Chin J Plant Ecol ›› 2023, Vol. 47 ›› Issue (3): 418-433.DOI: 10.17521/cjpe.2022.0049
• Research Articles • Previous Articles Next Articles
BAI Xue, LI Yu-Jing, JING Xiu-Qing, ZHAO Xiao-Dong, CHANG Sha-Sha, JING Tao-Yu, LIU Jin-Ru, ZHAO Peng-Yu()
Received:
2022-02-02
Accepted:
2022-06-22
Online:
2023-03-20
Published:
2022-07-15
Contact:
ZHAO Peng-Yu
Supported by:
BAI Xue, LI Yu-Jing, JING Xiu-Qing, ZHAO Xiao-Dong, CHANG Sha-Sha, JING Tao-Yu, LIU Jin-Ru, ZHAO Peng-Yu. Response mechanisms of millet and its rhizosphere soil microbial communities to chromium stress[J]. Chin J Plant Ecol, 2023, 47(3): 418-433.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2022.0049
指标 Index | 对照 Control | Cr胁迫6 h Cr stress for 6 h | Cr胁迫6 d Cr stress for 6 d |
---|---|---|---|
氮含量 Nitrogen content (mg·kg-1) | 38.89 ± 8.27b | 34.28 ± 3.43b | 80.83 ± 6.56a |
磷含量 Phosphorus content (mg·kg-1) | 53.83 ± 12.17b | 48.17 ± 5.50b | 111.28 ± 10.45a |
钾含量 Potassium content (mg·kg-1) | 117.34 ± 28.51b | 111.33 ± 11.71b | 262.00 ± 25.32a |
电导率 Electrical conductivity (us·cm-1) | 743.61 ± 127.88b | 663.89 ± 79.75b | 1628.78 ± 113.72a |
pH | 6.90 ± 0.08b | 7.04 ± 0.12b | 7.29 ± 0.13a |
Table 1 Soil physical and chemical properties under chromium (Cr) stress (mean ± SD)
指标 Index | 对照 Control | Cr胁迫6 h Cr stress for 6 h | Cr胁迫6 d Cr stress for 6 d |
---|---|---|---|
氮含量 Nitrogen content (mg·kg-1) | 38.89 ± 8.27b | 34.28 ± 3.43b | 80.83 ± 6.56a |
磷含量 Phosphorus content (mg·kg-1) | 53.83 ± 12.17b | 48.17 ± 5.50b | 111.28 ± 10.45a |
钾含量 Potassium content (mg·kg-1) | 117.34 ± 28.51b | 111.33 ± 11.71b | 262.00 ± 25.32a |
电导率 Electrical conductivity (us·cm-1) | 743.61 ± 127.88b | 663.89 ± 79.75b | 1628.78 ± 113.72a |
pH | 6.90 ± 0.08b | 7.04 ± 0.12b | 7.29 ± 0.13a |
Fig. 1 Morphology changes of Setaria italica seedlings after chromium (Cr) stress. CK, control; Cr_6d, chromium stress for 6 d; Cr_6h, Cr stress for 6 h.
指标 Index | 对照 Control | Cr胁迫6 h Cr stress for 6 h | Cr胁迫6 d Cr stress for 6 d |
---|---|---|---|
茎长 Stem length (cm) | 5.86 ± 0.55b | 5.52 ± 0.55b | 7.73 ± 1.12a |
根长 Root length (cm) | 4.18 ± 0.81a | 3.64 ± 0.23a | 3.83 ± 0.75a |
干质量 Dry mass (g) | 0.003 1 ± 0.000 5b | 0.003 4 ± 0.000 5b | 0.005 0 ± 0.000 6a |
鲜质量 Fresh mass (g) | 0.028 3 ± 0.005 3b | 0.029 4 ± 0.002 6b | 0.037 8 ± 0.005 1a |
叶绿素含量 Chlorophyll content (SPAD) | 24.68 ± 1.70a | 18.84 ± 1.77b | 16.34 ± 2.00b |
氮含量 Nitrogen content (mg·g-1) | 7.49 ± 0.51a | 6.19 ± 0.52b | 5.45 ± 0.58b |
Table 2 Setaria italica growth and biomass determination in the chromium (Cr) stress time series (mean ± SD)
指标 Index | 对照 Control | Cr胁迫6 h Cr stress for 6 h | Cr胁迫6 d Cr stress for 6 d |
---|---|---|---|
茎长 Stem length (cm) | 5.86 ± 0.55b | 5.52 ± 0.55b | 7.73 ± 1.12a |
根长 Root length (cm) | 4.18 ± 0.81a | 3.64 ± 0.23a | 3.83 ± 0.75a |
干质量 Dry mass (g) | 0.003 1 ± 0.000 5b | 0.003 4 ± 0.000 5b | 0.005 0 ± 0.000 6a |
鲜质量 Fresh mass (g) | 0.028 3 ± 0.005 3b | 0.029 4 ± 0.002 6b | 0.037 8 ± 0.005 1a |
叶绿素含量 Chlorophyll content (SPAD) | 24.68 ± 1.70a | 18.84 ± 1.77b | 16.34 ± 2.00b |
氮含量 Nitrogen content (mg·g-1) | 7.49 ± 0.51a | 6.19 ± 0.52b | 5.45 ± 0.58b |
Fig. 2 Differentially expressed genes (DEGs) in leaves of Setaria italica in the chromium (Cr) stress time series. A-C, Volcano plots of DEGs in leaves of S. italica from three sample pairs. The blue, red and gray dots represent down-regulated, up-regulated and no significant change genes, respectively. D, Venn diagram showing the effect of different samples on DEGs in leaves of S. italica. E, GO annotation analysis of DEGs in leaves of S. italica under Cr treatment. CK, control; Cr_6d, Cr stress for 6 d; Cr_6h, Cr stress for 6 h. FC, differential expression multiple; pa, the adjusted p value.
Fig. 3 Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs) in chromium (Cr) stressed Setaria italica leaves. pa, the adjusted p value. CK, control; Cr_6d, Cr stress for 6 d; Cr_6h, Cr stress for 6 h.
Fig. 4 Community structure and inter-community differences between bacterial and fungal communities in the rhizosphere soil of Setaria italica at phylum level and genus level in the chromium (Cr) stress time series. A, B, Bacterial and fungal Venn diagrams. Numbers in these figures represent the number of operational taxonomic units in different groups. C, D, Bacterial and fungal phylum-level community composition. E, F, Bacterial and fungal genus-level community composition. CK, control; Cr_6d, Cr stress for 6 d ; Cr_6h, Cr stress for 6 h. Different lowercase letters indicate significant differences among treatments (p < 0.05).
Fig. 5 Analysis of α-diversity and β-diversity of bacterial (A, C) and fungal (B, D) communities in the chromium (Cr) stress time series. A, B, α-diversity of bacterial and fungal communities. Different lowercase letters mean significant differences among treatments (p < 0.05). C, D, β-diversity of bacterial chromium fungal community. The closer the points of two samples, the more similar the species composition of the two samples. CK, control; Cr_6h, Cr stress for 6 h; Cr_6d, Cr stress for 6 d. Stress is a metric reflecting the suitability of the model.
Fig. 6 Correlation analysis of soil physicochemical factors with bacterial (A) and fungal (B) communities。EC, electrical conductivity; K, potassium content, N, nitrogen content; P, phosphorus content. The size of the circular dots indicates the magnitude of the correlation coefficient, the color indicates the positive or negative correlation coefficient, and the square color block indicates the p value of the correlation test.
功能分组 Guild | 对照 Control | Cr胁迫6 h Cr stress for 6 h | Cr胁迫6 d Cr stress for 6 d | |
---|---|---|---|---|
细菌 Bacterial | 全局和概述 Global and overview maps | 34 369 841.00 ± 4 720 050.73a | 34 518 331.33 ± 3 830 827.80a | 35 436 018.33 ± 2 851 467.46a |
碳水化合物代谢 Carbohydrate metabolism | 7 915 005.25 ± 1 088 978.09a | 7 977 677.58 ± 893 493.00a | 8 182 307.00 ± 66 8193.19a | |
氨基酸代谢 Amino acid metabolism | 7 063 478.92 ± 966 823.00a | 7 092 711.17 ± 792 150.10a | 7 279 350.08 ± 586 179.57a | |
能量代谢 Energy metabolism | 3 723 520.25 ± 510 073.28a | 3 742 113.67 ± 409 484.99a | 3 833 272.92 ± 303 226.45a | |
辅助因子和维生素代谢 Metabolism of cofactors and vitamins | 3 596 104.96 ± 488 259.88a | 3 580 709.88 ± 393 862.62a | 3 674 852.42 ± 301 407.93a | |
真菌 Fungal | 未定义的腐生菌 Undefined saprotroph | 11 919.33 ± 1 237.78a | 9 633.50 ± 2 636.32a | 18 537.33 ± 10 095.58a |
动物病原体-内生菌-植物病原体-未定义腐生菌 Animal pathogen-endophyte-plant pathogen- undefined saprotroph | 10 675.17 ± 1 585.46ab | 12 060.50 ± 1 946.59a | 7 946.33 ± 3 433.26b | |
动物病原体-粪便腐生菌-内生菌-附生植物- 植物腐生菌-木材腐生菌 Animal pathogen-dungsaprotroph-endophyte- epiphytelant saprotroph-wood saprotroph | 7 631.33 ± 1 345.52a | 9 334.50 ± 2 107.57a | 6 545.83 ± 4 562.01a | |
植物病原体 Plant pathogen | 10 021.17 ± 2 090.68a | 5 757.83 ± 1763.85b | 4 860.67 ± 2 198.03b | |
动物病原体-内生菌-地衣寄生虫-植物病原体- 土壤腐生菌-木材腐生菌 Animal pathogen-endophyte-lichen parasite-plant pathogen-soil saprotroph-wood saprotroph | 1 255.17 ± 416.48a | 1 119.50 ± 217.63a | 11 740.17 ± 17 952.63a |
Table 3 Functional prediction analysis of soil microbial community in the chromium (Cr) stress time series (mean ± SD)
功能分组 Guild | 对照 Control | Cr胁迫6 h Cr stress for 6 h | Cr胁迫6 d Cr stress for 6 d | |
---|---|---|---|---|
细菌 Bacterial | 全局和概述 Global and overview maps | 34 369 841.00 ± 4 720 050.73a | 34 518 331.33 ± 3 830 827.80a | 35 436 018.33 ± 2 851 467.46a |
碳水化合物代谢 Carbohydrate metabolism | 7 915 005.25 ± 1 088 978.09a | 7 977 677.58 ± 893 493.00a | 8 182 307.00 ± 66 8193.19a | |
氨基酸代谢 Amino acid metabolism | 7 063 478.92 ± 966 823.00a | 7 092 711.17 ± 792 150.10a | 7 279 350.08 ± 586 179.57a | |
能量代谢 Energy metabolism | 3 723 520.25 ± 510 073.28a | 3 742 113.67 ± 409 484.99a | 3 833 272.92 ± 303 226.45a | |
辅助因子和维生素代谢 Metabolism of cofactors and vitamins | 3 596 104.96 ± 488 259.88a | 3 580 709.88 ± 393 862.62a | 3 674 852.42 ± 301 407.93a | |
真菌 Fungal | 未定义的腐生菌 Undefined saprotroph | 11 919.33 ± 1 237.78a | 9 633.50 ± 2 636.32a | 18 537.33 ± 10 095.58a |
动物病原体-内生菌-植物病原体-未定义腐生菌 Animal pathogen-endophyte-plant pathogen- undefined saprotroph | 10 675.17 ± 1 585.46ab | 12 060.50 ± 1 946.59a | 7 946.33 ± 3 433.26b | |
动物病原体-粪便腐生菌-内生菌-附生植物- 植物腐生菌-木材腐生菌 Animal pathogen-dungsaprotroph-endophyte- epiphytelant saprotroph-wood saprotroph | 7 631.33 ± 1 345.52a | 9 334.50 ± 2 107.57a | 6 545.83 ± 4 562.01a | |
植物病原体 Plant pathogen | 10 021.17 ± 2 090.68a | 5 757.83 ± 1763.85b | 4 860.67 ± 2 198.03b | |
动物病原体-内生菌-地衣寄生虫-植物病原体- 土壤腐生菌-木材腐生菌 Animal pathogen-endophyte-lichen parasite-plant pathogen-soil saprotroph-wood saprotroph | 1 255.17 ± 416.48a | 1 119.50 ± 217.63a | 11 740.17 ± 17 952.63a |
[1] |
Abdu N, Abdullahi AA, Abdulkadir A (2017). Heavy metals and soil microbes. Environmental Chemistry Letters, 15, 65-84.
DOI |
[2] |
Ali B, Huang CR, Qi ZY, Ali S, Daud MK, Geng XX, Liu HB, Zhou WJ (2013). 5-Aminolevulinic acid ameliorates cadmium-induced morphological, biochemical, and ultrastructural changes in seedlings of oilseed rape. Environmental Science and Pollution Research, 20, 7256-7267.
DOI URL |
[3] |
Artursson V, Finlay RD, Jansson JK (2006). Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environmental Microbiology, 8, 1-10.
DOI PMID |
[4] | Bai X, Zhao XY, Jing XQ, Zhao XD, Yan PM, Zhao PY (2022). Response mechanism of soil fungal community in farmland during a period of chromium stress. Chinese Journal of Eco-Agriculture, 30, 105-115. |
[白雪, 赵鑫宇, 景秀清, 赵晓东, 燕平梅, 赵鹏宇 (2022). 农田土壤中真菌群落在时间序列对铬胁迫的响应机制. 中国生态农业学报, 30, 105-115.] | |
[5] |
Berendsen RL, Pieterse CMJ, Bakker PAHM (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17, 478-486.
DOI PMID |
[6] |
Cervantes C, Campos-Garcı́a J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiology Reviews, 25, 335-347.
PMID |
[7] | Chen WX, Li Q, Wang Z, Sun ZJ (2020). Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China. Environmental Science, 41, 2822-2833. |
[陈文轩, 李茜, 王珍, 孙兆军 (2020). 中国农田土壤重金属空间分布特征及污染评价. 环境科学, 41, 2822-2833.] | |
[8] |
Chodak M, Gołębiewski M, Morawska-Płoskonka J, Kuduk K, Niklińska M (2013). Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology, 64, 7-14.
DOI URL |
[9] |
Coreño-Alonso A, Acevedo-Aguilar FJ, Reyna-López GE, Tomasini A, Fernández FJ, Wrobel K, Wrobel K, Gutiérrez- Corona JF (2009). Cr(VI) reduction by an Aspergillus tubingensis strain: role of carboxylic acids and implications for natural attenuation and biotreatment of Cr(VI) contamination. Chemosphere, 76, 43-47.
DOI PMID |
[10] |
de Oliveira LM, Gress J, De J, Rathinasabapathi B, Marchi G, Chen YS, Ma LQ (2016). Sulfate and chromate increased each other’s uptake and translocation in As-hyperaccumulator Pteris vittata. Chemosphere, 147, 36-43.
DOI PMID |
[11] |
Deng LJ, Zeng GM, Fan CZ, Lu LH, Chen XF, Chen M, Wu HP, He XX, He Y (2015). Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil. Applied Microbiology and Biotechnology, 99, 8259-8269.
DOI PMID |
[12] |
Diwan HM, Khan I, Ahmad A, Iqbal M (2010). Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regulation, 61, 97-107.
DOI URL |
[13] |
Fan WJ, Feng YX, Li YH, Lin YJ, Yu XZ (2020). Unraveling genes promoting ROS metabolism in subcellular organelles of Oryza sativa in response to trivalent and hexavalent chromium. Science of the Total Environment, 744, 140951. DOI: 10.1016/j.scitotenv.2020.140951.
DOI |
[14] | Fang HH, Pei YX, Tian BH, Zhang LP, Qiao ZJ, Liu ZQ (2014). Ca2+ participates in H2S induced Cr6+ tolerance in Setaria italica. Chinese Journal of Cell Biology, 36, 758-765. |
[方慧慧, 裴雁曦, 田保华, 张丽萍, 乔增杰, 刘志强 (2014). H2S与Ca2+协同增强谷子对Cr6+胁迫的耐受. 中国细胞生物学学报, 36, 758-765.] | |
[15] |
Glassman SI, Wang IJ, Bruns TD (2017). Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Molecular Ecology, 26, 6960-6973.
DOI PMID |
[16] |
Guo XP, Yang Y, Niu ZS, Lu DP, Zhu CH, Feng JN, Wu JY, Chen YR, Tou FY, Liu M, Hou LJ (2019). Characteristics of microbial community indicate anthropogenic impact on the sediments along the Yangtze Estuary and its coastal area, China. Science of the Total Environment, 648, 306-314.
DOI URL |
[17] |
Guo ZH, Zeng P, Xiao XY, Peng C (2021). Physiological, anatomical, and transcriptional responses of mulberry (Morus alba L.) to Cd stress in contaminated soil. Environmental Pollution, 284, 117387. DOI: 10.1016/j.envpol.2021.117387
DOI |
[18] |
Hossain MA, Piyatida P, da Silva JAT, Fujita M, Polle A (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany, 2012, 872875. DOI: 10.1155/2012/872875.
DOI |
[19] |
Ipsilantis I, Coyne MS (2007). Soil microbial community response to hexavalent chromium in planted and unplanted soil. Journal of Environmental Quality, 36, 638-645.
PMID |
[20] |
Jiang B, Adebayo A, Jia JL, Xing Y, Deng SQ, Guo LM, Liang YT, Zhang DY (2019). Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. Journal of Hazardous Materials, 362, 187-195.
DOI PMID |
[21] |
Kadiiska MB, Xiang QH, Mason RP (1994). In vivo free radical generation by chromium (VI): an electron spin resonance spin-trapping investigation. Chemical Research in Toxicology, 7, 800-805.
PMID |
[22] |
Kasemodel MC, Sakamoto IK, Varesche MBA, Rodrigues VGS (2019). Potentially toxic metal contamination and microbial community analysis in an abandoned Pb and Zn mining waste deposit. Science of the Total Environment, 675, 367-379.
DOI |
[23] |
Leng Y, Li Y, Wen Y, Zhao H, Wang Q, Li SW (2020). Transcriptome analysis provides molecular evidences for growth and adaptation of plant roots in cadimium-contaminated environments. Ecotoxicology and Environmental Safety, 204, 111098. DOI: 10.1016/j.ecoenv.2020.111098.
DOI |
[24] |
Lin YB, Ye YM, Hu YM, Shi HK (2019). The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Ecotoxicology and Environmental Safety, 180, 557-564.
DOI PMID |
[25] | Lin YB, Ye YM, Wu CF, Hu YM, Shi HK (2020). Response analysis of soil bacterial community to different heavy metal pollution levels in paddy fields: a case study of A county. Acta Scientiae Circumstantiae, 40, 224-233. |
[林耀奔, 叶艳妹, 吴次芳, 胡一鸣, 施昊坤 (2020). 水田土壤细菌群落对不同重金属污染水平的响应分析——以A县为例. 环境科学学报, 40, 224-233.] | |
[26] |
Mathur S, Kalaji HM, Jajoo A (2016). Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica, 54, 185-192.
DOI URL |
[27] |
Mohanty M, Patra HK (2011). Attenuation of chromium toxicity by bioremediation technology. Reviews of Environmental Contamination and Toxicology, 210, 1-34.
DOI PMID |
[28] |
Montes-Holguin MO, Peralta-Videa JR, Meitzner G, Martinez- Martinez A, de la Rosa G, Castillo-Michel HA, Gardea-Torresdey JL 2006). Biochemical and spectroscopic studies of the response of Convolvulus arvensis L. to chromium(III) and chromium(VI) stress. Environmental Toxicology and Chemistry, 25, 220-226.
PMID |
[29] |
Morales-Barrera L, Cristiani-Urbina E (2008). Hexavalent chromium removal by a Trichoderma inhamatum fungal strain isolated from tannery effluent. Water, Air, and Soil Pollution, 187, 327-336.
DOI URL |
[30] |
Oladipo OG, Awotoye OO, Olayinka A, Bezuidenhout CC, Maboeta MS (2018). Heavy metal tolerance traits of filamentous fungi isolated from gold and gemstone mining sites. Brazilian Journal of Microbiology, 49, 29-37.
DOI PMID |
[31] |
Ong GH, Ho XH, Shamkeeva S, Manasha Savithri Fernando AS, Wong LS (2017). Biosorption study of potential fungi for copper remediation from Peninsular Malaysia. Remediation Journal, 27, 59-63.
DOI URL |
[32] |
Orwin KH, Wardle DA (2004). New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biology & Biochemistry, 36, 1907-1912.
DOI URL |
[33] |
Pasqualetti M, Mulas B, Canzonetti G, Benedetti A, Tempesta S (2012). Effects of long-term heavy metal contamination on soil fungi in the Mediterranean area. Cryptogamie, Mycologie, 33, 43-57.
DOI URL |
[34] |
Sanderson P, Naidu R, Bolan N, Bowman M, McLure S (2012). Effect of soil type on distribution and bioaccessibility of metal contaminants in shooting range soils. Science of the Total Environment, 438, 452-462.
DOI URL |
[35] |
Shahid M, Shamshad S, Rafiq M, Khalid S, Bibi I, Niazi NK, Dumat C, Rashid MI (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere, 178, 513-533.
DOI PMID |
[36] |
Sharma DC, Sharma CP, Tripathi RD (2003). Phytotoxic lesions of chromium in maize. Chemosphere, 51, 63-68.
PMID |
[37] | Sharma S, Adholeya A (2011). Detoxification and accumulation of chromium from tannery effluent and spent chrome effluent by Paecilomyces lilacinus fungi. International Biodeterioration & Biodegradation, 65, 309-317. |
[38] |
Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013). Chromium toxicity and tolerance in plants. Environmental Chemistry Letters, 11, 229-254.
DOI URL |
[39] |
Srivastava D, Tiwari M, Dutta P, Singh P, Chawda K, Kumari M, Chakrabarty D (2021). Chromium stress in plants: toxicity, tolerance and phytoremediation. Sustainability, 13, 4629.
DOI URL |
[40] | Su SH, Zhang YX, Zhu LF, Li XL, Gao WB (2011). Analysis of bibliography on heavy-metal tolerant bacteria research in China in recent ten years. Journal of Library and Information Sciences in Agriculture, 23(5), 63-67. |
[苏少华, 张玉秀, 朱凌峰, 李祥雷, 高武斌 (2011). 近十年我国耐重金属细菌研究文献分析. 农业图书情报学刊, 23(5), 63-67.] | |
[41] |
Subrahmanyam D (2008). Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica, 46, 339. DOI: 10.1007/s11099-008-0062-4.
DOI |
[42] |
Vajpayee P, Rai UN, Ali MB, Tripathi RD, Yadav V, Sinha S, Singh SN (2001). Chromium-induced physiologic changes in Vallisneria spiralis L. Bulletin of Environmental Contamination and Toxicology, 67, 246-256.
PMID |
[43] |
Volpicella M, Leoni C, Fanizza I, Distaso M, Leoni G, Farioli L, Naumann T, Pastorello E, Ceci LR (2017). Characterization of maize chitinase-A, a tough allergenic molecule. Allergy, 72, 1423-1429.
DOI PMID |
[44] | Wang YY, Xia YQ, Ge GF (2021). Effect of lead stress on microbial flora and functional diversity in yellow- cinnamon soil. Chinese Journal of Soil Science, 52, 1114-1120. |
[王彦雨, 夏远巧, 葛高飞 (2021). 铅胁迫对黄褐土微生物区系和功能多样性的影响. 土壤通报, 52, 1114-1120.] | |
[45] | Wu WC, Dong CX, Wu JH, Liu XW, Wu YX, Chen XB, Yu SX (2017). Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region. Science of the Total Environment, 601- 602, 57-65. |
[46] |
Zaccheo P, Genevini PL, Cocucci SM (1982). Chromium ions toxicity on the membrane transport mechanism in segments of maize seedling roots. Journal of Plant Nutrition, 5, 1217-1227.
DOI URL |
[47] | Zhang C, Nie S, Liang J, Zeng GM, Wu HP, Hua SS, Liu JY, Yuan YJ, Xiao HB, Deng LJ, Xiang HY (2016). Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Science of the Total Environment, 557- 558, 785-790. |
[48] | Zhao PY, Yan PM, Zhao XD, Bai X (2021). Reconstruction and functional recovery of soil microbial community after fumigation of metam-sodium. Plant Protection, 47, 44-53. |
[赵鹏宇, 燕平梅, 赵晓东, 白雪 (2021). 威百亩熏蒸后土壤微生物群落重建及功能恢复. 植物保护, 47, 44-53.] | |
[49] |
Zhou Y, Duan J, Fujibe T, Yamamoto KT, Tian CG (2012). AtIQM1, a novel calmodulin-binding protein, is involved in stomatal movement in Arabidopsis. Plant Molecular Biology, 79, 333-346.
DOI URL |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | ZHANG Zhong-Fu, WANG Si-Hai, YANG Wei, CHEN Jian. Response of rhizosphere microbial community structure and functional characteristics to health status of Malania oleifera [J]. Chin J Plant Ecol, 2023, 47(7): 1020-1031. |
[3] | FENG Ji-Guang, ZHANG Qiu-Fang, YUAN Xia, ZHU Biao. Effects of nitrogen and phosphorus addition on soil organic carbon: review and prospects [J]. Chin J Plant Ecol, 2022, 46(8): 855-870. |
[4] | NIE Xiu-Qing, WANG Dong, ZHOU Guo-Ying, XIONG Feng, DU Yan-Gong. Soil microbial biomass carbon, nitrogen, phosphorus and their stoichiometric characteristics in alpine wetlands in the Three Rivers Sources Region [J]. Chin J Plant Ecol, 2021, 45(9): 996-1005. |
[5] | PEI Guang-Ting, SUN Jian-Fei, HE Tong-Xin, HU Bao-Qing. Effects of long-term human disturbances on soil microbial diversity and community structure in a karst grassland ecosystem of northwestern Guangxi, China [J]. Chin J Plant Ecol, 2021, 45(1): 74-84. |
[6] | LUO Lin, HUANG Yan, LIANG Jin, WANG En-Tao, HU Jun, HE He-Liang, ZHAO Chun-Zhang. Effects of plant interspecific interaction and warming on soil microbial community in root zone soil of two dominant tree species in the subalpine coniferous forest in southwestern China [J]. Chin J Plant Ecol, 2020, 44(8): 875-884. |
[7] | YU Liang, LI Jun-Li, BAO An-Ming, BAI Jie, HUANG Yue, LIU Tie, SHEN Zhan-Feng. Temporal areal changes of wetlands in the lower reaches of the Tarim River and their responses to ecological water conveyance [J]. Chin J Plant Ecol, 2020, 44(6): 616-627. |
[8] | GAO Gui-Feng, CHU Hai-Yan. Techniques and methods of microbiomics and their applications [J]. Chin J Plant Ecol, 2020, 44(4): 395-408. |
[9] | JIANG Yu-Ling, CHEN Xu-Hui, MIAO Qing, QU Bo. Difference in fungal communities between in roots and in root-associated soil of nine orchids in Liaoning, China [J]. Chin J Plant Ecol, 2019, 43(12): 1079-1090. |
[10] | SHI Guo-Xi, WANG Wen-Ying, JIANG Sheng-Jing, CHENG Gang, YAO Bu-Qing, FENG Hu-Yuan, ZHOU Hua-Kun. Effects of the spreading of Ligularia virgaurea on soil physicochemical property and microbial functional diversity [J]. Chin J Plant Ecol, 2018, 42(1): 126-132. |
[11] | WANG Jun, WANG Guan-Qin, LI Fei, PENG Yun-Feng, YANG Gui-Biao, YU Jian-Chun, ZHOU Guo-Ying, YANG Yuan-He. Effects of short-term experimental warming on soil microbes in a typical alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 116-125. |
[12] | Ya-Han CHEN, Zong-Qiang XIE. Effects of storage conditions on total carbon and nitrogen contents of soil and plant samples [J]. Chin J Plant Ecol, 2017, 41(6): 632-638. |
[13] | Jiang-Hong ZHANG, Fu-Tian PENG, Xiao-Mei JIANG, Min-Ji LI, Zhong-Tang WANG. Effects of peach branches returning on autotoxins and microbes in soil and tree growth of peaches [J]. Chin J Plan Ecolo, 2016, 40(2): 140-150. |
[14] | LIANG Ru-Biao,LIANG Jin,QIAO Ming-Feng,XU Zhen-Feng,LIU Qing,YIN Hua-Jun. Effects of simulated exudate C:N stoichiometry on dynamics of carbon and microbial community composition in a subalpine coniferous forest of western Sichuan, China [J]. Chin J Plan Ecolo, 2015, 39(5): 466-476. |
[15] | ZHOU Yong, ZHENG Lu-Yu, ZHU Min-Jie, LI Xia, REN An-Zhi, GAO Yu-Bao. Effects of fungal endophyte infection on soil properties and microbial communities in the host grass habitat [J]. Chin J Plant Ecol, 2014, 38(1): 54-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn