Chin J Plant Ecol ›› 2012, Vol. 36 ›› Issue (5): 447-455.DOI: 10.3724/SP.J.1258.2012.00447
• Research Articles • Previous Articles Next Articles
LI Yi-Yong1,2,*(), HUANG Wen-Juan1,2, ZHAO Liang1,2, FANG Xiong1,2, LIU Ju-Xiu1,**(
)
Published:
2012-05-04
Contact:
LI Yi-Yong,LIU Ju-Xiu
LI Yi-Yong, HUANG Wen-Juan, ZHAO Liang, FANG Xiong, LIU Ju-Xiu. Effects of elevated CO2 concentration and N deposition on leaf element contents of major native tree species in southern subtropical China[J]. Chin J Plant Ecol, 2012, 36(5): 447-455.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2012.00447
土壤深度 Soil depth (cm) | pH | K (g·kg-1) | Na (g·kg-1) | Ca (g·kg-1) | Mg (g·kg-1) | Cu (mg·kg-1) | Mn (mg·kg-1) | Zn (mg·kg-1) | Al (mg·kg-1) | Pb (mg·kg-1) | P (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
0-20 | 4.15 | 6.30 | 0.64 | 1.03 | 1.03 | 4.69 | 78.70 | 35.91 | 1.77 | 37.48 | 0.30 |
(0.15) | (0.73) | (0.19) | (0.22) | (0.13) | (1.75) | (8.78) | (17.16) | (0.63) | (7.07) | (0.09) | |
20-40 | 4.27 | 5.03 | 0.63 | 0.57 | 0.84 | 4.68 | 73.68 | 30.15 | 1.55 | 23.04 | 0.18 |
(0.15) | (1.11) | (0.49) | (0.27) | (0.22) | (1.50) | (25.00) | (14.35) | (0.15) | (6.42) | (0.19) | |
40-60 | 4.25 | 5.49 | 1.35 | 0.51 | 0.83 | 5.91 | 65.15 | 48.02 | 1.32 | 19.76 | 0.14 |
(0.13) | (1.53) | (0.63) | (0.18) | (0.23) | (3.60) | (16.96) | (79.07) | (0.19) | (6.61) | (0.07) |
Table 1 Background values of physicochemical parameters in initial soil of experiment (mean (SD), n = 10)
土壤深度 Soil depth (cm) | pH | K (g·kg-1) | Na (g·kg-1) | Ca (g·kg-1) | Mg (g·kg-1) | Cu (mg·kg-1) | Mn (mg·kg-1) | Zn (mg·kg-1) | Al (mg·kg-1) | Pb (mg·kg-1) | P (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|---|
0-20 | 4.15 | 6.30 | 0.64 | 1.03 | 1.03 | 4.69 | 78.70 | 35.91 | 1.77 | 37.48 | 0.30 |
(0.15) | (0.73) | (0.19) | (0.22) | (0.13) | (1.75) | (8.78) | (17.16) | (0.63) | (7.07) | (0.09) | |
20-40 | 4.27 | 5.03 | 0.63 | 0.57 | 0.84 | 4.68 | 73.68 | 30.15 | 1.55 | 23.04 | 0.18 |
(0.15) | (1.11) | (0.49) | (0.27) | (0.22) | (1.50) | (25.00) | (14.35) | (0.15) | (6.42) | (0.19) | |
40-60 | 4.25 | 5.49 | 1.35 | 0.51 | 0.83 | 5.91 | 65.15 | 48.02 | 1.32 | 19.76 | 0.14 |
(0.13) | (1.53) | (0.63) | (0.18) | (0.23) | (3.60) | (16.96) | (79.07) | (0.19) | (6.61) | (0.07) |
植物 Species | K (g·kg-1) | Na (g·kg-1) | Ca (g·kg-1) | Mg (g·kg-1) | Cu (mg·kg-1) | Mn (mg·kg-1) | Zn (mg·kg-1) | Al (mg·kg-1) | Pb (mg·kg-1) | P (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
木荷 | 5.46 | 1.98 | 6.81 | 0.96 | 4.04 | 1334.43 | 29.49 | 1.89 | 89.29 | 0.71 |
Schima superba | (0.15) | (0.06) | (0.36) | (0.03) | (0.78) | (27.93) | (3.14) | (0.01) | (0.87) | (0.02) |
红锥 | 5.43 | 2.09 | 6.55 | 1.23 | 4.34 | 621.86 | 41.95 | 1.50 | 101.12 | 1.29 |
Castanopsis hystrix | (0.53) | (0.11) | (0.65) | (0.09) | (0.39) | (53.05) | (6.94) | (0.07) | (17.48) | (0.13) |
肖蒲桃 | 10.51 | 1.26 | 7.73 | 1.32 | 3.45 | 36.66 | 32.69 | 1.18 | 44.13 | 1.29 |
Acmena acuminatissima | (0.94) | (0.11) | (2.02) | (0.09) | (0.03) | (0.29) | (2.23) | (0.09) | (13.04) | (0.11) |
红鳞蒲桃 | 8.24 | 0.61 | 9.42 | 1.42 | 5.68 | 859.61 | 31.82 | 1.00 | 25.94 | 0.56 |
Syzygium hancei | (0.56) | (0.05) | (5.83) | (0.14) | (0.63) | (95.30) | (7.99) | (0.00) | (19.03) | (0.02) |
海南红豆 | 7.58 | 0.56 | 4.29 | 0.81 | 4.56 | 256.29 | 28.60 | 0.96 | 45.75 | 1.02 |
Ormosia pinnata | (0.60) | (0.05) | (0.34) | (0.09) | (0.52) | (19.18) | (3.02) | (0.06) | (12.45) | (0.10) |
Table 2 Leaf element contents of initial seedlings (mean (SD))
植物 Species | K (g·kg-1) | Na (g·kg-1) | Ca (g·kg-1) | Mg (g·kg-1) | Cu (mg·kg-1) | Mn (mg·kg-1) | Zn (mg·kg-1) | Al (mg·kg-1) | Pb (mg·kg-1) | P (g·kg-1) |
---|---|---|---|---|---|---|---|---|---|---|
木荷 | 5.46 | 1.98 | 6.81 | 0.96 | 4.04 | 1334.43 | 29.49 | 1.89 | 89.29 | 0.71 |
Schima superba | (0.15) | (0.06) | (0.36) | (0.03) | (0.78) | (27.93) | (3.14) | (0.01) | (0.87) | (0.02) |
红锥 | 5.43 | 2.09 | 6.55 | 1.23 | 4.34 | 621.86 | 41.95 | 1.50 | 101.12 | 1.29 |
Castanopsis hystrix | (0.53) | (0.11) | (0.65) | (0.09) | (0.39) | (53.05) | (6.94) | (0.07) | (17.48) | (0.13) |
肖蒲桃 | 10.51 | 1.26 | 7.73 | 1.32 | 3.45 | 36.66 | 32.69 | 1.18 | 44.13 | 1.29 |
Acmena acuminatissima | (0.94) | (0.11) | (2.02) | (0.09) | (0.03) | (0.29) | (2.23) | (0.09) | (13.04) | (0.11) |
红鳞蒲桃 | 8.24 | 0.61 | 9.42 | 1.42 | 5.68 | 859.61 | 31.82 | 1.00 | 25.94 | 0.56 |
Syzygium hancei | (0.56) | (0.05) | (5.83) | (0.14) | (0.63) | (95.30) | (7.99) | (0.00) | (19.03) | (0.02) |
海南红豆 | 7.58 | 0.56 | 4.29 | 0.81 | 4.56 | 256.29 | 28.60 | 0.96 | 45.75 | 1.02 |
Ormosia pinnata | (0.60) | (0.05) | (0.34) | (0.09) | (0.52) | (19.18) | (3.02) | (0.06) | (12.45) | (0.10) |
Fig. 1 Variation of leaf element contents of K, Na, Ca, Mg and P in five native tree species under different treatments (mean ± SD). Different letters above the error bars indicate significant differences among treatments in each species (LSD’s multiple range test; p < 0.05). AA, Acmena acuminatissima; CH, Castanopsis hystrix; OP, Ormosia pinnata; SH, Syzygium hancei; SS, Schima superba.
Fig. 2 Effects of different treatments on leaf element contents of Cu, Mn, Zn, Al, Pb in five native tree species (mean ± SD). Different letters above the error bars indicate significant differences among treatments in each species (LSD’s multiple range test; p < 0.05). AA, Acmena acuminatissima; CH, Castanopsis hystrix; OP, Ormosia pinnata; SH, Syzygium hancei; SS, Schima superba.
处理 Treatment | K | Na | Ca | Mg | Cu | Mn | Zn | Al | Pb | P | |
---|---|---|---|---|---|---|---|---|---|---|---|
木荷 | C | NS | NS | NS | NS | NS | 0.005 | NS | NS | NS | NS |
Schima superba | N | 0.008 | 0.014 | NS | 0.038 | NS | 0.000 | NS | NS | NS | NS |
C × N | NS | NS | 0.016 | NS | NS | 0.008 | NS | NS | NS | NS | |
红锥 | C | 0.001 | NS | 0.010 | 0.006 | 0.044 | 0.000 | 0.015 | NS | 0.003 | NS |
Castanopsis hystrix | N | 0.001 | 0.019 | NS | NS | NS | NS | NS | NS | NS | NS |
C × N | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | |
肖蒲桃 | C | NS | 0.007 | NS | NS | NS | 0.010 | NS | 0.030 | NS | 0.000 |
Acmena acuminatissima | N | NS | 0.003 | NS | NS | NS | 0.008 | NS | 0.049 | NS | 0.000 |
C × N | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.004 | |
红鳞蒲桃 | C | 0.004 | 0.000 | NS | 0.000 | 0.016 | 0.001 | 0.046 | 0.003 | 0.001 | 0.008 |
Syzygium hancei | N | NS | 0.054 | 0.005 | 0.003 | NS | NS | NS | NS | NS | NS |
C × N | NS | NS | 0.020 | 0.031 | NS | 0.002 | NS | NS | NS | NS | |
海南红豆 | C | 0.009 | NS | 0.005 | NS | NS | 0.023 | NS | NS | 0.060 | 0.011 |
Ormosia pinnata | N | 0.002 | NS | NS | NS | NS | NS | NS | NS | 0.008 | NS |
C × N | NS | NS | NS | NS | NS | 0.029 | NS | NS | NS | NS |
Table 3 Effects of elevated atmospheric CO2 concentration (C) and nitrogen deposition (N) on leaf element contents of five native species in southern subtropical China
处理 Treatment | K | Na | Ca | Mg | Cu | Mn | Zn | Al | Pb | P | |
---|---|---|---|---|---|---|---|---|---|---|---|
木荷 | C | NS | NS | NS | NS | NS | 0.005 | NS | NS | NS | NS |
Schima superba | N | 0.008 | 0.014 | NS | 0.038 | NS | 0.000 | NS | NS | NS | NS |
C × N | NS | NS | 0.016 | NS | NS | 0.008 | NS | NS | NS | NS | |
红锥 | C | 0.001 | NS | 0.010 | 0.006 | 0.044 | 0.000 | 0.015 | NS | 0.003 | NS |
Castanopsis hystrix | N | 0.001 | 0.019 | NS | NS | NS | NS | NS | NS | NS | NS |
C × N | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | |
肖蒲桃 | C | NS | 0.007 | NS | NS | NS | 0.010 | NS | 0.030 | NS | 0.000 |
Acmena acuminatissima | N | NS | 0.003 | NS | NS | NS | 0.008 | NS | 0.049 | NS | 0.000 |
C × N | NS | NS | NS | NS | NS | NS | NS | NS | NS | 0.004 | |
红鳞蒲桃 | C | 0.004 | 0.000 | NS | 0.000 | 0.016 | 0.001 | 0.046 | 0.003 | 0.001 | 0.008 |
Syzygium hancei | N | NS | 0.054 | 0.005 | 0.003 | NS | NS | NS | NS | NS | NS |
C × N | NS | NS | 0.020 | 0.031 | NS | 0.002 | NS | NS | NS | NS | |
海南红豆 | C | 0.009 | NS | 0.005 | NS | NS | 0.023 | NS | NS | 0.060 | 0.011 |
Ormosia pinnata | N | 0.002 | NS | NS | NS | NS | NS | NS | NS | 0.008 | NS |
C × N | NS | NS | NS | NS | NS | 0.029 | NS | NS | NS | NS |
[1] |
Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998). Nitrogen saturation in temperate forest ecosystems. BioScience, 48, 921-934.
DOI URL |
[2] | Ainsworth EA, Davey PA, Hymus GJ, Osborne CP, Rogers A, Blum H, Nösberger J, Long SP (2003). Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with Lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE). Plant, Cell & Environment, 26, 705-714. |
[3] |
Benjamin DD, Joseph CB, Paul D, Bruce AH (2011). CO2 effects on plant nutrient concentration depend on plant functional group and available nitrogen: a meta-analysis. Plant Ecology, 213, 505-521.
DOI URL |
[4] |
Deng Q (邓琦), Zhou GY (周国逸), Liu JX (刘菊秀), Liu SZ (刘世忠), Duan HL (段洪浪), Chen XM (陈小梅), Zhang DQ (张德强) (2009). Effects of CO2 enrichment, high nitrogen deposition and high precipitation on a model forest ecosystem in southern China. Chinese Journal of Plant Ecology (植物生态学报), 33, 1023-1033. (in Chinese with English abstract).
DOI URL |
[5] |
Duan HL (段洪浪), Liu JX (刘菊秀), Deng Q (邓琦), Chen XM (陈小梅), Zhang DQ (张德强) (2009). Effects of elevated CO2 and N deposition on plant biomass accumulation and allocation in subtropical forest ecosystems: a mesocosm study. Chinese Journal of Plant Ecology (植物生态学报), 33, 570-579. (in Chinese with English abstract).
DOI URL |
[6] |
Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, Webb EA (2006). Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature, 439, 68-71.
DOI URL PMID |
[7] |
Flückiger W, Braun S (1998). Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification. Environmental Pollution, 102, 69-76.
DOI URL |
[8] |
George E, Seith B (1998). Long-term effects of a high nitrogen supply to soil on the growth and nutritional status of young Norway spruce trees. Environmental Pollution, 102, 301-306.
DOI URL |
[9] |
Gunderson CA, Wullschleger SD (1994). Photosynthetic acclimation in trees to rising atmospheric CO2: a broader perspective. Photosynthesis Research, 39, 369-388.
DOI URL PMID |
[10] | Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001). Climate Change 2001: the Scientific Basis. Cambridge University Press, Cambridge, UK. |
[11] |
Houlton BZ, Wang YP, Vitousek PM, Field CB (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454, 327-330.
DOI URL PMID |
[12] | IPCC(Intergovernmental Panel on Climate Change) (2001). Land-Use Change and Forestry. Cambridge University Press, Cambridge, UK. |
[13] | Li DJ (李德军), Mo JM (莫江明), Peng SL (彭少麟), Fang YT (方运霆) (2005). Effects of simulated nitrogen deposition on elemental concentrations of Schima superba and Cryptocarya concinna seedlings in subtropical China. Acta Ecologica Sinica (生态学报), 25, 2165-2172. (in Chinese with English abstract) |
[14] |
Likens GE, Driscoll CT, Buso DC (1996). Long-term effects of acid rain: response and recovery of a forest ecosystem. Science, 272, 244-246.
DOI URL |
[15] |
Liu JX, Xu ZH, Zhang DQ, Zhou GY, Deng Q, Duan HL, Zhao L, Wang CL (2011a). Effects of carbon dioxide enrichment and nitrogen addition on inorganic carbon leaching in subtropical model forest ecosystems. Ecosystems, 14, 683-697.
DOI URL |
[16] |
Liu JX, Zhang DQ, Zhou GY, Faivre-Vuillin B, Deng Q, Wang CL (2008). CO2 enrichment increases nutrient leaching from model forest ecosystems in subtropical China. Biogeosciences, 5, 1783-1795.
DOI URL |
[17] |
Liu JX, Zhou GY, Xu ZH, Duan HL, Li YL, Zhang DQ (2011b). Photosynthesis acclimation, leaf nitrogen concentration, and growth of four tree species over 3 years in response to elevated carbon dioxide and nitrogen treatment in subtropical China. Journal of Soils and Sediments, 11, 1155-1164.
DOI URL |
[18] | Loladze I (2002). Rising atmospheric CO2 and human nutrition: toward globally imbalanced plant stoichiometry? Trends in Ecology and Evolution, 17, 457-461 |
[19] | Magill AH, Aber JD, Currie WS, Nadelhoffer KJ, Martin ME, McDowell WH, Melillo JM, Steudler P (2004). Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecology and Management, 196, 7-28. |
[20] |
Matson P, Lohse KA, Hall SJ (2002). The globalization of nitrogen deposition: consequences for terrestrial ecosystems. Ambio, 31, 113-119.
URL PMID |
[21] | Mo JM, Brown S, Xue JH, Fang YT, Li ZA (2006). Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China. Plant and Soil, 282, 135-151. |
[22] |
Morgan JA, Pataki DE, Körner C, Clark H, Del Grosso SJ, Grünzweig JM, Knapp AK, Mosier AR, Newton PCD, Niklaus PA, Nippert JB, Nowak RS, Parton WJ, Polley HW, Shaw MR (2004). Water relations in grassland and desert ecosystems exposed to elevated atmospheric CO2. Oecologia, 140, 11-25.
URL PMID |
[23] | Nakaji T, Fukami M, Dokiya Y, Izuta T (2001). Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees, 15, 453-461. |
[24] | Nakaji T, Takenaga S, Kuroha M, Izuta T (2002). Photosynthetic response of Pinus densiflora seedlings to high nitrogen load. Environmental Science, 9, 269-282. |
[25] |
Niklaus PA, Spinnler D, Kornerb C (1998). Soil moisture dynamics of calcareous grassland under elevated CO2. Oecologia, 117, 201-208.
DOI URL PMID |
[26] | Nohrstedt HÖ (2001). Response of coniferous forest ecosystems on mineral soils to nutrient additions: a review of Swedish experiences. Scandinavian Journal of Forest Research, 16, 555-573. |
[27] |
Norby RJ, Ledford J, Reilly CD, Miller NE, O’Neill EG (2004). Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the National Academy of Sciences of the United States of America, 101, 9689-9693.
URL PMID |
[28] | Peñuelas J, Filella I, Tognetti R (2001). Leaf mineral concentrations of Erica arborea, Juniperus communis and Myrtus communis growing in the proximity of a natural CO2 spring. Global Change Biology, 7, 291-301. |
[29] | Peñuelas J, Idso SB, Ribas A, Kimball BA (1997). Effects of long-term atmospheric CO2 enrichment on the mineral concentration of Citrus aurantium leaves. New Phytologist, 135, 439-444. |
[30] | Reich PB, Hobbie SE, Lee T, Ellsworth DS, West JB, Tilman D, Knops JMH, Naeem S, Trost J (2006). Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 440, 922-925. |
[31] | Ren R (任仁), Mi FJ (米丰杰), Bai NB (白乃宾) (2000). A chemometrics analysis on the data of precipitation chemistry of China. Journal of Beijing Polytechnic University (北京工业大学学报), 26(2), 90-95. (in Chinese with English abstract) |
[32] | Seith B, George E, Marschner H, Wallenda T, Schaeffer C, Einig W, Wingler A, Hampp R (1996). Effects of varied soil nitrogen supply on Norway spruce (Picea abies(L.) Karst.). I. Shoot and root growth and nutrient uptake. Plant and Soil, 184, 291-298. |
[33] | Sierra LP, Donald RZ, Andrew JB, Alan FT, Kurt SP (2012). Simulated N deposition negatively impacts sugar maple regeneration in a northern hardwood ecosystem. Journal of Applied Ecology, 49, 155-163. |
[34] | Sogn TA, Abrahamsen G (1998). Effects of N and S deposition on leaching from an acid forest soil and growth of Scots pine (Pinus sylvestris L.) after 5 years of treatment. Forest Ecology and Management, 103, 177-190. |
[35] |
Wilson EJ, Skeffington RA (1994). The effects of excess nitrogen deposition on young Norway spruce trees. II. The vegetation. Environmental Pollution, 86, 153-160.
URL PMID |
[36] | Yamakawa Y, Saigusa M, Okada M, Kobayashi K (2004). Nutrient uptake by rice and soil solution composition under atmospheric CO2 enrichment. Plant and Soil, 259, 367-372. |
[37] |
Zhang SR, Dang QL, Yü XG (2006). Nutrient and [CO2] elevation had synergistic effects on biomass production but not on biomass allocation of white birch seedlings. Forest Ecology and Management, 234, 238-244.
DOI URL |
[38] | Zhao L (赵亮), Zhou GY (周国逸), Zhang DQ (张德强), Duan HL (段洪浪), Liu JX (刘菊秀) (2011). Effects of elevated CO2 concentration and nitrogen deposition on the biomass accumulation and allocation in south subtropical main native tree species and their mixed communities. Chinese Journal of Applied Ecology (应用生态学报), 22, 1949-1954. (in Chinese with English abstract) |
[39] |
Zheng XH, Fu CB, Xu XK, Yan XD, Huang Y, Han SH, Hu F, Chen GX (2002). The Asian nitrogen cycle case study. Ambio, 31, 79-87.
DOI URL PMID |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn