan, China [J]. Chin J Plant Ecol, 2023, 47(5): 660-671. |
[6] | LI Xiao-Ling, ZHU Dao-Ming, YU Yu-Rong, WU Hao, MOU Li, HONG Liu, LIU Xue- Fei, BU Gui-Jun, XUE Dan, WU Lin. Effects of simulated nitrogen deposition on growth and decomposition of two bryophytes in ombrotrophic peatland, southwestern Hubei, China [J]. Chin J Plant Ecol, 2023, 47(5): 644-659. |
[7] | ZHAO Xiao-Xiang, ZHU Bin-Bin, TIAN Qiu-Xiang, LIN Qiao-Ling, CHEN Long, LIU Feng. Research progress on home-field advantage of leaf litter decomposition [J]. Chin J Plant Ecol, 2023, 47(5): 597-607. |
[8] | LAI Shuo-Tian, WU Fu-Zhong, WU Qiu-Xia, ZHU Jing-Jing, NI Xiang-Yin. Reduced release of labile carbon from Abies fargesii var. faxoniana needle litter after snow removal in an alpine forest [J]. Chin J Plant Ecol, 2023, 47(5): 672-686. |
[9] | LI Hui-Xuan, MA Hong-Liang, YIN Yun-Feng, GAO Ren. Dynamic of labile, recalcitrant carbon and nitrogen during the litter decomposition in a subtropical natural broadleaf forest [J]. Chin J Plant Ecol, 2023, 47(5): 618-628. |
[10] | CHEN Lin-Kang, ZHAO Ping, WANG Ding, XIANG Rui, LONG Guang-Qiang. Non-additive effect of mixed decomposition of maize and potato straw [J]. Chin J Plant Ecol, 2023, 47(12): 1728-1738. |
[11] | YANG Yuan-He, ZHANG Dian-Ye, WEI Bin, LIU Yang, FENG Xue-Hui, MAO Chao, XU Wei-Jie, HE Mei, WANG Lu, ZHENG Zhi-Hu, WANG Yuan-Yuan, CHEN Lei-Yi, PENG Yun-Feng. Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 1-24. |
[12] | XIE Huan, ZHANG Qiu-Fang, ZENG Quan-Xin, ZHOU Jia-Cong, MA Ya-Pei, WU Yue, LIU Yuan-Yuan, LIN Hui-Ying, YIN Yun-Feng, CHEN Yue-Min. Effects of nitrogen addition on phosphorus transformation and decomposition fungi in seedling stage of Cunninghamia lanceolata [J]. Chin J Plant Ecol, 2022, 46(2): 220-231. |
[13] | ZHU Wei-Na, ZHANG Guo-Long, ZHANG Pu-Jin, ZHANG Qian-Qian, REN Jin-Tao, XU Bu-Yun, QING Hua. Decomposition characteristics of leaf litters and roots of six main plant species and their relationships with functional traits in Stipa grandis steppe [J]. Chin J Plant Ecol, 2021, 45(6): 606-616. |
[14] | Fan Lin-Jie, LI Cheng-Dao, LI Xiang-Yi, Henry J. SUN, LIN Li-Sha, LIU Bo. Effects of sand burial on litter decomposition rate and salt content dynamics in an extremely arid region [J]. Chin J Plant Ecol, 2021, 45(2): 144-153. |
[15] | YANG De-Chun, HU Lei, SONG Xiao-Yan, WANG Chang-Ting. Effects of changing precipitation on litter quality and decomposition of different plant functional groups in an alpine meadow [J]. Chin J Plant Ecol, 2021, 45(12): 1314-1328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn