Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (9): 1223-1231.DOI: 10.17521/cjpe.2024.0004 cstr: 32100.14.cjpe.2024.0004
• Research Articles • Previous Articles Next Articles
LIAO Su-Hui, NI Long-Kang, QIN Jia-Shuang, TAN Yu, GU Da-Xing*()
Received:
2024-01-05
Accepted:
2024-04-08
Online:
2024-09-20
Published:
2024-04-08
Contact:
GU Da-Xing (Supported by:
LIAO Su-Hui, NI Long-Kang, QIN Jia-Shuang, TAN Yu, GU Da-Xing. Hydraulic regulation strategies of karst forest species exhibit variation across different successional stages in the mid-subtropical zone[J]. Chin J Plant Ecol, 2024, 48(9): 1223-1231.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0004
物种 Species | 科 Family | 代码 Code | 生活型 Life form |
---|---|---|---|
演替早期 Early-successional stage | |||
圆叶乌桕 Triadica rotundifolia | 大戟科 Euphorbiaceae | E-Tr | 落叶灌木 Deciduous shrub |
龙须藤 Phanera championii | 豆科 Fabaceae | Phc | 常绿木质藤本 Evergreen woody vine |
雀梅藤 Sageretia thea | 鼠李科 Rhamnaceae | St | 常绿灌木 Evergreen shrub |
火棘 Pyracantha fortuneana | 蔷薇科 Rosaceae | Pf | 常绿灌木 Evergreen shrub |
朴树 Celtis sinensis | 大麻科 Cannabaceae | E-Cs | 落叶乔木 Deciduous tree |
演替中期 Mid-successional stage | |||
长叶女贞 Ligustrum compactum | 木犀科 Oleaceae | Lc | 常绿灌木 Evergreen shrub |
石山巴豆 Croton euryphyllus | 大戟科 Euphorbiaceae | Ce | 常绿灌木 Evergreen shrub |
黄连木 Pistacia chinensis | 漆树科 Anacardiaceae | Pic | 落叶乔木 Deciduous tree |
光皮梾木 Cornus wilsoniana | 山茱萸科 Cornaceae | M-Cw | 落叶乔木 Deciduous tree |
朴树 Celtis sinensis | 大麻科 Cannabaceae | M-Cs | 落叶乔木 Deciduous tree |
南酸枣 Choerospondias axillaris | 漆树科 Anacardiaceae | Ca | 落叶乔木 Deciduous tree |
鸡仔木 Sinoadina racemosa | 茜草科 Rubiaceae | M-Sr | 落叶乔木 Deciduous tree |
演替后期 Late-successional stage | |||
黄梨木 Boniodendron minus | 无患子科 Sapindaceae | Bm | 落叶乔木 Deciduous tree |
青冈 Quercus glauca | 壳斗科 Fagaceae | Qg | 常绿乔木 Evergreen tree |
光腺合欢 Albizia calcarea | 豆科 Fabaceae | Ac | 落叶乔木 Deciduous tree |
光皮梾木 Cornus wilsoniana | 山茱萸科 Cornaceae | L-Cw | 落叶乔木 Deciduous tree |
灰岩润楠 Machilus calcicola | 樟科 Lauraceae | Mc | 常绿乔木 Evergreen tree |
圆叶乌桕 Triadica rotundifolia | 大戟科 Euphorbiaceae | L-Tr | 落叶灌木 Deciduous shrub |
粗糠柴 Mallotus philippensis | 大戟科 Euphorbiaceae | Mp | 常绿乔木 Evergreen tree |
鸡仔木 Sinoadina racemosa | 茜草科 Rubiaceae | L-Sr | 落叶乔木 Deciduous tree |
Table 1 Information of dominant tree species in karst forests in mid-subtropical zone
物种 Species | 科 Family | 代码 Code | 生活型 Life form |
---|---|---|---|
演替早期 Early-successional stage | |||
圆叶乌桕 Triadica rotundifolia | 大戟科 Euphorbiaceae | E-Tr | 落叶灌木 Deciduous shrub |
龙须藤 Phanera championii | 豆科 Fabaceae | Phc | 常绿木质藤本 Evergreen woody vine |
雀梅藤 Sageretia thea | 鼠李科 Rhamnaceae | St | 常绿灌木 Evergreen shrub |
火棘 Pyracantha fortuneana | 蔷薇科 Rosaceae | Pf | 常绿灌木 Evergreen shrub |
朴树 Celtis sinensis | 大麻科 Cannabaceae | E-Cs | 落叶乔木 Deciduous tree |
演替中期 Mid-successional stage | |||
长叶女贞 Ligustrum compactum | 木犀科 Oleaceae | Lc | 常绿灌木 Evergreen shrub |
石山巴豆 Croton euryphyllus | 大戟科 Euphorbiaceae | Ce | 常绿灌木 Evergreen shrub |
黄连木 Pistacia chinensis | 漆树科 Anacardiaceae | Pic | 落叶乔木 Deciduous tree |
光皮梾木 Cornus wilsoniana | 山茱萸科 Cornaceae | M-Cw | 落叶乔木 Deciduous tree |
朴树 Celtis sinensis | 大麻科 Cannabaceae | M-Cs | 落叶乔木 Deciduous tree |
南酸枣 Choerospondias axillaris | 漆树科 Anacardiaceae | Ca | 落叶乔木 Deciduous tree |
鸡仔木 Sinoadina racemosa | 茜草科 Rubiaceae | M-Sr | 落叶乔木 Deciduous tree |
演替后期 Late-successional stage | |||
黄梨木 Boniodendron minus | 无患子科 Sapindaceae | Bm | 落叶乔木 Deciduous tree |
青冈 Quercus glauca | 壳斗科 Fagaceae | Qg | 常绿乔木 Evergreen tree |
光腺合欢 Albizia calcarea | 豆科 Fabaceae | Ac | 落叶乔木 Deciduous tree |
光皮梾木 Cornus wilsoniana | 山茱萸科 Cornaceae | L-Cw | 落叶乔木 Deciduous tree |
灰岩润楠 Machilus calcicola | 樟科 Lauraceae | Mc | 常绿乔木 Evergreen tree |
圆叶乌桕 Triadica rotundifolia | 大戟科 Euphorbiaceae | L-Tr | 落叶灌木 Deciduous shrub |
粗糠柴 Mallotus philippensis | 大戟科 Euphorbiaceae | Mp | 常绿乔木 Evergreen tree |
鸡仔木 Sinoadina racemosa | 茜草科 Rubiaceae | L-Sr | 落叶乔木 Deciduous tree |
性状 Trait | 缩写 Abbreviation | 单位 Unit | 范围 Range |
---|---|---|---|
茎栓塞脆弱性 Vulnerability of stem to embolism | P50S | MPa | -7.09- -0.83 |
叶栓塞脆弱性 Vulnerability of leaf to embolism | P50L | MPa | -1.69- -0.30 |
脆弱性分割 Vulnerability segmentation | P50L-S | MPa | 0.53-6.59 |
边材密度 Sapwood density | WD | g·cm-3 | 0.43-0.72 |
茎比导率 Stem specific hydraulic conductivity | KS | kg·m-1·s-1·MPa-1 | 0.69-4.36 |
胡伯尔值 Huber value | HV | cm2·g-1 | (0.8-3.0) × 10-4 |
叶比导率 Leaf specific hydraulic conductivity | KL | kg·m-1·s-1·MPa-1 | (0.6-9.0) × 10-4 |
比叶面积 Specific leaf area | SLA | m²·kg-1 | 6.08-15.03 |
年最低水势 Lowest water potential at annual | ψmin | MPa | -6.15- -0.75 |
叶水力安全边界 Hydraulic safety margin of leaf | HSML | MPa | -6.27- -0.25 |
Table 2 List of abbreviations including the names, symbols, units and ranges used in this study
性状 Trait | 缩写 Abbreviation | 单位 Unit | 范围 Range |
---|---|---|---|
茎栓塞脆弱性 Vulnerability of stem to embolism | P50S | MPa | -7.09- -0.83 |
叶栓塞脆弱性 Vulnerability of leaf to embolism | P50L | MPa | -1.69- -0.30 |
脆弱性分割 Vulnerability segmentation | P50L-S | MPa | 0.53-6.59 |
边材密度 Sapwood density | WD | g·cm-3 | 0.43-0.72 |
茎比导率 Stem specific hydraulic conductivity | KS | kg·m-1·s-1·MPa-1 | 0.69-4.36 |
胡伯尔值 Huber value | HV | cm2·g-1 | (0.8-3.0) × 10-4 |
叶比导率 Leaf specific hydraulic conductivity | KL | kg·m-1·s-1·MPa-1 | (0.6-9.0) × 10-4 |
比叶面积 Specific leaf area | SLA | m²·kg-1 | 6.08-15.03 |
年最低水势 Lowest water potential at annual | ψmin | MPa | -6.15- -0.75 |
叶水力安全边界 Hydraulic safety margin of leaf | HSML | MPa | -6.27- -0.25 |
性状 Trait | 演替早期 Early-successional stage | 演替中期 Mid-successional stage | 演替后期 Late-successional stage |
---|---|---|---|
P50S | -3.94 ± 0.85b | -2.25 ± 0.33a | -1.98 ± 0.24a |
P50L | -0.67 ± 0.13a | -0.82 ± 0.17a | -0.52 ± 0.04a |
P50L-S | 3.28 ± 0.94a | 1.43 ± 0.24b | 1.46 ± 0.26b |
WD | 0.56 ± 0.04a | 0.62 ± 0.02a | 0.553 ± 0.02a |
KS | 2.72 ± 0.52a | 2.43 ± 0.11ab | 1.75 ± 0.20b |
Hv | 2.09 × 10-4 ± 0.00a | 1.44 × 10-4 ± 0.00a | 1.57 × 10-4 ± 0.00a |
KL | 4.98 × 10-4 ± 0.01a | 2.98 × 10-4 ± 0.00ab | 2.48 × 10-4 ± 0.00b |
SLA | 6.55 ± 0.31b | 11.86 ± 0.84a | 11.83 ± 0.92a |
ψmin | -4.56 ± 0.78a | -2.51 ± 0.47a | -4.21 ± 0.70a |
HSML | -3.89 ± 0.74b | -1.69 ± 0.89a | -3.04 ± 1.96b |
Table 3 Differences in various hydraulic traits at different stages of karst forest in the mid-subtropical zone (mean ± SD)
性状 Trait | 演替早期 Early-successional stage | 演替中期 Mid-successional stage | 演替后期 Late-successional stage |
---|---|---|---|
P50S | -3.94 ± 0.85b | -2.25 ± 0.33a | -1.98 ± 0.24a |
P50L | -0.67 ± 0.13a | -0.82 ± 0.17a | -0.52 ± 0.04a |
P50L-S | 3.28 ± 0.94a | 1.43 ± 0.24b | 1.46 ± 0.26b |
WD | 0.56 ± 0.04a | 0.62 ± 0.02a | 0.553 ± 0.02a |
KS | 2.72 ± 0.52a | 2.43 ± 0.11ab | 1.75 ± 0.20b |
Hv | 2.09 × 10-4 ± 0.00a | 1.44 × 10-4 ± 0.00a | 1.57 × 10-4 ± 0.00a |
KL | 4.98 × 10-4 ± 0.01a | 2.98 × 10-4 ± 0.00ab | 2.48 × 10-4 ± 0.00b |
SLA | 6.55 ± 0.31b | 11.86 ± 0.84a | 11.83 ± 0.92a |
ψmin | -4.56 ± 0.78a | -2.51 ± 0.47a | -4.21 ± 0.70a |
HSML | -3.89 ± 0.74b | -1.69 ± 0.89a | -3.04 ± 1.96b |
Fig. 1 Vulnerability segmentation (P50L-S, A) and hydraulic safety margin (HSML, B) of various tree species in different successional stages in the mid-subtropical zone. Species see Table 1.
P50S | KS | WD | P50L | KL | SLA | P50L-S | ψmin | Hv | HSML | |
---|---|---|---|---|---|---|---|---|---|---|
P50S | 1 | |||||||||
KS | -0.02ns | 1 | ||||||||
WD | -0.46* | 0.24ns | 1 | |||||||
P50L | 0.07ns | -0.34ns | -0.33ns | 1 | ||||||
KL | -0.35ns | 0.52* | -0.12ns | 0.06ns | 1 | |||||
SLA | 0.47* | -0.17ns | 0.02ns | 0.14ns | -0.58** | 1 | ||||
P50L-S | -0.97** | -0.17ns | -0.57** | 0.07ns | 0.27ns | -0.30ns | 1 | |||
ψmin | 0.08ns | 0.24ns | 0.04ns | 0.22ns | -0.01ns | 0.11ns | -0.06ns | 1 | ||
Hv | -0.20ns | -0.01ns | -0.15ns | 0.34ns | 0.74** | -0.45* | 0.19ns | 0.04ns | 1 | |
HSML | -0.38ns | 0.15ns | -0.07ns | 0.11ns | 0.15ns | -0.08ns | 0.39ns | 0.97** | 0.19ns | 1 |
Table 4 Correlation matrix of various hydraulic traits of tree species in mid-subtropical karst forests
P50S | KS | WD | P50L | KL | SLA | P50L-S | ψmin | Hv | HSML | |
---|---|---|---|---|---|---|---|---|---|---|
P50S | 1 | |||||||||
KS | -0.02ns | 1 | ||||||||
WD | -0.46* | 0.24ns | 1 | |||||||
P50L | 0.07ns | -0.34ns | -0.33ns | 1 | ||||||
KL | -0.35ns | 0.52* | -0.12ns | 0.06ns | 1 | |||||
SLA | 0.47* | -0.17ns | 0.02ns | 0.14ns | -0.58** | 1 | ||||
P50L-S | -0.97** | -0.17ns | -0.57** | 0.07ns | 0.27ns | -0.30ns | 1 | |||
ψmin | 0.08ns | 0.24ns | 0.04ns | 0.22ns | -0.01ns | 0.11ns | -0.06ns | 1 | ||
Hv | -0.20ns | -0.01ns | -0.15ns | 0.34ns | 0.74** | -0.45* | 0.19ns | 0.04ns | 1 | |
HSML | -0.38ns | 0.15ns | -0.07ns | 0.11ns | 0.15ns | -0.08ns | 0.39ns | 0.97** | 0.19ns | 1 |
[1] | Avila RT, Guan XY, Kane CN, Cardoso AA, Batz TA, DaMatta FM, Jansen S, McAdam SAM (2022). Xylem embolism spread is largely prevented by interconduit pit membranes until the majority of conduits are gas-filled. Plant, Cell & Environment, 45, 1204-1215. |
[2] | Bonal D, Born C, Brechet C, Coste S, Marcon E, Roggy JC, Guehl JM (2007). The successional status of tropical rainforest tree species is associated with differences in leaf carbon isotope discrimination and functional traits. Annals of Forest Science, 64, 169-176. |
[3] | Bouche PS, Delzon S, Choat B, Badel E, Brodribb TJ, Burlett R, Cochard H, Charra-Vaskou K, Lavigne B, Li S, Mayr S, Morris H, Torres-Ruiz JM, Zufferey V, Jansen S (2016). Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X-ray computed tomography. Plant, Cell & Environment, 39, 860-870. |
[4] | Brodribb TJ, Holbrook NM (2007). Forced depression of leaf hydraulic conductance in situ: effects on the leaf gas exchange of forest trees. Functional Ecology, 21, 705-712. |
[5] | Cai J, Tyree MT (2010). The impact of vessel size on vulnerability curves: data and models for within-species variability in saplings of aspen, Populus tremuloides Michx. Plant, Cell & Environment, 33, 1059-1069. |
[6] | Chen HS, Nie YP, Wang KL (2013). Spatio-temporal heterogeneity of water and plant adaptation mechanisms in karst regions: a review. Acta Ecologica Sinica, 33, 317-326. |
[陈洪松, 聂云鹏, 王克林 (2013). 岩溶山区水分时空异质性及植物适应机理研究进展. 生态学报, 33, 317-326.] | |
[7] | Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, et al.(2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755. |
[8] | Creek D, Blackman CJ, Brodribb TJ, Choat B, Tissue DT (2018). Coordination between leaf, stem, and root hydraulics and gas exchange in three arid-zone angiosperms during severe drought and recovery. Plant, Cell & Environment, 41, 2869-2881. |
[9] | Ding YL, Nie YP, Chen HS, Wang KL, Querejeta JI (2021). Water uptake depth is coordinated with leaf water potential, water-use efficiency and drought vulnerability in karst vegetation. New Phytologist, 229, 1339-1353. |
[10] | Han L, Zhao H, Wang W, Liu WH, Jiang ZM, Cai J (2023). Hydraulic vulnerability segmentation and its correlation with growth in hybrid poplar. Scientia Silvae Sinicae, 59(3), 94-103. |
[韩璐, 赵涵, 王薇, 刘文辉, 姜在民, 蔡靖 (2023). 白杨杂交子代栓塞脆弱性分割及与生长的关系. 林业科学, 59(3), 94-103.] | |
[11] | Jiang ZC, Li XK, Zeng FP (2007). Ecological Reconstruction of Karst Peaks, Clusters, and Depressions. Geological Publishing House, Beijing. 151. |
[蒋忠诚, 李先琨, 曾馥平 (2007). 岩溶峰丛洼地生态重建. 地质出版社, 北京. 151.] | |
[12] |
Jin Y, Wang CK, Zhou ZH (2019). Conifers but not angiosperms exhibit vulnerability segmentation between leaves and branches in a temperate forest. Tree Physiology, 39, 454-462.
DOI PMID |
[13] |
Johnson DM, Wortemann R, McCulloh KA, Jordan-Meille L, Ward E, Warren JM, Palmroth S, Domec JC (2016). A test of the hydraulic vulnerability segmentation hypothesis in angiosperm and conifer tree species. Tree Physiology, 36, 983-993.
DOI PMID |
[14] | Levionnois S, Ziegler C, Heuret P, Jansen S, Stahl C, Calvet E, Goret JY, Bonal D, Coste S (2021). Is vulnerability segmentation at the leaf-stem transition a drought resistance mechanism? A theoretical test with a trait-based model for Neotropical canopy tree species. Annals of Forest Science, 78, 87. DOI: 10.1007/s13595-021-01094-9. |
[15] | Li DQ, Zou Q, Cheng BS (1990). Pressure chamber method for measuring water potential of plant tissues. Shandong Agricultural Sciences, 22(3), 46-48. |
[李德全, 邹琦, 程炳嵩 (1990). 测定植物组织水势的压力室法. 山东农业科学, 22(3), 46-48.] | |
[16] | Li S, Wang J, Lu S, Salmon Y, Liu P, Guo JK (2023). Trade-off between hydraulic safety and efficiency in plant xylem and its influencing factors. Forests, 14, 1817. DOI: 10.3390/f14091817. |
[17] | Li YJ, Zheng JM, Wang GZ, Zhou JX, Liu YG, Ha WX (2021). A study of functional traits of natural secondary forests and their influencing factors in different succession stages in karst areas: a case study of Dahei Mountain, Yunnan Province. Acta Geoscientica Sinica, 42, 397-406. |
[李亚锦, 郑景明, 王根柱, 周金星, 刘玉国, 哈文秀 (2021). 喀斯特区天然林不同演替阶段功能性状特征及其影响因素研究——以云南大黑山为例. 地球学报, 42, 397-406.] | |
[18] | Losso A, Bär A, Dämon B, Dullin C, Ganthaler A, Petruzzellis F, Savi T, Tromba G, Nardini A, Mayr S, Beikircher B (2019). Insights from in vivo micro-CT analysis: testing the hydraulic vulnerability segmentation in Acer pseudoplatanus and Fagus sylvatica seedlings. New Phytologist, 221, 1831-1842. |
[19] | Luo DD, Wang CK, Jin Y (2021). Response mechanisms of hydraulic systems of woody plants to drought stress. Chinese Journal of Plant Ecology, 45, 925-941. |
[罗丹丹, 王传宽, 金鹰 (2021). 木本植物水力系统对干旱胁迫的响应机制. 植物生态学报, 45, 925-941.]
DOI |
|
[20] |
Mujawamariya M, Wittemann M, Dusenge ME, Manishimwe A, Ntirugulirwa B, Zibera E, Nsabimana D, Wallin G, Uddling J (2023). Contrasting warming responses of photosynthesis in early- and late-successional tropical trees. Tree Physiology, 43, 1104-1117.
DOI PMID |
[21] |
Nardini A, Pedà G, La Rocca N (2012). Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho- anatomical bases, carbon costs and ecological consequences. New Phytologist, 196, 788-798.
DOI PMID |
[22] | Ni MY, Aritsara ANA, Wang YQ, Huang DL, Xiang W, Wan CY, Zhu SD (2021). Analysis of xylem anatomy and function of representative tree species in a mixed evergreen and deciduous broad-leaved forest of mid-subtropical karst region. Chinese Journal of Plant Ecology, 45, 394-403. |
[倪鸣源, Aritsara ANA, 王永强, 黄冬柳, 项伟, 万春燕, 朱师丹 (2021). 中亚热带喀斯特常绿落叶阔叶混交林典型树种的木质部解剖与功能特征分析. 植物生态学报, 45, 394-403.] | |
[23] | Nolf M, Creek D, Duursma R, Holtum J, Mayr S, Choat B (2015). Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species. Plant, Cell & Environment, 38, 2652-2661. |
[24] |
Pivovaroff AL, Sack L, Santiago LS (2014). Coordination of stem and leaf hydraulic conductance in southern California shrubs: a test of the hydraulic segmentation hypothesis. New Phytologist, 203, 842-850.
DOI PMID |
[25] |
Rodriguez-Dominguez CM, Carins-Murphy MR, Lucani C, Brodribb TJ (2018). Mapping xylem failure in disparate organs of whole plants reveals extreme resistance in olive roots. New Phytologist, 218, 1025-1035.
DOI PMID |
[26] |
Sperry JS, Tyree MT (1988). Mechanism of water stress- induced xylem embolism. Plant Physiology, 88, 581-587.
DOI PMID |
[27] | Tan FS, Song HQ, Li ZG, Zhang QW, Zhu SD (2019). Hydraulic safety margin of 17 co-occurring woody plants in a seasonal rain forest in Guangxi’s Southwest karst landscape, China. Chinese Journal of Plant Ecology, 43, 227-237. |
[谭凤森, 宋慧清, 李忠国, 张启伟, 朱师丹 (2019). 桂西南喀斯特季雨林木本植物的水力安全. 植物生态学报, 43, 227-237.]
DOI |
|
[28] | Tyree MT, Cochard H, Cruiziat P, Sinclair B, Ameglio T (1993). Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant, Cell & Environment, 16, 879-882. |
[29] | Tyree MT, Ewers FW (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119, 345-360. |
[30] | Wan CY, Yu JR, Zhu SD (2023). Differences in leaf traits and trait correlation networks between karst and non-karst forest tree species. Chinese Journal of Plant Ecology, 47, 1386-1397. |
[万春燕, 余俊瑞, 朱师丹 (2023). 喀斯特与非喀斯特森林乔木叶性状及其相关性网络的差异. 植物生态学报, 47, 1386-1397.]
DOI |
|
[31] | Wen L, Song TQ, Du H, Wang KL, Peng WX, Zeng FP, Zeng ZX, He TG (2015). The succession characteristics and its driving mechanism of plant community in karst region, Southwest China. Acta Ecologica Sinica, 35, 5822-5833. |
[文丽, 宋同清, 杜虎, 王克林, 彭晚霞, 曾馥平, 曾昭霞, 何铁光 (2015). 中国西南喀斯特植物群落演替特征及驱动机制. 生态学报, 35, 5822-5833.] | |
[32] | Woodruff DR, McCulloh KA, Warren JM, Meinzer FC, Lachenbruch B (2007). Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. Plant, Cell & Environment, 30, 559-569. |
[33] | Wu TH, Long CL, Xiong L, Li J, Liu Q (2023). Relationship between plant leaf functional traits and soil factors at different succession stages in karst forest of Maolan. Guihaia, 43, 463-472. |
[吴陶红, 龙翠玲, 熊玲, 李娟, 刘奇 (2023). 茂兰喀斯特森林不同演替阶段植物叶片功能性状与土壤因子的关系. 广西植物, 43, 463-472.] | |
[34] | Yu JR, Wan CY, Zhu SD (2023). Hydraulic vulnerability segmentation in woody plant species from tropical and subtropical karst forests. Chinese Journal of Plant Ecology, 47, 1576-1584. |
[余俊瑞, 万春燕, 朱师丹 (2023). 热带亚热带喀斯特森林木本植物的水力脆弱性分割. 植物生态学报, 47, 1576-1584.]
DOI |
|
[35] | Yuan DX (1992). Karst in southwest China and its comparison with karst in North China. Quaternary Sciences, 12, 352-361. |
[袁道先 (1992). 中国西南部的岩溶及其与华北岩溶的对比. 第四纪研究, 12, 352-361.] | |
[36] | Zhang SB, Wen GJ, Qu YY, Yang LY, Song Y (2022). Trade-offs between xylem hydraulic efficiency and mechanical strength in Chinese evergreen and deciduous savanna species. Tree Physiology, 42, 1337-1349. |
[37] | Zhang SB, Wen GJ, Yang DX (2019). Drought-induced mortality is related to hydraulic vulnerability segmentation of tree species in a savanna ecosystem. Forests, 10, 697. DOI: 10.3390/f10080697. |
[38] |
Zhao YT, Xu MS, Zhang ZH, Zhou LL, Zhang QQ, Arshad A, Song YJ, Yan ER (2016). Hydraulic architecture of evergreen broad-leaved woody plants at different successional stages in Tiantong National Forest Park, Zhejiang Province, China. Chinese Journal of Plant Ecology, 40, 116-126.
DOI |
[赵延涛, 许洺山, 张志浩, 周刘丽, 张晴晴, Arshad A, 宋彦君, 阎恩荣 (2016). 浙江天童常绿阔叶林不同演替阶段木本植物的水力结构特征. 植物生态学报, 40, 116-126.]
DOI |
|
[39] | Zheng SX, Shangguan ZP (2007). Photosynthetic characteristics and their relationships with leaf nitrogen content and leaf mass per area in different plant functional types. Acta Ecologica Sinica, 27, 171-181. |
[郑淑霞, 上官周平 (2007). 不同功能型植物光合特性及其与叶氮含量、比叶重的关系. 生态学报, 27, 171-181.] | |
[40] | Zhu SD, Chen YJ, Cao KF, Ye Q (2015). Interspecific variation in branch and leaf traits among three Syzygium tree species from different successional tropical forests. Functional Plant Biology, 42, 423-432. |
[41] | Zhu SD, Liu H, Xu QY, Cao KF, Ye Q (2016). Are leaves more vulnerable to cavitation than branches. Functional Ecology, 30, 1740-1744. |
[1] | . Exploration of livestock-poultry-grassland systems: the influence of different land use types on the grassland that dominated by Leymus chinensis in northern China [J]. Chin J Plant Ecol, 2025, 49(1): 0-0. |
[2] | CHEN Xuan-Zheng, ZHU Yao-Jun, GAO Ju-Juan, LIU Yi-Fan, WANG Rong, FANG Tao, LUO Fang-Li, XUE Wei, YU Fei-Hai. Research progress on spatial-temporal variation of plant-soil feedback [J]. Chin J Plant Ecol, 2024, 48(8): 955-966. |
[3] | WANG Xiao-Lin, ZHOU Wei, ZHAO Mei, DING Yu-Tong, YANG Dong-Mei, ZHANG Yin-Shuang, YIN Meng-Qi, ZHUANG Yue, PENG Guo-Quan. Axial variations in vessel structure of bamboos Phyllostachys violascens ‘Prevernalis’ and Bambusa textilis [J]. Chin J Plant Ecol, 2024, 48(7): 915-929. |
[4] | Zhen-Yu WANG. Effects of leaf traits on herbivory across 27 woody plants in the subtropics forest: testing the growth-defense trade-off hypothesis [J]. Chin J Plant Ecol, 2024, 48(11): 1501-1509. |
[5] | Wang Si-Qi Guang-Ze JIN. Variation and trade-offs of leaf, branch and root traits in different life history stages of Acer pictum subsp. mono [J]. Chin J Plant Ecol, 2024, 48(11): 1510-1523. |
[6] | SUN Jia-Hui, SHI Hai-Lan, CHEN Ke-Yu, JI Bao-Ming, ZHANG Jing. Research advances on trade-off relationships of plant fine root functional traits [J]. Chin J Plant Ecol, 2023, 47(8): 1055-1070. |
[7] | LI Yao-Qi, WANG Zhi-Heng. Functional biogeography of plants: research progresses and challenges [J]. Chin J Plant Ecol, 2023, 47(2): 145-169. |
[8] | HE Lu-Lu, ZHANG Xuan, ZHANG Yu-Wen, WANG Xiao-Xia, LIU Ya-Dong, LIU Yan, FAN Zi-Ying, HE Yuan-Yang, XI Ben-Ye, DUAN Jie. Crown characteristics and its relationship with tree growth on different slope aspects for Larix olgensis var. changbaiensis plantation in eastern Liaoning mountainous area, China [J]. Chin J Plant Ecol, 2023, 47(11): 1523-1539. |
[9] | ZHAO Rong-Jiang, CHEN Tao, DONG Li-Jia, GUO Hui, MA Hai-Kun, SONG Xu, WANG Ming-Gang, XUE Wei, YANG Qiang. Progress of plant-soil feedback in ecology studies [J]. Chin J Plant Ecol, 2023, 47(10): 1333-1355. |
[10] | ZHAI Jiang-Wei, LIN Xin-Hui, WU Rui-Zhe, XU Yi-Xin, JIN Hao-Hao, JIN Guang-Ze, LIU Zhi-Li. Trade-offs between petiole and lamina of different functional plants in Xiao Hinggan Mountains, China [J]. Chin J Plant Ecol, 2022, 46(6): 700-711. |
[11] | CHENG Si-Qi, JIANG Feng, JIN Guang-Ze. Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest [J]. Chin J Plant Ecol, 2022, 46(6): 678-686. |
[12] | HAN Xu-Li, ZHAO Ming-Shui, WANG Zhong-Yuan, YE Lin-Feng, LU Shi-Tong, CHEN Sen, LI Yan, XIE Jiang-Bo. Adaptation of xylem structure and function of three gymnosperms to different habitats [J]. Chin J Plant Ecol, 2022, 46(4): 440-450. |
[13] | QIN Hui-Jun, JIAO Liang, ZHOU Yi, XUE Ru-Hong, QI Chang-Liang, DU Da-Shi. Effects of altitudes on non-structural carbohydrate allocation in different dominate trees in Qilian Mountains, China [J]. Chin J Plant Ecol, 2022, 46(2): 208-219. |
[14] | DAI Yuan-Meng, LI Man-Le, XU Ming-Ze, TIAN Yun, ZHAO Hong-Xian, GAO Sheng-Jie, HAO Shao-Rong, LIU Peng, JIA Xin, ZHA Tian-Shan. Leaf traits of Artemisia ordosica at different dune fixation stages in Mau Us Sandy Land [J]. Chin J Plant Ecol, 2022, 46(11): 1376-1387. |
[15] | FANG Jing, YE Lin-Feng, CHEN Sen, LU Shi-Tong, PAN Tian-Tian, XIE Jiang-Bo, LI Yan, WANG Zhong-Yuan. Differences in anatomical structure and hydraulic function of xylem in branches of angiosperms in field and garden habitats [J]. Chin J Plant Ecol, 2021, 45(6): 650-658. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn