Chin J Plant Ecol ›› 2021, Vol. 45 ›› Issue (8): 870-879.DOI: 10.17521/cjpe.2021.0146
Special Issue: 光合作用
• Research Articles • Previous Articles Next Articles
JIN Chuan1,2, LI Xin-Hao1,2, JIANG Yan1,2, XU Ming-Ze1,2, TIAN Yun1,2, LIU Peng1,2, JIA Xin1,2,3, ZHA Tian- Shan1,2,3,*()
Received:
2021-04-19
Revised:
2021-06-26
Online:
2021-08-20
Published:
2021-07-22
Contact:
ZHA Tian- Shan
Supported by:
JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season[J]. Chin J Plant Ecol, 2021, 45(8): 870-879.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0146
ΦA | ΦPR | ΦNPQ | ΦNO | PAR | Ta | VPD | SWC | Fv/Fm | E | gs | Narea | SLA | CChl | Chl a/b | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ΦA | 1.000 0 | ||||||||||||||
ΦPR | 0.995 0** | 1.000 0 | |||||||||||||
ΦNPQ | -0.921 6** | -0.916 6** | 1.000 0 | ||||||||||||
ΦNO | -0.960 8** | -0.966 7** | 0.785 9** | 1.000 0 | |||||||||||
PAR | -0.194 7 | -0.214 2 | 0.170 1 | 0.214 8 | 1.000 0 | ||||||||||
Ta | -0.231 2 | -0.224 3 | 0.199 6 | 0.225 0 | 0.540 2** | 1.000 0 | |||||||||
VPD | -0.114 8 | -0.053 7 | 0.110 6 | 0.043 6 | 0.706 3* | 0.341 5 | 1.000 0 | ||||||||
SWC | 0.361 7 | 0.426 4 | -0.347 9 | -0.407 8 | -0.506 8 | -0.097 9 | -0.526 0 | 1.000 0 | |||||||
Fv/Fm | 0.058 9 | 0.099 8 | -0.006 6 | -0.131 3 | -0.038 3 | 0.030 1 | -0.252 6 | 0.251 5 | 1.000 0 | ||||||
E | 0.619 5** | 0.634 5** | -0.521 1* | -0.647 0** | 0.185 0 | 0.339 0 | 0.184 4 | 0.176 1 | -0.339 2 | 1.000 0 | |||||
gs | 0.225 7 | 0.271 4 | -0.225 4 | -0.254 6 | -0.205 3 | -0.419 4 | -0.206 4 | 0.221 9 | 0.414 5* | 0.130 5 | 1.000 0 | ||||
Narea | 0.105 1 | 0.014 8 | -0.109 4 | 0.001 5 | 0.132 2 | -0.271 7 | 0.583 3* | -0.646 3* | -0.294 9 | -0.144 6 | -0.035 5 | 1.000 0 | |||
SLA | -0.192 1 | -0.127 2 | 0.057 8 | 0.195 9 | -0.306 8 | -0.055 1 | -0.586 3* | 0.569 2* | 0.438 9 | -0.101 8 | 0.389 7 | -0.530 6 | 1.000 0 | ||
CChl | -0.266 9 | -0.242 1 | 0.254 8 | 0.226 0 | 0.612 1* | 0.423 2 | 0.345 0 | -0.133 7 | 0.445 8 | 0.164 9 | 0.290 9 | -0.120 4 | -0.041 4 | 1.000 0 | |
Chl a/b | -0.030 8 | -0.066 9 | 0.168 9 | -0.024 8 | 0.171 5 | -0.106 6 | 0.197 2 | -0.144 8 | -0.112 6 | 0.034 8 | 0.065 3 | 0.444 5 | -0.004 7 | 0.251 4 | 1.000 0 |
Table 1 Relationship between photosynthetic energy partitioning, environmental and leaf trait parameters of Artemisia ordosica
ΦA | ΦPR | ΦNPQ | ΦNO | PAR | Ta | VPD | SWC | Fv/Fm | E | gs | Narea | SLA | CChl | Chl a/b | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ΦA | 1.000 0 | ||||||||||||||
ΦPR | 0.995 0** | 1.000 0 | |||||||||||||
ΦNPQ | -0.921 6** | -0.916 6** | 1.000 0 | ||||||||||||
ΦNO | -0.960 8** | -0.966 7** | 0.785 9** | 1.000 0 | |||||||||||
PAR | -0.194 7 | -0.214 2 | 0.170 1 | 0.214 8 | 1.000 0 | ||||||||||
Ta | -0.231 2 | -0.224 3 | 0.199 6 | 0.225 0 | 0.540 2** | 1.000 0 | |||||||||
VPD | -0.114 8 | -0.053 7 | 0.110 6 | 0.043 6 | 0.706 3* | 0.341 5 | 1.000 0 | ||||||||
SWC | 0.361 7 | 0.426 4 | -0.347 9 | -0.407 8 | -0.506 8 | -0.097 9 | -0.526 0 | 1.000 0 | |||||||
Fv/Fm | 0.058 9 | 0.099 8 | -0.006 6 | -0.131 3 | -0.038 3 | 0.030 1 | -0.252 6 | 0.251 5 | 1.000 0 | ||||||
E | 0.619 5** | 0.634 5** | -0.521 1* | -0.647 0** | 0.185 0 | 0.339 0 | 0.184 4 | 0.176 1 | -0.339 2 | 1.000 0 | |||||
gs | 0.225 7 | 0.271 4 | -0.225 4 | -0.254 6 | -0.205 3 | -0.419 4 | -0.206 4 | 0.221 9 | 0.414 5* | 0.130 5 | 1.000 0 | ||||
Narea | 0.105 1 | 0.014 8 | -0.109 4 | 0.001 5 | 0.132 2 | -0.271 7 | 0.583 3* | -0.646 3* | -0.294 9 | -0.144 6 | -0.035 5 | 1.000 0 | |||
SLA | -0.192 1 | -0.127 2 | 0.057 8 | 0.195 9 | -0.306 8 | -0.055 1 | -0.586 3* | 0.569 2* | 0.438 9 | -0.101 8 | 0.389 7 | -0.530 6 | 1.000 0 | ||
CChl | -0.266 9 | -0.242 1 | 0.254 8 | 0.226 0 | 0.612 1* | 0.423 2 | 0.345 0 | -0.133 7 | 0.445 8 | 0.164 9 | 0.290 9 | -0.120 4 | -0.041 4 | 1.000 0 | |
Chl a/b | -0.030 8 | -0.066 9 | 0.168 9 | -0.024 8 | 0.171 5 | -0.106 6 | 0.197 2 | -0.144 8 | -0.112 6 | 0.034 8 | 0.065 3 | 0.444 5 | -0.004 7 | 0.251 4 | 1.000 0 |
E | gs | Narea | SLA | CChl | Chl a/b | Y | SSE | R2 | p | AIC | |
---|---|---|---|---|---|---|---|---|---|---|---|
ΦA | 0.000 8 (0.001 2) | 0.018 9 (0.051 5) | 0.069 1 (0.033 8) | 0.001 9 (0.000 7) | 0.0347 (0.056 1) | 0.004 2 (0.010 1) | 0.075 3 (0.168 3) | 0.000 3 | 0.57 | 0.29 | -50.72 |
ΦPR | 0.001 5 (0.336 7) | 0.050 5 (0.103 0) | 0.001 1 (0.067 6) | 0.000 3 (0.001 3) | 0.069 3 (0.112 2) | 0.008 5 (0.020 8) | 0.150 7 (0.336 7) | 0.001 3 | 0.58 | 0.26 | -42.29 |
ΦNPQ | -0.000 9 (0.001 8) | -0.014 9 (0.078 8) | -0.049 3 (0.051 7) | -0.001 1 (0.001 0) | -0.007 4 (0.085 9) | -0.007 3 (0.015 9) | 0.572 9 (0.257 6) | 0.000 8 | 0.59 | 0.25 | -45.54 |
ΦNO | -0.001 4 (0.002 1) | -0.084 4 (0.093 7) | -0.041 2 (0.061 5) | -0.000 5 (0.001 2) | -0.111 5 (0.102 1) | -0.020 1 (0.018 9) | 0.200 9 (0.306 3) | 0.001 1 | 0.69 | 0.11 | -43.44 |
Table 2 Fitting parameters of the relationship between photosynthetic energy partitioning components of Artemisia ordosica and leaf trait parameters
E | gs | Narea | SLA | CChl | Chl a/b | Y | SSE | R2 | p | AIC | |
---|---|---|---|---|---|---|---|---|---|---|---|
ΦA | 0.000 8 (0.001 2) | 0.018 9 (0.051 5) | 0.069 1 (0.033 8) | 0.001 9 (0.000 7) | 0.0347 (0.056 1) | 0.004 2 (0.010 1) | 0.075 3 (0.168 3) | 0.000 3 | 0.57 | 0.29 | -50.72 |
ΦPR | 0.001 5 (0.336 7) | 0.050 5 (0.103 0) | 0.001 1 (0.067 6) | 0.000 3 (0.001 3) | 0.069 3 (0.112 2) | 0.008 5 (0.020 8) | 0.150 7 (0.336 7) | 0.001 3 | 0.58 | 0.26 | -42.29 |
ΦNPQ | -0.000 9 (0.001 8) | -0.014 9 (0.078 8) | -0.049 3 (0.051 7) | -0.001 1 (0.001 0) | -0.007 4 (0.085 9) | -0.007 3 (0.015 9) | 0.572 9 (0.257 6) | 0.000 8 | 0.59 | 0.25 | -45.54 |
ΦNO | -0.001 4 (0.002 1) | -0.084 4 (0.093 7) | -0.041 2 (0.061 5) | -0.000 5 (0.001 2) | -0.111 5 (0.102 1) | -0.020 1 (0.018 9) | 0.200 9 (0.306 3) | 0.001 1 | 0.69 | 0.11 | -43.44 |
Fig. 3 Photosynthetic energy partitioning and specific leaf area of Artemisia ordosica under different soil and air moisture conditions (mean ± SD). SWC, soil water content; VPD, vapor pressure deficit. Different lowercase letters indicate significant differences (p < 0.05).
[1] | Burnham KP, Anderson DR, Huyvaert KP (2011). AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology, 65, 23-35. |
[2] | Chaves MM, Osório J, Pereira JS (2004). Water use efficiency and photosynthesis//Bacon MA. Water Use Efficiency in Plant Biology. Blackwell Publishing, Oxford, UK. |
[3] | Chen YN, Chen YP, Zhu CG, Li WH (2019). The concept and mode of ecosystem sustainable management in arid desert areas in northwest China. Acta Ecologica Sinica, 39, 7410-7417. |
[ 陈亚宁, 陈亚鹏, 朱成刚, 李卫红 (2019). 西北干旱荒漠区生态系统可持续管理理念与模式. 生态学报, 39, 7410-7417.] | |
[4] | Chong PF, Li Y, Su SP (2010). Diurnal change in chlorophyll fluorescence parameters of desert plant Reaumuria soongorica and its relationship with environmental factors. Journal of Desert Research, 30, 539-545. |
[ 种培芳, 李毅, 苏世平 (2010). 荒漠植物红砂叶绿素荧光参数日变化及其与环境因子的关系. 中国沙漠, 30, 539-545.] | |
[5] | Galmés J, Medrano H, Flexas J (2007). Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytologist, 175, 81-93. |
[6] | He YH, Bai YE, Wang HY, Lin T, Tian YL (2015). Effect of light stress on chlorophyll fluorescence and photorespiration of Ammopiptanthus mongolicus. Acta Agriculturae Boreali-Occidentalis Sinica, 24, 124-130. |
[ 何炎红, 白玉娥, 王海燕, 林涛, 田有亮 (2015). 光胁迫对沙冬青叶绿素荧光特征和光呼吸的影响. 西北农业学报, 24, 124-130.] | |
[7] | Hou XW, Li YJ, Zhong Q, Peng XX (2019). Recent progress of photorespiration pathway and its regulation. Plant Physiology Journal, 55, 255-264. |
[ 侯学文, 李英杰, 钟琪, 彭新湘 (2019). 光呼吸代谢途径及其调控的研究进展. 植物生理学报, 55, 255-264.] | |
[8] | Huang JP, Yu HP, Dai AG, Wei Y, Kang LT (2017). Drylands face potential threat under 2 °C global warming target. Nature Climate Change, 7, 417-422. |
[9] | Jia X, Zha TS, Gong JN, Wang B, Zhang YQ, Wu B, Qin SG, Peltola H (2016). Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agricultural and Forest Meteorology, 228, 120-129. |
[10] | Jiang CD, Gao HY, Zou Q, Jiang GM, Li LH (2005). The co-operation of leaf orientation, photorespiration and thermal dissipation alleviate photoinhibition in young leaves of soybean plants. Acta Ecologica Sinica, 25, 319-325. |
[ 姜闯道, 高辉远, 邹琦, 蒋高明, 李凌浩 (2005). 叶角、光呼吸和热耗散协同作用减轻大豆幼叶光抑制. 生态学报, 25, 319-325.] | |
[11] | Jin C, Jiang Y, Li XH, Xu MZ, Gao SJ, Wei NN, Jia X, Tian Y, Zha TS (2021). Multi-time scale property of environmental responses to photosystem II of Artemisia ordosica in Mu Us desert. Transactions of the Chinese Society of Agricultural Engineering, 37, 152-160. |
[ 靳川, 蒋燕, 李鑫豪, 徐铭泽, 高圣杰, 魏宁宁, 贾昕, 田赟, 查天山 (2021). 毛乌素沙地油蒿光系统II多时间尺度的环境响应特征. 农业工程学报, 37, 152-160.] | |
[12] | Jin C, Zha TS, Jia X, Tian Y, Zhou WJ, Yang SB, Guo ZF (2020). Dynamics of chlorophyll fluorescence parameters under drought condition for three desert shrub species. Journal of Beijing Forestry University, 42(8), 72-80. |
[ 靳川, 查天山, 贾昕, 田赟, 周文君, 杨双宝, 郭子繁 (2020). 干旱环境3种荒漠灌木叶绿素荧光参数动态. 北京林业大学学报, 42(8), 72-80.] | |
[13] | Kang BW, Liu JJ, Sun JH, Li YF (2010). Study on root distribution of Artemisa ordosica in Mu Us Sandy land. Research of Soil and Water Conservation, 17, 119-123. |
[ 康博文, 刘建军, 孙建华, 李岩峰 (2010). 陕北毛乌素沙漠黑沙蒿根系分布特征研究. 水土保持研究, 17, 119-123.] | |
[14] | Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 79, 209-218. |
[15] | Li XH, Yan HJ, Wei TZ, Zhou WJ, Jia X, Zha TS (2019). Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season. Chinese Journal of Plant Ecology, 43, 889-898. |
[ 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山 (2019). 油蒿资源利用效率在生长季的相对变化及对环境因子的响应. 植物生态学报, 43, 889-898.] | |
[16] | Lin NF, Tang J (2001). Study on the environmental evolution and the causes of desertification in arid and semiarid regions in China. Scientia Geographica Sinica, 21, 24-29. |
[ 林年丰, 汤洁 (2001). 中国干旱半干旱区的环境演变与荒漠化的成因. 地理科学, 21, 24-29.] | |
[17] | Luo DD, Wang CK, Jin Y (2019). Stomatal regulation of plants in response to drought stress. Chinese Journal of Applied Ecology, 30, 4333-4343. |
[ 罗丹丹, 王传宽, 金鹰 (2019). 植物应对干旱胁迫的气孔调节. 应用生态学报, 30, 4333-4343.] | |
[18] | Murchie EH, Lawson T (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64, 3983-3998. |
[19] | Müller P, Li XP, Niyogi KK (2001). Non-photochemical quenching. A response to excess light energy. Plant physiology, 125, 1558-1566. |
[20] | Ruan CJ, Li DQ (2001). Stomatal conductance and influence factors of seabuckthorn in Loess Hilly Region. Acta Botanica Boreali-occidentalia Sinica, 21, 30-36. |
[ 阮成江, 李代琼 (2001). 黄土丘陵区沙棘气孔导度及其影响因子. 西北植物学报, 21, 30-36.] | |
[21] | Ruban AV (2016). Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology, 170, 1903-1916. |
[22] | Savitch LV, Ivanov AG, Gudynaite-Savitch L, Huner NPA, Simmonds J (2009). Effects of low temperature stress on excitation energy partitioning and photoprotection in Zea mays. Functional Plant Biology, 36, 37-49. |
[23] | Shi ZM, Tang JC, Cheng RM, Luo D, Liu SR (2015). A review of nitrogen allocation in leaves and factors in its effects. Acta Ecologica Sinica, 35, 5909-5919. |
[ 史作民, 唐敬超, 程瑞梅, 罗达, 刘世荣 (2015). 植物叶片氮分配及其影响因子研究进展. 生态学报, 35, 5909-5919.] | |
[24] | Sun AA, Zhi YB, Jiang PP, Lü K, Zhang DJ, Li HL, Zhang HL, Wang YF, Hua YP, Hong G, Gao JB (2019). Characteristics of and differences in photosynthesis in four desert plants in western Ordos. Acta Ecologica Sinica, 39, 4944-4952. |
[ 孙安安, 智颖飙, 姜平平, 吕凯, 张德健, 李红丽, 张荷亮, 王云飞, 华宇鹏, 红鸽, 高健斌 (2019). 西鄂尔多斯4种荒漠植物光合作用特征与差异性. 生态学报, 39, 4944-4952.] | |
[25] | Sun Y, Wang D, Tong Z, Yang Q, Chang LL, Wang LM, He LP, Wang XC (2015). Proteomic analysis of banana seedling leaf response to low temperature. Chinese Agricultural Science Bulletin, 31, 216-228. |
[ 孙勇, 王丹, 仝征, 杨倩, 常丽丽, 王力敏, 何丽平, 王旭初 (2015). 香蕉幼苗叶片响应低温胁迫的比较蛋白质组学研究. 中国农学通报, 31, 216-228.] | |
[26] | Sun Y, Xu WJ, Fan AL (2006). Effects of salicylic acid on chlorophyll fluorescence and xanthophyll cycle in cucumber leaves under high temperature and strong light. Chinese Journal of Applied Ecology, 17, 3399-3402. |
[ 孙艳, 徐伟君, 范爱丽 (2006). 高温强光下水杨酸对黄瓜叶片叶绿素荧光和叶黄素循环的影响. 应用生态学报, 17, 3399-3402.] | |
[27] | Wang Y, Lü GH, Gao LJ, Ren ML, Su Q, Sun LJ (2013). Stomatal conductance characteristics of desert species Poacynum pictum(Schrenk.) Baill of and the impact factors. Journal of Arid Land Resources and Environment, 27, 158-163. |
[ 王芸, 吕光辉, 高丽娟, 任曼丽, 苏前, 孙丽君 (2013). 荒漠植物白麻气孔导度特征及其影响因子研究. 干旱区资源与环境, 27, 158-163.] | |
[28] | Wang YL, Liu J, Li WB, Li F (2015). Study on characteristics in photosynthesis, transpiration and water use efficiency of Tamarix hispida willd. in the lower reaches of the Tarim river. Xinjiang Agricultural Sciences, 52, 292-299. |
[ 王燕凌, 刘君, 李文兵, 李芳 (2015). 塔里木河下游刚毛柽柳光合作用、蒸腾作用及水分利用效率特性研究. 新疆农业科学, 52, 292-299.] | |
[29] | Wu YJ, Ren C, Tian Y, Zha TS, Liu P, Bai YJ, Ma JY, Lai ZR, Bourque CPA (2018). Photosynthetic gas-exchange and PSII photochemical acclimation to drought in a native and non-native xerophytic species (Artemisia ordosica and Salix psammophila). Ecological Indicators, 94, 130-138. |
[30] | Wu YJ, Zha TS, Jia X, Qin SG, Li Y, Wang B (2015). Temporal variation and controlling factors of photochemical efficiency and non-photo-chemical quenching in Artemisia ordosica. Chinese Journal of Ecology, 34, 319-325. |
[ 吴雅娟, 查天山, 贾昕, 秦树高, 李媛, 王奔 (2015). 油蒿(Artemisia ordosica)光化学量子效率和非光化学淬灭的动态及其影响因子. 生态学杂志, 34, 319-325.] | |
[31] | Yang HX, Zhang J, Wu B, Wang Y, Li XS, Xu B (2004). Adaptation of Artemisia ordosica to temperate arid sandy land and its roles in habitat shift. Journal of Beijing Normal University (Natural Science), 40, 684-690. |
[ 杨洪晓, 张金屯, 吴波, 王妍, 李晓松, 许彬 (2004). 油蒿(Artemisia ordosica)对半干旱区沙地生境的适应及其生态作用. 北京师范大学学报(自然科学版), 40, 684-690.] | |
[32] | Zha TS, Wu YJ, Jia X, Zhang MY, Bai YJ, Liu P, Ma JY, Bourque CPA, Peltola H (2017). Diurnal response of effective quantum yield of PSII photochemistry to irradiance as an indicator of photosynthetic acclimation to stressed environments revealed in a xerophytic species. Ecological Indicators, 74, 191-197. |
[33] | Zhang C, Zhan DX, Zhang PP, Zhang YL, Luo HH, Zhang WF (2014). Responses of photorespiration and thermal dissipation in PSII to soil water in cotton bracts. Chinese Journal of Plant Ecology, 38, 387-395. |
[ 张超, 占东霞, 张鹏鹏, 张亚黎, 罗宏海, 张旺锋 (2014). 棉花苞叶光呼吸和PSII热耗散对土壤水分的响应. 植物生态学报, 38, 387-395.] | |
[34] | Zhao FH, Yu GR (2008). A review on the coupled carbon and water cycles in the terrestrial ecosystems. Progress in Geography, 27, 32-38. |
[ 赵风华, 于贵瑞 (2008). 陆地生态系统碳-水耦合机制初探. 地理科学进展, 27, 32-38.] |
[1] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[2] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[3] | ZHAO Xiao-Ning, TIAN Xiao-Nan, LI Xin, LI Guang-De, GUO You-Zheng, JIA Li-Ming, DUAN Jie, XI Ben-Ye. Analysis of applicability of Granier’s original equation for calculating the stem sap flux density—Take Populus tomentosa as an example [J]. Chin J Plant Ecol, 2023, 47(3): 404-417. |
[4] | LIU Hai-Yan, ZANG Sha-Sha, ZHANG Chun-Xia, ZUO Jin-Cheng, RUAN Zuo-Xi, WU Hong-Yan. Photochemical reaction of photosystem II in diatoms under phosphorus starvation and its response to high light intensity [J]. Chin J Plant Ecol, 2023, 47(12): 1718-1727. |
[5] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[6] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[7] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[8] | WU Hong-Min, SHUANG Sheng-Pu, ZHANG Jin-Yan, CUN Zhu, MENG Zhen-Gui, LI Long-Gen, SHA Ben-Cai, CHEN Jun-Wen. Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity [J]. Chin J Plant Ecol, 2021, 45(4): 404-419. |
[9] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[10] | HUANG Song-Yu, JIA Xin, ZHENG Jia-Jia, YANG Rui-Zhi, MU Yu, YUAN He-Di. Characteristics and influencing factors of Bowen ratio variation in typical terrestrial ecosystems in China [J]. Chin J Plant Ecol, 2021, 45(2): 119-130. |
[11] | LI Jing, WANG Xin, WANG Zhen-Hua, WANG Bin, WANG Cheng-Zhang, DENG Mei-Feng, LIU Ling-Li. Effects of ozone and aerosol pollution on photosynthesis of poplar leaves [J]. Chin J Plant Ecol, 2020, 44(8): 854-863. |
[12] | LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu. Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming [J]. Chin J Plant Ecol, 2020, 44(12): 1203-1214. |
[13] | LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207. |
[14] | LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898. |
[15] | CHENG Han-Ting, LI Qin-Fen, LIU Jing-Kun, YAN Ting-Liang, ZHANG Qiao-Yan, WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plant Ecol, 2018, 42(5): 585-594. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn