Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (4): 445-458.DOI: 10.17521/cjpe.2023.0218 cstr: 32100.14.cjpe.2023.0218
• Research Articles • Previous Articles Next Articles
WU Ru-Ru1,2, LIU Mei-Zhen1,3,*(), GU Xian4, CHANG Xin-Yue5, GUO Li-Yue1, JIANG Gao-Ming1,3, QI Ru-Yi6
Received:
2023-07-28
Accepted:
2023-12-21
Online:
2024-04-20
Published:
2024-05-11
Contact:
* (liumzh@ibcas.ac.cn)
Supported by:
WU Ru-Ru, LIU Mei-Zhen, GU Xian, CHANG Xin-Yue, GUO Li-Yue, JIANG Gao-Ming, QI Ru-Yi. Prediction of suitable habitat distribution and potential impact of climate change on distribution patterns of Cupressus gigantea[J]. Chin J Plant Ecol, 2024, 48(4): 445-458.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0218
变量类型 Variable type | 变量代码 Variable code | 环境变量描述 Environment variable description | 单位 Unit |
---|---|---|---|
生物气候变量 Bioclimatic variables | Bio1 | 年平均气温 Annual mean temperature | ℃ |
Bio2* | 昼夜温差月均值 Mean of monthly (maximum temperature‒minimum temperature) | ℃ | |
Bio3 | 等温性 Isothermality | /(×100) | |
Bio4* | 温度季节性(标准差×100) Temperature seasonality (standard deviation × 100) | ||
Bio5 | 最暖月最高气温 Max temperature of the warmest month | ℃ | |
Bio6 | 最冷月最低气温 Min temperature of the coldest month | ℃ | |
Bio7 | 年气温变化范围 Temperature annual range (Bio5 - Bio6) | ℃ | |
Bio8 | 最湿季平均气温 Mean temperature of the wettest quarter | ℃ | |
Bio9 | 最干季平均气温 Mean temperature of the driest quarter | ℃ | |
Bio10 | 最热季平均气温 Mean temperature of the warmest quarter | ℃ | |
Bio11* | 最冷季平均气温 Mean temperature of the coldest quarter | ℃ | |
Bio12 | 年降水量 Annual precipitation | mm | |
Bio13 | 最湿月降水量 Precipitation of the wettest month | mm | |
Bio14 | 最干月降水量 Precipitation of the driest month | mm | |
Bio15 | 降水量季节性变异系数 Variation of the precipitation seasonality | % | |
Bio16 | 最湿季度降水量 Precipitation of the wettest quarter | mm | |
Bio17 | 最干季度降水量 Precipitation of the driest quarter | mm | |
Bio18 | 最暖季度降水量 Precipitation of the warmest quarter | mm | |
Bio19 | 最冷季度降水量 Precipitation of the coldest quarte | mm | |
地形因子变量 Terrain factor variables | Al* | 海拔 Altitude | m |
Sl* | 坡度 Slope | ° | |
As* | 坡向 Aspect | ° |
Table 1 Environmental variables used to predict the potential geographic distribution of Cupressus gigantea in Xizang
变量类型 Variable type | 变量代码 Variable code | 环境变量描述 Environment variable description | 单位 Unit |
---|---|---|---|
生物气候变量 Bioclimatic variables | Bio1 | 年平均气温 Annual mean temperature | ℃ |
Bio2* | 昼夜温差月均值 Mean of monthly (maximum temperature‒minimum temperature) | ℃ | |
Bio3 | 等温性 Isothermality | /(×100) | |
Bio4* | 温度季节性(标准差×100) Temperature seasonality (standard deviation × 100) | ||
Bio5 | 最暖月最高气温 Max temperature of the warmest month | ℃ | |
Bio6 | 最冷月最低气温 Min temperature of the coldest month | ℃ | |
Bio7 | 年气温变化范围 Temperature annual range (Bio5 - Bio6) | ℃ | |
Bio8 | 最湿季平均气温 Mean temperature of the wettest quarter | ℃ | |
Bio9 | 最干季平均气温 Mean temperature of the driest quarter | ℃ | |
Bio10 | 最热季平均气温 Mean temperature of the warmest quarter | ℃ | |
Bio11* | 最冷季平均气温 Mean temperature of the coldest quarter | ℃ | |
Bio12 | 年降水量 Annual precipitation | mm | |
Bio13 | 最湿月降水量 Precipitation of the wettest month | mm | |
Bio14 | 最干月降水量 Precipitation of the driest month | mm | |
Bio15 | 降水量季节性变异系数 Variation of the precipitation seasonality | % | |
Bio16 | 最湿季度降水量 Precipitation of the wettest quarter | mm | |
Bio17 | 最干季度降水量 Precipitation of the driest quarter | mm | |
Bio18 | 最暖季度降水量 Precipitation of the warmest quarter | mm | |
Bio19 | 最冷季度降水量 Precipitation of the coldest quarte | mm | |
地形因子变量 Terrain factor variables | Al* | 海拔 Altitude | m |
Sl* | 坡度 Slope | ° | |
As* | 坡向 Aspect | ° |
指标 Indicator | 算法 Algorithm | |
---|---|---|
GLM | GAM | |
AUC | 0.985 | 0.979 |
TSS | 0.976 | 0.952 |
Table 2 AUC and TSS values for GLM and GAM model in predicting the potential geographic distribution of Cupressus gigantea
指标 Indicator | 算法 Algorithm | |
---|---|---|
GLM | GAM | |
AUC | 0.985 | 0.979 |
TSS | 0.976 | 0.952 |
Fig. 2 Variable importance of different models in predicting the potential geographic distribution of Cupressus gigantea. A, MaxEnt model. B, GAM and GLM modes. GAM, generalized additive models; GLM, generalized liner models; MaxEnt, maximum entropy models. Al, altitude; As, aspect; Bio2, mean of monthly (maximum temperature‒minimum temperature); Bio4, temperature seasonality; Bio11, mean temperature of the coldest quarter; Sl, slope.
Fig. 4 Potential geographic distribution of Cupressus gigantea in Xizang. A-C are the simulation results under current scenario of MaxEnt, GAM, and GLM models, respectively. D-F are the simulation results under SSP1-2.6 scenario of MaxEnt, GAM, and GLM models, respectively. G-I are the simulation results under SSP5-8.5 scenario of MaxEnt, GAM, and GLM models, respectively. GAM, generalized additive models; GLM, generalized liner models; MaxEnt, maximum entropy models; SSP1-2.6, low emission scenario; SSP5-8.5, high emission scenario.
模型 Model | 时期/气候情景 Period/climate scenarios | 适生区面积 Suitable area (× 103 km2) | 扩增面积 Gain area (× 103 km2) | 保留面积 Unchanged area (× 103 km2) | 收缩面积 Loss area (× 103 km2) | 范围变化 Range change (%) | 损失率 Percentage loss (%) | 增益率 Percentage gain (%) | |
---|---|---|---|---|---|---|---|---|---|
总适生区 General suitable area | MaxEnt | 当前 Current | 8.95 | ||||||
2100s/SSP1-2.6 | 10.47 | 3.98 | 6.49 | 2.46 | 16.98 | 27.49 | 44.47 | ||
2100s/SSP5-8.5 | 11.70 | 5.32 | 6.38 | 2.57 | 30.73 | 28.72 | 59.44 | ||
GLM | 当前 Current | 11.12 | |||||||
2100s/SSP1-2.6 | 11.88 | 3.57 | 8.30 | 2.82 | 6.77 | 25.35 | 32.12 | ||
2100s/SSP5-8.5 | 16.74 | 5.98 | 10.76 | 5.61 | 50.47 | 50.44 | 53.78 | ||
GAM | 当前 Current | 14.47 | |||||||
2100s/SSP1-2.6 | 14.48 | 4.34 | 10.14 | 4.33 | 0.05 | 29.92 | 29.96 | ||
2100s/SSP5-8.5 | 17.92 | 5.93 | 10.18 | 4.29 | 23.82 | 29.67 | 40.96 | ||
中高适生区 Medium and highly suitable area | MaxEnt | 当前 Current | 3.10 | ||||||
2100s/SSP1-2.6 | 3.71 | 0.98 | 2.74 | 0.37 | 19.68 | 11.94 | 31.61 | ||
2100s/SSP5-8.5 | 4.39 | 1.89 | 2.50 | 0.60 | 41.61 | 19.35 | 60.97 | ||
GLM | 当前 Current | 4.67 | |||||||
2100s/SSP1-2.6 | 6.56 | 2.49 | 4.07 | 0.59 | 40.62 | 12.74 | 53.36 | ||
2100s/SSP5-8.5 | 7.87 | 3.80 | 4.07 | 0.59 | 68.72 | 12.74 | 81.46 | ||
GAM | 当前 Current | 4.93 | |||||||
2100s/SSP1-2.6 | 6.79 | 2.47 | 4.33 | 0.61 | 37.65 | 12.32 | 49.96 | ||
2100s/SSP5-8.5 | 8.16 | 3.91 | 4.25 | 0.69 | 65.36 | 13.95 | 79.31 |
Table 3 Changes of distribution area of Cupressus gigantea in different periods and different scenarios
模型 Model | 时期/气候情景 Period/climate scenarios | 适生区面积 Suitable area (× 103 km2) | 扩增面积 Gain area (× 103 km2) | 保留面积 Unchanged area (× 103 km2) | 收缩面积 Loss area (× 103 km2) | 范围变化 Range change (%) | 损失率 Percentage loss (%) | 增益率 Percentage gain (%) | |
---|---|---|---|---|---|---|---|---|---|
总适生区 General suitable area | MaxEnt | 当前 Current | 8.95 | ||||||
2100s/SSP1-2.6 | 10.47 | 3.98 | 6.49 | 2.46 | 16.98 | 27.49 | 44.47 | ||
2100s/SSP5-8.5 | 11.70 | 5.32 | 6.38 | 2.57 | 30.73 | 28.72 | 59.44 | ||
GLM | 当前 Current | 11.12 | |||||||
2100s/SSP1-2.6 | 11.88 | 3.57 | 8.30 | 2.82 | 6.77 | 25.35 | 32.12 | ||
2100s/SSP5-8.5 | 16.74 | 5.98 | 10.76 | 5.61 | 50.47 | 50.44 | 53.78 | ||
GAM | 当前 Current | 14.47 | |||||||
2100s/SSP1-2.6 | 14.48 | 4.34 | 10.14 | 4.33 | 0.05 | 29.92 | 29.96 | ||
2100s/SSP5-8.5 | 17.92 | 5.93 | 10.18 | 4.29 | 23.82 | 29.67 | 40.96 | ||
中高适生区 Medium and highly suitable area | MaxEnt | 当前 Current | 3.10 | ||||||
2100s/SSP1-2.6 | 3.71 | 0.98 | 2.74 | 0.37 | 19.68 | 11.94 | 31.61 | ||
2100s/SSP5-8.5 | 4.39 | 1.89 | 2.50 | 0.60 | 41.61 | 19.35 | 60.97 | ||
GLM | 当前 Current | 4.67 | |||||||
2100s/SSP1-2.6 | 6.56 | 2.49 | 4.07 | 0.59 | 40.62 | 12.74 | 53.36 | ||
2100s/SSP5-8.5 | 7.87 | 3.80 | 4.07 | 0.59 | 68.72 | 12.74 | 81.46 | ||
GAM | 当前 Current | 4.93 | |||||||
2100s/SSP1-2.6 | 6.79 | 2.47 | 4.33 | 0.61 | 37.65 | 12.32 | 49.96 | ||
2100s/SSP5-8.5 | 8.16 | 3.91 | 4.25 | 0.69 | 65.36 | 13.95 | 79.31 |
Fig. 5 Changes in spatial patterns of potentially suitable distribution areas for Cupressus gigantea. A-C are the changes in spatial patterns of total fitness zones in MaxEnt, GAM, and GLM model results of SSP1-2.6 over the current scenario, respectively. D-F are the changes in spatial patterns of total fitness zones in MaxEnt, GAM, and GLM model results of SSP5-8.5 over the current scenario, respectively. G-I are the changes in spatial patterns of medium and high fitness zones in MaxEnt, GAM, and GLM model results of SSP1-2.6 changes in spatial pattern of medium and high fitness zones over the current scenario. J-L are the changes in spatial patterns of medium and high fitness zones in MaxEnt, GAM, and GLM model results of SSP5-8.5 changes in spatial pattern of medium and high fitness zones over the current scenario. GAM, generalized additive models; GLM, generalized liner models; MaxEnt, maximum entropy models; SSP1-2.6, low emission scenario; SSP5-8.5, high emission scenario.
Fig. 6 The center of gravity of Cupressus gigantea general suitable area under future climate conditions. GAM, generalized additive models; GLM, generalized liner models; MaxEnt, maximum entropy models; SSP1-2.6, low emission scenario; SSP5-8.5, high emission scenario.
模型 Model | 时期/气候情景 Periods/climate scenarios | 经度 Longitude (° E) | 纬度 Latitude (° N) | 迁移距离 Migration distance (km) |
---|---|---|---|---|
MaxEnt | 当前 Current | 94.88 | 29.62 | |
2100s/SSP1-2.6 | 94.24 | 29.39 | 48.41 | |
2100s/SSP5-8.5 | 94.10 | 29.05 | 82.37 | |
GLM | 当前 Current | 94.25 | 29.74 | |
2100s/SSP1-2.6 | 94.48 | 29.56 | 30.22 | |
2100s/SSP5-8.5 | 92.61 | 29.36 | 164.08 | |
GAM | 当前 Current | 94.05 | 29.34 | |
2100s/SSP1-2.6 | 93.26 | 28.70 | 104.35 | |
2100s/SSP5-8.5 | 92.60 | 28.90 | 149.06 |
Table 4 Changes in the center of mass of Cupressus gigantea in different periods and different scenarios
模型 Model | 时期/气候情景 Periods/climate scenarios | 经度 Longitude (° E) | 纬度 Latitude (° N) | 迁移距离 Migration distance (km) |
---|---|---|---|---|
MaxEnt | 当前 Current | 94.88 | 29.62 | |
2100s/SSP1-2.6 | 94.24 | 29.39 | 48.41 | |
2100s/SSP5-8.5 | 94.10 | 29.05 | 82.37 | |
GLM | 当前 Current | 94.25 | 29.74 | |
2100s/SSP1-2.6 | 94.48 | 29.56 | 30.22 | |
2100s/SSP5-8.5 | 92.61 | 29.36 | 164.08 | |
GAM | 当前 Current | 94.05 | 29.34 | |
2100s/SSP1-2.6 | 93.26 | 28.70 | 104.35 | |
2100s/SSP5-8.5 | 92.60 | 28.90 | 149.06 |
Fig. 7 Distribution of Cupressus gigantea from actual surveys and simulation of highly suitable area under current climate conditions. A, Highly suitable area from the MaxEnt model. B, Highly suitable area from the GAM model. C, Highly suitable area from the GLM model. GAM, generalized additive models; GLM, generalized liner models; MaxEnt, maximum entropy models.
[1] | Braunisch V, Coppes J, Arlettaz R, Suchant R, Zellweger F, Bollmann K (2014). Temperate mountain forest biodiversity under climate change: compensating negative effects by increasing structural complexity. PLoS ONE, 9, e97718. DOI: 10.1371/journal.pone.0097718. |
[2] | Chakraborty A, Joshi PK, Sachdeva K (2016). Predicting distribution of major forest tree species to potential impacts of climate change in the central Himalayan region. Ecological Engineering, 97, 593-609. |
[3] | Chang XY, Wan LS, Zhao KT (2021). Determination of seed ripening time of Cupressus gigantea. Journal of Plateau Agriculture, 5, 115-119. |
[常馨月, 万路生, 赵垦田 (2021). 巨柏种子成熟时间的确定. 高原农业, 5, 115-119.] | |
[4] | Chen D (1995). Research status and prospects of Cupressus gigantea in Tibet. Tibet Science and Technology, (2), 7-11. |
[陈端 (1995). 西藏巨柏的研究现状与前景. 西藏科技, (2), 7-11.] | |
[5] | Chen YH, Lü YW, Yin XJ (2019). Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change. Journal of Nanjing Forestry University (Natural Science Edition), 43, 113-120. |
[陈禹衡, 吕一维, 殷晓洁 (2019). 气候变化下西南地区12种常见针叶树种适宜分布区预测. 南京林业大学学报(自然科学版), 43, 113-120.]
DOI |
|
[6] | Cong XF, Chen H, Li D, Zhang YJ, Li WM, Bai GQ (2023). Relationship between plant species diversity and elevation and slope aspect in middle and low altitude mountainous areas of Southern Shaanxi. Ecological Science, 42(4), 39-47. |
[丛晓峰, 陈昊, 李丹, 张宇军, 李为民, 柏国清 (2023). 陕南中低海拔山区植物物种多样性与海拔及坡向的关系. 生态科学, 42(4), 39-47.] | |
[7] | Feng JM (2008). Spatial patterns of species diversity of seed plants in China and their climatic explanation. Biodiversity Science, 16, 470-476. |
[冯建孟 (2008). 中国种子植物物种多样性的大尺度分布格局及其气候解释. 生物多样性, 16, 470-476.]
DOI |
|
[8] | Friend AD, Lucht W, Rademacher TT, Keribin R, Betts R, Cadule P, Ciais P, Clark DB, Dankers R, Falloon PD, Ito A, Kahana R, Kleidon A, Lomas MR, Nishina K, et al. (2014). Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proceedings of the National Academy of Sciences of the United States of America, 111, 3280-3285. |
[9] | Fu LG (1995). The gospel of China’s rare and endangered plants: a list of national key protected wild plants announced immediately. Journal of Plants, (3), 2-3. |
[傅立国 (1995). 中国珍稀濒危植物的福音——国家重点保护野生植物名录公布在即. 植物杂志, (3), 2-3.] | |
[10] | Guo KQ, Jiang XL, Xu GB (2021). Potential suitable distribution area of Quercus lamellosa and the influence of climate change. Chinese Journal of Ecology, 40, 2563-2574. |
[郭恺琦, 姜小龙, 徐刚标 (2021). 薄片青冈潜在适生区及气候变化对其分布的影响. 生态学杂志, 40, 2563-2574.] | |
[11] | Huang Y, Jacques FMB, Su T, Ferguson DK, Tang H, Chen W, Zhou Z (2015). Distribution of Cenozoic plant relicts in China explained by drought in dry season. Scientific Reports, 5, 14212. DOI: 10.1038/srep14212. |
[12] | Jump AS, Huang T, Chou CH (2012). Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography, 35, 204-210. |
[13] | Kamboj R, Kamboj S, Kamboj S, Kriplani P, Dutt R, Guarve K, Grewal AS, Lal Srivastav A, Gautam SP (2023). Climate uncertainties and biodiversity: an overview//Srivastav AL, Dubey AK, Kumar A, Narang SK, Khan MA. Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence. Elsevier, Amsterdam. 1-14. |
[14] | Koralewski TE, Wang H, Grant WE, Byram TD (2015). Plants on the move: assisted migration of forest trees in the face of climate change. Forest Ecology and Management, 344, 30-37. |
[15] |
Li CY, Cui P, Hao JS, Zhang GT, Wang J, Jia Y (2023). Variation characteristics of temperature and precipitation over the southeast Xizang since 1960. Plateau Meteorology, 42, 344-358.
DOI |
[李朝月, 崔鹏, 郝建盛, 张国涛, 王姣, 贾洋 (2023). 1960年以来藏东南地区气温和降水的变化特征. 高原气象, 42, 344-358.]
DOI |
|
[16] | Li D, Li J, Zhang LL, Deng Y, Zhang YW (2019). Variations in the key hydrological elements of the Yarlung Zangbo River Basin. Water Supply, 19, 1088-1096. |
[17] | Li S, Mo SH, Hu XH, Deng T (2024). Prediction of potential suitable areas of endangered plant Abies ziyuanensis based on MaxEnt and ArcGIS. Chinese Journal of Ecology, 43, 533-541. |
[李莎, 莫舜华, 胡兴华, 邓涛 (2024). 基于MaxEnt和ArcGIS预测濒危植物资源冷杉潜在适生区分析. 生态学杂志, 43, 533-541.] | |
[18] | Li XH, Tian HD, Wang Y, Li RQ, Song ZM, Zhang FC, Xu M, Li DM (2013). Vulnerability of 208 endemic or endangered species in China to the effects of climate change. Regional Environmental Change, 13, 843-852. |
[19] | Li XX, Tao C, Wang QC, Cui GF (2012). Characteristics of geographic distribution of four critically endangered species of Abies in subtropical China and its relationship with climate. Chinese Journal of Plant Ecology, 36, 1154-1164. |
[李晓笑, 陶翠, 王清春, 崔国发 (2012). 中国亚热带地区4种极危冷杉属植物的地理分布特征及其与气候的关系. 植物生态学报, 36, 1154-1164.]
DOI |
|
[20] | Li Y, Zhang XW, Fang YM (2016). Responses of the distribution pattern of Quercus chenii to climate change following the Last Glacial Maximum. Chinese Journal of Plant Ecology, 40, 1164-1178. |
[李垚, 张兴旺, 方炎明 (2016). 小叶栎分布格局对末次盛冰期以来气候变化的响应. 植物生态学报, 40, 1164-1178.]
DOI |
|
[21] | Li YX, Zhang H, Xu Y (2017). Study on seed germination and seedling growth of Cupressus gigantean in southeast Tibet. Seed, 36(4), 91-93. |
[李永霞, 张豪, 徐杨 (2017). 藏东南巨柏种子发芽及幼苗生长特性研究. 种子, 36(4), 91-93.] | |
[22] | Li ZH, Yang XL, Yang JW, Liu F (2023). Relationship between diameter at breast height (d1.3 < 1 m) and age of Cupressus gigantea. Journal of Plateau Agriculture, 7, 273-277. |
[李智华, 杨小林, 杨雯婧, 刘峰 (2023). 巨柏胸径(d1.3 < 1 m)和树龄的关系研究. 高原农业, 7, 273-277.] | |
[23] |
Lindner M, Fitzgerald JB, Zimmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas MJ, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, Psomas A, Poulter B, Hanewinkel M (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69-83.
DOI PMID |
[24] |
Liu JP, Zhang WC, Deng C, Nie N (2018). Spatiotemporal variations of snow cover over Yarlung Zangbo River Basin in Tibet from 2000 to 2014 and its response to key climate factors. Journal of Glaciology and Geocryology, 40, 643-654.
DOI |
[刘金平, 张万昌, 邓财, 聂宁 (2018). 2000-2014年西藏雅鲁藏布江流域积雪时空变化分析及对气候的响应研究. 冰川冻土, 40, 643-654.]
DOI |
|
[25] | Liu R, Wang CJ, He J, Zhang ZX (2018). Analysis of geographical distribution of Abies in China under climate change. Bulletin of Botanical Research, 38, 37-46. |
[刘然, 王春晶, 何健, 张志翔 (2018). 气候变化背景下中国冷杉属植物地理分布模拟分析. 植物研究, 38, 37-46.]
DOI |
|
[26] |
Liu WF, Xu ZX, Li FP, Su LQ (2014). Climate change scenarios in the Yarlung Zangbo River Basin based on ASD model. Plateau Meteorology, 33, 26-36.
DOI |
[刘文丰, 徐宗学, 李发鹏, 苏龙强 (2014). 基于ASD统计降尺度的雅鲁藏布江流域未来气候变化情景. 高原气象, 33, 26-36.]
DOI |
|
[27] | Liu XT, Yuan Q, Ni J (2019). Research advances in modelling plant species distribution in China. Chinese Journal of Plant Ecology, 43, 273-283. |
[刘晓彤, 袁泉, 倪健 (2019). 中国植物分布模拟研究现状. 植物生态学报, 43, 273-283.]
DOI |
|
[28] | Lu SF, Yin XJ, Wei QW, Zhang C, Ma DX, Liu XL (2020). The geographical distribution response of plant functional types to climate change in southwestern China. Acta Ecologica Sinica, 40, 310-324. |
[陆双飞, 殷晓洁, 韦晴雯, 张超, 马东旭, 刘雪莲 (2020). 气候变化下西南地区植物功能型地理分布响应. 生态学报, 40, 310-324.] | |
[29] | Meng QB, Liu YL, Ju Q, Liu J, Wang GQ, Jin JL, Guan TS, Liu CS, Bao ZX (2021). Vegetation change and its response to climate change in the Yarlung Zangbo River basin in the past 18 years. South-to-North Water Transfers and Water Science & Technology, 19, 539-550. |
[孟庆博, 刘艳丽, 鞠琴, 刘冀, 王国庆, 金君良, 关铁生, 刘翠善, 鲍振鑫 (2021). 雅鲁藏布江流域近18年来植被变化及其对气候变化的响应. 南水北调与水利科技, 19, 539-550.] | |
[30] | Naudiyal N, Wang J, Wu N, Gaire NP, Shi P, Wei Y, He J, Shi N (2021). Potential distribution of Abies, Picea, and Juniperus species in the sub-alpine forest of Minjiang headwater region under current and future climate scenarios and its implications on ecosystem services supply. Ecological Indicators, 121, 107131. DOI: 10.1016/j.ecolind.2020.107131. |
[31] | Nie N, Zhang WC, Deng C (2012). Spatial and temporal climate variations from 1978 to 2009 and their trend projection over the Yarlung Zangbo River Basin. Journal of Glaciology and Geocryology, 34, 64-71. |
[聂宁, 张万昌, 邓财 (2012). 雅鲁藏布江流域1978-2009年气候时空变化及未来趋势研究. 冰川冻土, 34, 64-71.] | |
[32] | O’Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S, Carter TR, Mathur R, van Vuuren DP (2014). A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change, 122, 387-400. |
[33] | O’Sullivan KSW, Ruiz-Benito P, Chen J, Jump AS (2021). Onward but not always upward: individualistic elevational shifts of tree species in subtropical montane forests. Ecography, 44, 112-123. |
[34] | Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean C, Miles L, Segurado P, Dawson TP, Lees DC (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33, 1704-1711. |
[35] | Phillips SJ, Dudík M (2008). Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation. Ecography, 31, 161-175. |
[36] | Qin HN, Yang Y, Dong SY, He Q, Jia Y, Zhao LN, Yu SX, Liu HY, Liu B, Yan YH, Xiang JY, Xia NH, Peng H, Li ZY, Zhang ZX, et al. (2017). Threatened species list of China’s higher plants. Biodiversity Science, 25, 696-744. |
[覃海宁, 杨永, 董仕勇, 何强, 贾渝, 赵莉娜, 于胜祥, 刘慧圆, 刘博, 严岳鸿, 向建英, 夏念和, 彭华, 李振宇, 张志翔, 等 (2017). 中国高等植物受威胁物种名录. 生物多样性, 25, 696-744.]
DOI |
|
[37] | Saran S, Joshi RK, Sharma S, Padalia H, Dadhwal VK (2010). Geospatial modeling of Brown oak (Quercus semecarpifolia) habitats in the Kumaun Himalaya under climate change scenario. Journal of the Indian Society of Remote Sensing, 38, 535-547. |
[38] | Tang ZH, Liu XA, Peng PH, Li XY (2023). Prediction of potential geographical distribution patterns of Emmenopterys henryi since the Last Glacial Maximum. Acta Ecologica Sinica, 43, 3339-3347. |
[唐自豪, 刘贤安, 彭培好, 李雪杨 (2023). 末次冰盛期以来香果树潜在地理分布格局变迁. 生态学报, 43, 3339-3347.] | |
[39] | Wang SW, Luo Y, Zhao ZC, Wen XY, Huang JB (2012). New generation of scenarios of greenhouse gas emission. Progressus Inquisitiones DE Mutatione Climatis, 8, 305-307. |
[王绍武, 罗勇, 赵宗慈, 闻新宇, 黄建斌 (2012). 新一代温室气体排放情景. 气候变化研究进展, 8, 305-307.] | |
[40] | Wang SY, Pan SA, Wang MR, Wang MX, Ye J (2019). Assessing the geographic distribution of Acanthopanax senticosus in Northeastern China based on the MaxEnt model. Acta Ecologica Sinica, 39, 3277-3286. |
[王书越, 潘少安, 王明睿, 王明馨, 叶吉 (2019). 基于MaxEnt模型评估刺五加在东北地区的空间分布. 生态学报, 39, 3277-3286.] | |
[41] |
Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007). Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models. Biodiversity Science, 15, 365-372.
DOI |
[王运生, 谢丙炎, 万方浩, 肖启明, 戴良英 (2007). ROC曲线分析在评价入侵物种分布模型中的应用. 生物多样性, 15, 365-372.]
DOI |
|
[42] | Weiskopf SR, Rubenstein MA, Crozier LG, Gaichas S, Griffis R, Halofsky JE, Hyde KJW, Morelli TL, Morisette JT, Muñoz RC, Pershing AJ, Peterson DL, Poudel R, Staudinger MD, Sutton-Grier AE, et al. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733, 137782. DOI: 10.1016/j.scitotenv.2020.137782. |
[43] | Woodward FI, Williams BG (1987). Climate and plant distribution at global and local scales. Vegetatio, 69, 189-197. |
[44] | Xu ZL, Peng HH, Peng SZ (2015). The development and evaluation of species distribution models. Acta Ecologica Sinica, 35, 557-567. |
[许仲林, 彭焕华, 彭守璋 (2015). 物种分布模型的发展及评价方法. 生态学报, 35, 557-567.] | |
[45] | Xu ZX, Gong TL, Zhao FF (2006). Analysis of climate change in Tibetan Plateau over the past 40 years. Journal of Subtropical Resources and Environment, 1(3), 24-32. |
[徐宗学, 巩同梁, 赵芳芳 (2006). 近40年来西藏高原气候变化特征分析. 亚热带资源与环境学报, 1(3), 24-32.] | |
[46] | Yang XL, Li ZH, Zuo YL, Li YX, Zhang L, Lu ZH (2023). The response of tree ring radial growth of Cupressus gigantea to climate change. Journal of Plateau Agriculture, 7, 233-242. |
[杨小林, 李智华, 左有璐, 李永霞, 张璐, 卢自恒 (2023). 巨柏树轮径向生长对气候变化的响应. 高原农业, 7, 233-242.] | |
[47] | Yao Q, Li JY, Zhao KT (2021). Research on ecological suitability of giant cypress on Qinghai-Tibet Plateau based on MaxEnt model. Journal of Plateau Agriculture, 5, 109-114. |
[姚祺, 李佶芸, 赵垦田 (2021). 基于MaxEnt模型的巨柏青藏高原生态适宜性研究. 高原农业, 5, 109-114.] | |
[48] | Yao TD, Yao ZJ (2010). Impacts of glacial retreat on runoff on Tibetan Plateau. Chinese Journal of Nature, 32, 4-8. |
[姚檀栋, 姚治君 (2010). 青藏高原冰川退缩对河水径流的影响. 自然杂志, 32, 4-8.] | |
[49] | Yin JQ, Zhao KT (2019). Research history and prospect of Cupressus gigantean in Tibetan Plateau. Forestry and Environmental Science, 35, 116-122. |
[尹金迁, 赵垦田 (2019). 西藏高原巨柏的研究进展与展望. 林业与环境科学, 35, 116-122.] | |
[50] |
Yong Y (2021). An updated red list assessment of gymnosperms from China (Version 2021). Biodiversity Science, 29, 1599-1606.
DOI |
[杨永 (2021). 中国裸子植物红色名录评估(2021版). 生物多样性, 29, 1599-1606.]
DOI |
|
[51] | Zhang GQ, Luo DQ, Wang JS (2006). Studies on the biological and ecological characteristics of endangered plant Cupressus gigantea in Tibet. Forestry Science & Technology, (2), 1-5. |
[张国强, 罗大庆, 王景升 (2006). 西藏濒危植物巨柏的生物学与生态学特性研究. 林业科技, (2), 1-5.] | |
[52] | Zhang H, Zhao HX, Wang H (2020). Potential geographical distribution of Populus euphratica in China under future climate change scenarios based on MaxEnt model. Acta Ecologica Sinica, 40, 6552-6563. |
[张华, 赵浩翔, 王浩 (2020). 基于MaxEnt模型的未来气候变化情景下胡杨在中国的潜在地理分布. 生态学报, 40, 6552-6563.] | |
[53] | Zhang K, Yao L, Meng J, Tao J (2018). MaxEnt modeling for predicting the potential geographical distribution of two peony species under climate change. Science of the Total Environment, 634, 1326-1334. |
[54] | Zhang L, Liu SR, Sun PS, Wang TL (2011). Comparative evaluation of multiple models of the effects of climate change on the potential distribution of Pinus massoniana. Chinese Journal of Plant Ecology, 35, 1091-1105. |
[张雷, 刘世荣, 孙鹏森, 王同立 (2011). 气候变化对马尾松潜在分布影响预估的多模型比较. 植物生态学报, 35, 1091-1105.]
DOI |
|
[55] | Zhao QD, Ding YJ, Wang J, Gao HK, Zhang SQ, Zhao CC, Xu JL, Han HD, Shangguan DH (2019). Projecting climate change impacts on hydrological processes on the Tibetan Plateau with model calibration against the glacier inventory data and observed streamflow. Journal of Hydrology, 573, 60-81. |
[56] | Zheng WL, Xue HY, Luo DQ, Wang JS, Luo J (2007). Eco-geographic distribution and coenology characteristics of Cupressus gigantea. Scientia Silvae Sinicae, 43(12), 8-15. |
[郑维列, 薛会英, 罗大庆, 王景升, 罗建 (2007). 巨柏种群的生态地理分布与群落学特征. 林业科学, 43(12), 8-15.] | |
[57] |
Zhu GP, Liu GQ, Bu WJ, Gao YB (2013). Ecological niche modeling and its applications in biodiversity conservation. Biodiversity Science, 21, 90-98.
DOI |
[朱耿平, 刘国卿, 卜文俊, 高玉葆 (2013). 生态位模型的基本原理及其在生物多样性保护中的应用. 生物多样性, 21, 90-98.]
DOI |
|
[58] | Zu K, Wang Z, Zhu X, Lenoir J, Shrestha N, Lyu T, Luo A, Li Y, Ji C, Peng S, Meng J, Zhou J (2021). Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. The Science of the Total Environment, 783, 146896. DOI: 10.1016/j.scitotenv.2021.146896. |
[1] | ZHANG Peng, JIAO Liang, XUE Ru-Hong, WEI Meng-Yuan, DU Da-Shi, WU Xuan, WANG Xu-Ge, LI Qian. Drought intensity affected the growth recovery of Picea crassifolia across different altitudes in western Qilian Mountains [J]. Chin J Plant Ecol, 2024, 48(8): 977-987. |
[2] | SHI Qian, TONG Xiao-Juan, XU Ling-Ling, MENG Ping, YU Pei-Yang, LI Jun, YANG Ming-Xin. Response of radial growth of early and late wood of planted Pinus tabuliformis to climate variables [J]. Chin J Plant Ecol, 2024, 48(8): 988-1000. |
[3] | CHEN Yi-Heng, Yusufujiang RUSULI, Abdureheman WUSIMAN. Analysis of spatial and temporal variation in grassland vegetation cover in Xinjiang section of Tianshan Mountains and the driving factors from 2001 to 2020 [J]. Chin J Plant Ecol, 2024, 48(5): 561-576. |
[4] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[5] | ZANG Miao-Han, WANG Chuan-Kuan, LIANG Yi-Xian, LIU Yi-Xiao, SHANGGUAN Hong-Yu, QUAN Xian-Kui. Stoichiometric characteristics of leaf, branch and root in Larix gmelinii in response to climate warming based on latitudinal transplantation [J]. Chin J Plant Ecol, 2024, 48(4): 469-482. |
[6] | ZHANG Ji-Shen, SHI Xin-Jie, LIU Yu-Nuo, WU Yang, PENG Shou-Zhang. Dynamics of ecosystem carbon storage of potential natural vegetation in China under climate change [J]. Chin J Plant Ecol, 2024, 48(4): 428-444. |
[7] | ZHANG Qi, CHENG Xue-Han, WANG Shu-Zhi. History of forest disturbance recorded by old trees in Xishan Mountain, Beijing [J]. Chin J Plant Ecol, 2024, 48(3): 341-348. |
[8] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[9] | LI Jie, HAO Min-Hui, FAN Chun-Yu, ZHANG Chun-Yu, ZHAO Xiu-Hai. Effect of tree species and functional diversity on ecosystem multifunctionality in temperate forests of northeast China [J]. Chin J Plant Ecol, 2023, 47(11): 1507-1522. |
[10] | DANG Hong-Zhong, ZHANG Xue-Li, HAN Hui, SHI Chang-Chun, GE Yu-Xiang, MA Quan-Lin, CHEN Shuai, LIU Chun-Ying. Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices [J]. Chin J Plant Ecol, 2022, 46(9): 971-983. |
[11] | WEI Yao, MA Zhi-Yuan, ZHOU Jia-Ying, ZHANG Zhen-Hua. Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(9): 995-1004. |
[12] | LI Xiao, PIALUANG Bounthong, KANG Wen-Hui, JI Xiao-Dong, ZHANG Hai-Jiang, XUE Zhi-Guo, ZHANG Zhi-Qiang. Responses of radial growth to climate change over the past decades in secondary Betula platyphylla forests in the mountains of northwest Hebei, China [J]. Chin J Plant Ecol, 2022, 46(8): 919-931. |
[13] | SU Qi-Tao, DU Zhi-Xuan, ZHOU Bing, LIAO Yong-Hui, WANG Cheng-Cheng, XIAO Yi-An. Potential distribution of Impatiens davidii and its pollinator in China [J]. Chin J Plant Ecol, 2022, 46(7): 785-796. |
[14] | HU Xiao-Fei, WEI Lin-Feng, CHENG Qi, WU Xing-Qi, NI Jian. A climate diagram atlas of Qingzang Plateau [J]. Chin J Plant Ecol, 2022, 46(4): 484-492. |
[15] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn