Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (9): 1232-1242.DOI: 10.17521/cjpe.2023.0272 cstr: 32100.14.cjpe.2023.0272
• Research Articles • Previous Articles
RAN Jia-Xin1,2, ZHANG Yu-Hui1,2, WANG Yun1,2, YANG Zhi-Jie1,2, MAO Chao1,2,*()(
)
Received:
2023-09-22
Accepted:
2024-02-07
Online:
2024-09-20
Published:
2024-02-18
Contact:
MAO Chao (Supported by:
RAN Jia-Xin, ZHANG Yu-Hui, WANG Yun, YANG Zhi-Jie, MAO Chao. Effects of warming and nitrogen and phosphorus addition on dissolved organic carbon biodegradability of litter in a subtropical forest[J]. Chin J Plant Ecol, 2024, 48(9): 1232-1242.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0272
因子 Factor | 对照 CK | 增温 W |
---|---|---|
MBC (mg·kg-1) | 181.05 ± 9.05a | 148.38 ± 6.32b |
MBN (mg·kg-1) | 79.99 ± 6.63a | 53.17 ± 2.97b |
MBC/MBN | 2.30 ± 0.16b | 2.82 ± 0.17a |
βG (nmol·h-1·g-1) | 19.47 ± 0.87b | 24.93 ± 1.00a |
CBH (nmol·h-1·g-1) | 0.61 ± 0.04b | 1.23 ± 0.05a |
PPO (nmol·h-1·g-1) | 0.68 ± 0.04b | 0.97 ± 0.07a |
Px (nmol·h-1·g-1) | 5.00 ± 0.50b | 7.20 ± 0.35a |
Table 1 Soil microbial properties of the warming (CK) and control (W) plots in the Castanopsis kawakamii forest (mean ± SE)
因子 Factor | 对照 CK | 增温 W |
---|---|---|
MBC (mg·kg-1) | 181.05 ± 9.05a | 148.38 ± 6.32b |
MBN (mg·kg-1) | 79.99 ± 6.63a | 53.17 ± 2.97b |
MBC/MBN | 2.30 ± 0.16b | 2.82 ± 0.17a |
βG (nmol·h-1·g-1) | 19.47 ± 0.87b | 24.93 ± 1.00a |
CBH (nmol·h-1·g-1) | 0.61 ± 0.04b | 1.23 ± 0.05a |
PPO (nmol·h-1·g-1) | 0.68 ± 0.04b | 0.97 ± 0.07a |
Px (nmol·h-1·g-1) | 5.00 ± 0.50b | 7.20 ± 0.35a |
Fig. 1 Effects of warming and decomposition time on dissolved organic carbon (DOC) content of litter in a subtropical forest (mean ± SE). CK, control treatment; t, decomposition time; W, warming. Different lowercase letters indicate significant differences (p < 0.05) between warming and control treatment.
处理 Treatment | 分解0天 0-day decomposition | 分解180天 180-day decomposition | ||
---|---|---|---|---|
F | p | F | p | |
W | 21.18 | <0.01 | 0.01 | 0.91 |
N | 5.57 | <0.05 | 5.90 | <0.05 |
P | 167.92 | <0.01 | 144.70 | <0.01 |
N × P | 50.94 | <0.01 | 4.87 | <0.05 |
W × N | 3.05 | 0.09 | 0.74 | 0.40 |
W × P | 21.11 | <0.01 | 4.77 | <0.05 |
W × N × P | 5.29 | <0.05 | 3.44 | 0.07 |
Table 2 Effects of warming and nutrient addition on 0-day decomposition and 180-day decomposition litter-derived dissolved organic carbon (DOC) in a subtropical forest
处理 Treatment | 分解0天 0-day decomposition | 分解180天 180-day decomposition | ||
---|---|---|---|---|
F | p | F | p | |
W | 21.18 | <0.01 | 0.01 | 0.91 |
N | 5.57 | <0.05 | 5.90 | <0.05 |
P | 167.92 | <0.01 | 144.70 | <0.01 |
N × P | 50.94 | <0.01 | 4.87 | <0.05 |
W × N | 3.05 | 0.09 | 0.74 | 0.40 |
W × P | 21.11 | <0.01 | 4.77 | <0.05 |
W × N × P | 5.29 | <0.05 | 3.44 | 0.07 |
Fig. 2 Effects of warming and nitrogen and phosphorus addition on the biodegradability of litter-derived dissolved oganic carbon (BDOC) at 0-day decomposition (A) and 180-day decomposition (B) stage in a subtropical forest (mean ± SE). CK, control treatment; N, nitrogen addition; NP, interaction between nitrogen and phosphorus addition; P, phosphorus addition; W, warming; WN, interaction between warming and nitrogen addition; WNP, interactions among warming, nitrogen and phosphorus addition; WP, interaction between warming and phosphorus addition.
分解时间 Decomposition time | 处理 Treatment | ΔSUVA254 | ΔSUVA260 | ΔSUVA280 | Δa300 | ||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | ||
分解0天 0-day decomposition | W | 4.23 | <0.05 | 6.82 | <0.05 | 11.92 | <0.01 | 0.45 | 0.51 |
N | 6.23 | <0.05 | 0.27 | 0.61 | 0.40 | 0.53 | 8.34 | <0.01 | |
P | 55.52 | <0.01 | 34.63 | <0.01 | 51.21 | <0.01 | 31.14 | <0.01 | |
N × P | 20.35 | <0.01 | 9.52 | <0.01 | 6.65 | <0.05 | 11.88 | <0.01 | |
W × N | 2.85 | 0.10 | 6.22 | <0.05 | 0.45 | 0.51 | 0.17 | 0.68 | |
W × P | 7.04 | <0.05 | 6.51 | <0.05 | 4.31 | <0.05 | 0.32 | 0.57 | |
W × N × P | 1.92 | 0.18 | 0.02 | 0.89 | 2.93 | 0.10 | 0.25 | 0.62 | |
分解180天 180-day decomposition | W | 0.69 | 0.41 | 1.01 | 0.32 | 0.46 | 0.50 | 0.02 | 0.89 |
N | 2.04 | 0.16 | 2.54 | 0.12 | 2.84 | 0.10 | 0.54 | 0.47 | |
P | 30.57 | <0.01 | 49.27 | <0.01 | 21.43 | <0.01 | 49.74 | <0.01 | |
N × P | <0.01 | 0.99 | 1.28 | 0.27 | 5.93 | <0.05 | 0.03 | 0.86 | |
W × N | <0.01 | 1.00 | 0.02 | 0.88 | 0.03 | 0.87 | 5.74 | <0.05 | |
W × P | 2.35 | 0.14 | 6.99 | <0.05 | 5.99 | <0.05 | 0.03 | 0.86 | |
W × N × P | 0.03 | 0.86 | 0.61 | 0.44 | 2.47 | 0.13 | 5.68 | <0.05 |
Table 3 Effects of warming and nitrogen and phosphorus addition on the variation in dissolved organic carbon (ΔDOC) spectral index of littex at 0-day decomposition and 180-day decomposition stages in a subtropical forest.
分解时间 Decomposition time | 处理 Treatment | ΔSUVA254 | ΔSUVA260 | ΔSUVA280 | Δa300 | ||||
---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | ||
分解0天 0-day decomposition | W | 4.23 | <0.05 | 6.82 | <0.05 | 11.92 | <0.01 | 0.45 | 0.51 |
N | 6.23 | <0.05 | 0.27 | 0.61 | 0.40 | 0.53 | 8.34 | <0.01 | |
P | 55.52 | <0.01 | 34.63 | <0.01 | 51.21 | <0.01 | 31.14 | <0.01 | |
N × P | 20.35 | <0.01 | 9.52 | <0.01 | 6.65 | <0.05 | 11.88 | <0.01 | |
W × N | 2.85 | 0.10 | 6.22 | <0.05 | 0.45 | 0.51 | 0.17 | 0.68 | |
W × P | 7.04 | <0.05 | 6.51 | <0.05 | 4.31 | <0.05 | 0.32 | 0.57 | |
W × N × P | 1.92 | 0.18 | 0.02 | 0.89 | 2.93 | 0.10 | 0.25 | 0.62 | |
分解180天 180-day decomposition | W | 0.69 | 0.41 | 1.01 | 0.32 | 0.46 | 0.50 | 0.02 | 0.89 |
N | 2.04 | 0.16 | 2.54 | 0.12 | 2.84 | 0.10 | 0.54 | 0.47 | |
P | 30.57 | <0.01 | 49.27 | <0.01 | 21.43 | <0.01 | 49.74 | <0.01 | |
N × P | <0.01 | 0.99 | 1.28 | 0.27 | 5.93 | <0.05 | 0.03 | 0.86 | |
W × N | <0.01 | 1.00 | 0.02 | 0.88 | 0.03 | 0.87 | 5.74 | <0.05 | |
W × P | 2.35 | 0.14 | 6.99 | <0.05 | 5.99 | <0.05 | 0.03 | 0.86 | |
W × N × P | 0.03 | 0.86 | 0.61 | 0.44 | 2.47 | 0.13 | 5.68 | <0.05 |
Fig. 3 Effects of warming and nitrogen and phosphorus addition on the variations in dissolved organic carbon (ΔDOC) spectral index of litter with 0-day decomposition and 180-day decomposition in a subtropical forest (mean ± SE). ΔSUVA254, ΔSUVA260, ΔSUVA280 and Δa300 represented the aromaticity, hydrophobicity, high molecular weight and chromophoric dissolved oganic matter composition of leaf litter, respectively after 28-day incubation. CK, control treatment; N, nitrogen addition; NP, interaction between nitrogen and phosphorus addition; P, phosphorus addition; W, warming; WN, interaction between warming and nitrogen addition; WNP, interactions among warming, nitrogen and phosphorus addition; WP, interaction between warming and phosphorus addition.
Fig. 4 Variations of dissolved organic carbon biodegradability (BDOC) and corresponding the variations in dissolved organic carbon (ΔDOC) with initial dissolved organic carbon (DOC) during litter incubation. SUVA254, SUVA260, SUVA280 and a300 represented the aromaticity, hydrophobicity, high molecular weight and chromophoric dissolved organic matter (DOM) composition of leaf litter, respectively. ΔSUVA254, ΔSUVA260, ΔSUVA280 and Δa300 denoted the aromaticity, hydrophobicity, molecular weight and chromophoric DOM composition of leaf litter, respectively during 28-day incubation.
[1] | Abbott BW, Larouche JR, Jones Jr. JB, Bowden WB, Balser AW (2014). Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. Journal of Geophysical Research: Biogeosciences, 119, 2049-2063. |
[2] | Begum MS, Park JH, Yang LY, Shin KH, Hur J (2023). Optical and molecular indices of dissolved organic matter for estimating biodegradability and resulting carbon dioxide production in inland waters: a review. Water Research, 228, 119362. DOI: 10.1016/j.watres.2022.119362. |
[3] | Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N (2011). Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Advances in Agronomy, 110, 1-75. |
[4] |
Carter HT, Tipping E, Koprivnjak JF, Miller MP, Cookson B, Hamilton-Taylor J (2012). Freshwater DOM quantity and quality from a two-component model of UV absorbance. Water Research, 46, 4532-4542.
DOI PMID |
[5] |
Chen J, Sinsabaugh RL (2021). Linking microbial functional gene abundance and soil extracellular enzyme activity: implications for soil carbon dynamics. Global Change Biology, 27, 1322-1325.
DOI PMID |
[6] | Don A, Kalbitz K (2005). Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biology & Biochemistry, 37, 2171-2179. |
[7] |
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007). Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
DOI PMID |
[8] | Fork ML, Osburn CL, Heffernan JB (2020). Bioavailability and compositional changes of dissolved organic matter in urban headwaters. Aquatic Sciences, 82, 66. DOI: 10.1007/s00027-020-00739-7. |
[9] | Hall SJ, Huang WJ, Timokhin VI, Hammel KE (2020). Lignin lags, leads, or limits the decomposition of litter and soil organic carbon. Ecology, 101, e03113. DOI: 10.1002/ecy.3113. |
[10] | Hensgens G, Laudon H, Peichl M, Gil IA, Zhou Q, Berggren M (2020). The role of the understory in litter DOC and nutrient leaching in boreal forests. Biogeochemistry, 149, 87-103. |
[11] |
Hou E, Chen C, Luo Y, Zhou G, Kuang Y, Zhang Y, Heenan M, Lu X, Wen D (2018). Effects of climate on soil phosphorus cycle and availability in natural terrestrial ecosystems. Global Change Biology, 24, 3344-3356.
DOI PMID |
[12] | Hou EQ, Luo YQ, Kuang YW, Chen CR, Lu XK, Jiang LF, Luo XZ, Wen DZ (2020). Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications, 11, 637. DOI: 10.1038/s41467-020-14492-w. |
[13] | Hu J, Kang LY, Li ZL, Feng XH, Liang CF, Wu Z, Zhou W, Liu XN, Yang YH, Chen LY (2023). Photo-produced aromatic compounds stimulate microbial degradation of dissolved organic carbon in thermokarst lakes. Nature Communications, 14, 3681. DOI: 10.1038/s41467-023-39432-2. |
[14] | IPCC Intergovernmental Panel on Climate Change (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[15] | Jansen B, Kalbitz K, McDowell WH (2014). Dissolved organic matter: linking soils and aquatic systems. Vadose Zone Journal, 13, 1-4. |
[16] | Jiang F, Huang J, Chu GW, Cheng Y, Liu XJ, Liu JX, Lie ZY (2021). Effects of warming on soil phosphorus fractions and their contributions to available phosphorus in south subtropical forests. Chinese Journal of Plant Ecology, 45, 197-206. |
[蒋芬, 黄娟, 褚国伟, 程严, 刘旭军, 刘菊秀, 列志旸 (2021). 增温对南亚热带森林土壤磷形态的影响及其对有效磷的贡献. 植物生态学报, 45, 197-206.] | |
[17] |
Li Y, Niu SL, Yu GR (2016). Aggravated phosphorus limitation on biomass production under increasing nitrogen loading: a meta-analysis. Global Change Biology, 22, 934-943.
DOI PMID |
[18] | Lin CF, Peng JQ, Hong HB, Yang ZJ, Yang YS (2017). Effect of nitrogen and phosphorus availability on forest litter decomposition. Acta Ecologica Sinica, 37, 54-62. |
[林成芳, 彭建勤, 洪慧滨, 杨智杰, 杨玉盛 (2017). 氮、磷养分有效性对森林凋落物分解的影响研究进展. 生态学报, 37, 54-62.] | |
[19] | Liu JX, Liu SG, Li YY, Liu SZ, Yin GC, Huang J, Xu Y, Zhou GY (2017). Warming effects on the decomposition of two litter species in model subtropical forests. Plant and Soil, 420, 277-287. |
[20] | Liu M, Zhang ZJ, He Q, Wang H, Li X, Schoer J (2014). Exogenous phosphorus inputs alter complexity of soil- dissolved organic carbon in agricultural riparian wetlands. Chemosphere, 95, 572-580. |
[21] | Liu XF, Chen SD, Li XJ, Yang ZJ, Xiong DC, Xu C, Wanek W, Yang YS (2022). Soil warming delays leaf litter decomposition but exerts no effect on litter nutrient release in a subtropical natural forest over 450 days. Geoderma, 427, 116139. DOI: 10.1016/j.geoderma.2022.116139. |
[22] | Long J, Zhao C, Zhang MJ, Wu JN, Wu QS, Huang BC, Zhang JM (2019). Effect of litter decomposition on soil microbes on different slopes. Acta Ecologica Sinica, 39, 2696-2704. |
[龙健, 赵畅, 张明江, 吴劲楠, 吴求生, 黄博聪, 张菊梅 (2019). 不同坡向凋落物分解对土壤微生物群落的影响. 生态学报, 39, 2696-2704.] | |
[23] | Mao R, Li SY (2018). Temperature sensitivity of biodegradable dissolved organic carbon increases with elevating humification degree in subtropical rivers. Science of the Total Environment, 635-636, 1367-1371. |
[24] | Mao R, Zhang XH, Li SY, Song CC (2017). Long-term phosphorus addition enhances the biodegradability of dissolved organic carbon in a nitrogen-limited temperate freshwater wetland. Science of the Total Environment, 605, 332-336. |
[25] | Marschner B, Kalbitz K (2003). Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113, 211-235. |
[26] | McDowell WH, Zsolnay A, Aitkenhead-Peterson JA, Gregorich EG, Jones DL, Jödemann D, Kalbitz K, Marschner B, Schwesig D (2006). A comparison of methods to determine the biodegradable dissolved organic carbon from different terrestrial sources. Soil Biology & Biochemistry, 38, 1933-1942. |
[27] | Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006). Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests. Ecosystems, 9, 46-62. |
[28] | Nguyen HVM, Choi JH (2015). Changes in the dissolved organic matter leaching from soil under severe temperature and N-deposition. Environmental Monitoring and Assessment, 187, 323. |
[29] | Ni MF, Ma YM, Wang ZK, Wang XD, Zhu SX (2022). A distinctive mode of dissolved organic carbon biodegradation in karst lakes and reservoirs: evidence from trophic controls and compositional transformations. Journal of Cleaner Production, 368, 133217. DOI: 10.1016/j.jclepro.2022.133217. |
[30] | Pinsonneault AJ, Moore TR, Roulet NT, Lapierre JF (2016). Biodegradability of vegetation-derived dissolved organic carbon in a cool temperate ombrotrophic bog. Ecosystems, 19, 1023-1036. |
[31] | Qin FC, Lu JK, Li ZS, Meng S, Wang SK, Liang JF, He XH (2023). Nitrogen rather than carbon released by litter decomposition mediates nutrient relationships in a multispecies forest plantation with hemiparasite. Science of the Total Environment, 888, 164176. DOI: 10.1016/j.scitotenv.2023.164176. |
[32] | Räsänen N, Kankaala P, Tahvanainen T, Akkanen J, Saarnio S (2014). Short-term effects of phosphorus addition and PH rise on bacterial utilization and biodegradation of dissolved organic carbon (DOC) from boreal mires. Aquatic Ecology, 48, 435-446. |
[33] | Spohn M, Berg B (2023). Import and release of nutrients during the first five years of plant litter decomposition. Soil Biology & Biochemistry, 176, 108878. DOI: 10.1016/j.soilbio.2022.108878. |
[34] |
Talbot JM, Treseder KK (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology, 93, 345-354.
PMID |
[35] | Wang H, Holden J, Zhang ZJ, Li M, Li X (2014). Concentration dynamics and biodegradability of dissolved organic matter in wetland soils subjected to experimented warming. Science of the Total Environmental, 470-471, 907-916. |
[36] | Wickland KP, Aiken GR, Butler K, Dornblaser MM, Spencer RGM, Striegl RG (2012). Biodegradability of dissolved organic carbon in the Yukon River and its tributaries: seasonality and importance of inorganic nitrogen. Global Biogeochemical Cycles, 26, GB0E03. DOI: 10.1029/2012GB004342. |
[37] | Wu PP, Ding YD, Li SL, Sun XX, Zhang Y, Mao R (2021). Carbon, nitrogen and phosphorus stoichiometry controls interspecific patterns of leaf litter-derived dissolved organic matter biodegradation in subtropical plantations of China. iForest-Biogeosciences and Forestry, 14, 80-85. |
[38] | Yang H (2018). Effects of nitrogen and phosphorus addition on leaf nutrient characteristics in a subtropical forest. Trees, 32, 383-391. |
[39] | Yao JN, Lyu JH, Yu WL, Zhang JB, Lei ZF, Li Q, Song XZ (2018). Effects of nitrogen deposition and management intensity on stoichiometry of leaf litter in Moso bamboo forest. Chinese Journal of Applied Ecology, 29, 467-473. |
[姚钧能, 吕建华, 俞卫良, 张君波, 雷赵枫, 李全, 宋新章 (2018). 氮沉降和经营强度对毛竹林凋落叶生态化学计量特征的影响. 应用生态学报, 29, 467-473.]
DOI |
|
[40] | Yuan XC, Si YT, Lin WS, Yang JQ, Wang Z, Zhang QF, Qian W, Chen Y, Yang YS (2018). Effects of short-term warming and nitrogen addition on the quantity and quality of dissolved organic matter in a subtropical Cunninghamia lanceolata plantation. PLoS ONE, 13, e0191403. DOI: 10.1371/journal.pone.0191403. |
[41] |
Zhang H, Zeng WJ, Gong XT, Ma ZQ (2023). Relationships between root hairs and mycorrhizal fungi across typical subtropical tree species. Chinese Journal of Plant Ecology, 47, 88-100.
DOI |
[张慧, 曾文静, 龚新桃, 马泽清 (2023). 亚热带典型树种根毛特征及其与共生真菌的关系. 植物生态学报, 47, 88-100.]
DOI |
|
[42] | Zhao JQ, Wu JP, Zhang HL, Xiong X, Zhao MD, Chu GW, Meng Z, Zhou GY, Zhang DQ (2019). Effects of warming on soil microbial communities of a subtropical monsoon evergreen broad-leaved forest in southern China. Ecology and Environmental Sciences, 28, 881-889. |
[赵建琪, 吴建平, 张慧玲, 熊鑫, 赵梦頔, 褚国伟, 孟泽, 周国逸, 张德强 (2019). 增温对南亚热带季风常绿阔叶林土壤微生物群落的影响. 生态环境学报, 28, 881-889.]
DOI |
|
[43] | Zheng W, Zhou JC, Lin WS, Zheng Y, Li C, Li XF, Ji YH, Yang ZJ (2019). Effects of soil warming on soil microbial extracellular enzyme activities with different depths in a young Chinese fir (Cunninghamia lanceolata) plantation of subtropics. Chinese Journal of Applied Ecology, 30, 832-840. |
[郑蔚, 周嘉聪, 林伟盛, 郑永, 李超, 李先锋, 纪宇皝, 杨智杰 (2019). 土壤增温对亚热带杉木幼树不同深度土壤微生物胞外酶活性的影响. 应用生态学报, 30, 832-840.]
DOI |
|
[44] | Zhou YQ, Sun BY, Xie BH, Feng K, Zhang ZJ, Zhang Z, Li SZ, Du XF, Zhang Q, Gu SS, Song W, Wang LL, Xia JY, Han GX, Deng Y (2021). Warming reshaped the microbial hierarchical interactions. Global Change Biology, 27, 6331-6347. |
[1] | QUAN Xiao-Qiang, WANG Yan-Ru, LI Xiao-Yu, LIANG Hai-Yan, WANG Li-Dong, YAN Xiao-Li. Effects of nitrogen addition level and NH4+-N to NO3--N ratio on photosynthetic characteristics and chlorophyll fluorescence parameters in Cunninghamia lanceolata seedling [J]. Chin J Plant Ecol, 2024, 48(8): 1050-1064. |
[2] | PENG Si-Rui, ZHANG Hui-Ling, SUN Zhao-Lin, ZHAO Xue-Chao, TIAN Peng, CHEN Di-Ma, WANG Qing-Kui, LIU Sheng-En. Effects of long-term litter removal on soil organic carbon and multiple components in subtropical Cunninghamia lanceolata forest [J]. Chin J Plant Ecol, 2024, 48(8): 1078-1088. |
[3] | WANG Xiao-Ying, SUN Zhi-Gao, CHEN Bing-Bing, WU Hui-Hui, ZHANG Dang-Yu. Ex situ decomposition and phosphorus release characteristics of Spartina alterniflora litter in Minjiang estuary [J]. Chin J Plant Ecol, 2024, 48(7): 844-857. |
[4] | QIN Wen-Kuan, ZHANG Qiu-Fang, AO Gu-Kai-Lin, ZHU Biao. Responses and mechanisms of soil organic carbon dynamics to warming: a review [J]. Chin J Plant Ecol, 2024, 48(4): 403-415. |
[5] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[6] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[7] | SUONAN Ji, LI Bo-Wen, LÜ Wang-Wang, WANG Wen-Ying, LA Ben, LU Xu-Wei, SONGZHA Cuo, CHEN Cheng-Hao, MIAO Qi, SUN Fang-Hui, WANG Shi-Ping. Changes of phenological sequence of Potentilla saundersiana and its frost resistance under the scenarios of warming and increasing precipitation [J]. Chin J Plant Ecol, 2024, 48(2): 158-170. |
[8] | DU Xu-Long, HUANG Jin-Xue, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on oxidative damage and defense characteristics and their correlation in leaf and fine root of plants: a review [J]. Chin J Plant Ecol, 2024, 48(2): 135-146. |
[9] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[10] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[11] | Zhang Qiang Xiang-biao CHEN chen 仕东 Xiong Decheng Xiao-Fei LIU Zhi-Jie YANG Yu-Sheng YANG. Seasonal dynamics of litterfall of a Castanopsis kawakamii evergreen broadleaf forest in mid-subtropical China [J]. Chin J Plant Ecol, 2024, 48(12): 1-0. |
[12] | Yi YunLI Jing ZHEN yan xiaoyan Shuang LI Jin TONG. Effect of warming on phyllosphere and rhizosphere bacterial communities in Picea asperata and Fargesia nitida [J]. Chin J Plant Ecol, 2024, 48(12): 1-0. |
[13] | 张玉 ZHANG Yu Ting DU Yulian CHEN ZHU HeMeng Tan Bo Cheng-Ming YOU Li ZHANG Zhen-Feng XU Han LI. Contribution of litter-derived carbon to soil organic carbon fractions and its response to freezing-thaw cycling in a subalpine forest [J]. Chin J Plant Ecol, 2024, 48(11): 1422-1433. |
[14] | Zhao Xuechao Yang Shaobo Qingkui Wang. Priming effect of soil organic carbon decomposition induced by Chinese fir leaf litter and fine root and its response to nitrogen addition in subtropical forests [J]. Chin J Plant Ecol, 2024, 48(11): 1434-1444. |
[15] | Zhang XueYuan Hai-Yan Ren Tang JingLei Yi ZHU Cuiping gao GUODONG HAN. Responses of soil CH4 and CO2 flux to warming and nitrogen addition during freeze-thaw cycles in a desert steppe of Inner Mongolia [J]. Chin J Plant Ecol, 2024, 48(10): 1291-1301. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn