Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (1): 91-99.DOI: 10.3724/SP.J.1258.2011.00091
• Research Articles • Previous Articles Next Articles
JIAO Juan-Yu1,2, YIN Chun-Ying2,*(), CHEN Ke1
Received:
2010-06-17
Accepted:
2010-08-02
Online:
2011-06-17
Published:
2011-01-24
Contact:
YIN Chun-Ying
JIAO Juan-Yu, YIN Chun-Ying, CHEN Ke. Effects of soil water and nitrogen supply on the photosynthetic characteristics of Jatropha curcas seedlings[J]. Chin J Plant Ecol, 2011, 35(1): 91-99.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.00091
Fig. 1 Photosynthetic-light response curve of Jatropha curcas under different soil water and nitrogen supply. I, II, III were 80%, 50% and 30% of field water holding capacity (FC), respectively; O, F were without and with N-fertilization. PAR, photosynthetically available radiation; Pn, net photosynthetic rate.
水、氮处理 Water and nitrogen regime | 表观量子效率 AQY (mol·mol-1) | 光补偿点 LCP (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 最大净光合速率 Pmax (μmol·m-2·s-1) |
---|---|---|---|---|
IO | 0.030 ± 0.000d | 9.40 ± 1.77d | 0.28 ± 0.05e | 12.11 ± 0.28f |
IF | 0.043 ± 0.001a | 45.09 ± 1.30a | 1.94 ± 0.13a | 19.26 ± 0.11a |
IIO | 0.039 ± 0.001c | 11.85 ± 1.05d | 0.46 ± 0.11d | 12.77 ± 0.12e |
IIF | 0.041 ± 0.001ab | 20.54 ± 0.97c | 0.84 ± 0.10c | 14.60 ± 0.08c |
IIIO | 0.041 ± 0.001ab | 27.39 ± 0.62b | 1.12 ± 0.06b | 15.03 ± 0.08b |
IIIF | 0.042 ± 0.001ab | 18.29 ± 0.87c | 0.77 ± 0.09c | 14.09 ± 0.22d |
W | 0.000 | 0.000 | 0.000 | 0.000 |
F | 0.000 | 0.000 | 0.000 | 0.000 |
W × F | 0.000 | 0.000 | 0.000 | 0.000 |
Table 1 Effects of soil water and nitrogen supply on the apparent quantum yields (AQY), light compensation point (LCP), dark respiration rate (Rd) and the maximum net photosynthetic rate (Pmax) in Jatropha curcas (mean ± SD, n = 5)
水、氮处理 Water and nitrogen regime | 表观量子效率 AQY (mol·mol-1) | 光补偿点 LCP (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) | 最大净光合速率 Pmax (μmol·m-2·s-1) |
---|---|---|---|---|
IO | 0.030 ± 0.000d | 9.40 ± 1.77d | 0.28 ± 0.05e | 12.11 ± 0.28f |
IF | 0.043 ± 0.001a | 45.09 ± 1.30a | 1.94 ± 0.13a | 19.26 ± 0.11a |
IIO | 0.039 ± 0.001c | 11.85 ± 1.05d | 0.46 ± 0.11d | 12.77 ± 0.12e |
IIF | 0.041 ± 0.001ab | 20.54 ± 0.97c | 0.84 ± 0.10c | 14.60 ± 0.08c |
IIIO | 0.041 ± 0.001ab | 27.39 ± 0.62b | 1.12 ± 0.06b | 15.03 ± 0.08b |
IIIF | 0.042 ± 0.001ab | 18.29 ± 0.87c | 0.77 ± 0.09c | 14.09 ± 0.22d |
W | 0.000 | 0.000 | 0.000 | 0.000 |
F | 0.000 | 0.000 | 0.000 | 0.000 |
W × F | 0.000 | 0.000 | 0.000 | 0.000 |
水氮处理 Water and nitrogen regime | 羧化效率 CE (mol·mol-1) | 光呼吸速率 Rp (μmol·m-2·s-1) | CO2补偿点 CCP (μmol ·mol-1) |
---|---|---|---|
IO | 0.007 ± 0.001e | 0.61 ± 0.16c | 87.29 ± 1.57b |
IF | 0.050 ± 0.002a | 3.87 ± 0.21a | 77.46 ± 0.10b |
IIO | 0.011 ± 0.001d | 0.89 ± 0.19c | 80.64 ± 1.88b |
IIF | 0.040 ± 0.001b | 3.94 ± 0.15a | 98.60 ± 1.50a |
IIIO | 0.018 ± 0.001c | 1.84 ± 0.10b | 102.06 ± 0.96a |
IIIF | 0.009 ± 0.000de | 0.72 ± 0.04c | 80.44 ± 0.42b |
W | 0.000 | 0.000 | 0.000 |
F | 0.000 | 0.000 | 0.000 |
W × F | 0.000 | 0.000 | 0.000 |
Table 2 Effects of different soil water and nitrogen supply on carboxylation efficiency (CE), photorespiration rate (Rp), CO2 compensation point (CCP) in Jatropha curcas (mean ± SD, n = 5)
水氮处理 Water and nitrogen regime | 羧化效率 CE (mol·mol-1) | 光呼吸速率 Rp (μmol·m-2·s-1) | CO2补偿点 CCP (μmol ·mol-1) |
---|---|---|---|
IO | 0.007 ± 0.001e | 0.61 ± 0.16c | 87.29 ± 1.57b |
IF | 0.050 ± 0.002a | 3.87 ± 0.21a | 77.46 ± 0.10b |
IIO | 0.011 ± 0.001d | 0.89 ± 0.19c | 80.64 ± 1.88b |
IIF | 0.040 ± 0.001b | 3.94 ± 0.15a | 98.60 ± 1.50a |
IIIO | 0.018 ± 0.001c | 1.84 ± 0.10b | 102.06 ± 0.96a |
IIIF | 0.009 ± 0.000de | 0.72 ± 0.04c | 80.44 ± 0.42b |
W | 0.000 | 0.000 | 0.000 |
F | 0.000 | 0.000 | 0.000 |
W × F | 0.000 | 0.000 | 0.000 |
Fig. 2 Effects of different soil water and nitrogen supply on leaf nitrogen contents (A) and PSII maximum quantum yield (Fv/Fm) (B) in Jatropha curcas (mean ± SD, n = 5). Values with deferent letter are significant difference at p < 0.05 level according to LSD multiple test. I, II, III, O, F, W and W × F see Table 1.
水氮处理 Water and nitrogen regime | 叶绿素a Chlorophyll a (ng·cm-2) | 叶绿素b Chlorophyll b (ng·cm-2) | 叶绿素a + b Chlorophyll a + b (ng·cm-2) | 类胡萝卜素 Carotenoid (ng·cm-2) |
---|---|---|---|---|
IO | 175.39 ± 14.14c | 40.70 ± 2.16d | 216.09 ± 16.23c | 41.55 ± 2.76c |
IF | 378.88 ± 9.07a | 96.38 ± 5.16b | 475.27 ± 14.07a | 86.27 ± 1.89a |
IIO | 258.24 ± 45.19b | 64.90 ± 12.02cd | 323.14 ± 57.14b | 61.79 ± 10.94b |
IIF | 400.50 ± 7.08a | 118.27 ± 6.35ab | 518.78 ± 13.41a | 92.23 ± 2.04a |
IIIO | 355.33 ± 16.76a | 93.73 ± 8.04bc | 449.06 ± 24.78a | 80.93 ± 4.25a |
IIIF | 400.18 ± 16.15a | 128.99 ± 16.32a | 529.18 ± 32.42a | 91.30 ± 3.64a |
W | 0.002 | 0.003 | 0.002 | 0.004 |
F | 0.000 | 0.000 | 0.000 | 0.000 |
W × F | 0.012 | 0.522 | 0.035 | 0.022 |
Table 3 Effects of different soil water and nitrogen supply on the photosynthesis pigments content in Jatropha curcas leaves (mean ± SD, n = 5)
水氮处理 Water and nitrogen regime | 叶绿素a Chlorophyll a (ng·cm-2) | 叶绿素b Chlorophyll b (ng·cm-2) | 叶绿素a + b Chlorophyll a + b (ng·cm-2) | 类胡萝卜素 Carotenoid (ng·cm-2) |
---|---|---|---|---|
IO | 175.39 ± 14.14c | 40.70 ± 2.16d | 216.09 ± 16.23c | 41.55 ± 2.76c |
IF | 378.88 ± 9.07a | 96.38 ± 5.16b | 475.27 ± 14.07a | 86.27 ± 1.89a |
IIO | 258.24 ± 45.19b | 64.90 ± 12.02cd | 323.14 ± 57.14b | 61.79 ± 10.94b |
IIF | 400.50 ± 7.08a | 118.27 ± 6.35ab | 518.78 ± 13.41a | 92.23 ± 2.04a |
IIIO | 355.33 ± 16.76a | 93.73 ± 8.04bc | 449.06 ± 24.78a | 80.93 ± 4.25a |
IIIF | 400.18 ± 16.15a | 128.99 ± 16.32a | 529.18 ± 32.42a | 91.30 ± 3.64a |
W | 0.002 | 0.003 | 0.002 | 0.004 |
F | 0.000 | 0.000 | 0.000 | 0.000 |
W × F | 0.012 | 0.522 | 0.035 | 0.022 |
[1] | Amy K, Veronica C, Neal B, Lena H, Tala A (2006). Ecophysiological responses of Schizachyrium scoparium to water and nitrogen manipulations. Great Plains Research, 16, 29-36. |
[2] | Bao SW (鲍思伟) (2001). Effects of water stress on the photosynthesis and output in Vicia faba L. leaves. Journal of Southwest University for Nationalities (Natural Science Edition) (西南民族学院学报(自然科学版)), 27, 446-449. (in Chinese with English abstract) |
[3] |
Behera SK, Panda RK (2009). Effect of fertilization and irrigation schedule on water and fertilizer solute transport for wheat crop in a sub-humid sub-tropical region. Agriculture, Ecosystems and Environment, 130, 141-155.
DOI URL |
[4] |
Björkman O, Demmig B (1987). Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta, 170, 489-504.
URL PMID |
[5] | Cui ZF (崔志峰), Ai XZ (艾希珍), Zhang ZX (张振贤), Xing YX (邢禹贤), Chen LP (陈利平) (2000). Effect of temperature and photon flux density in autumn greenhouse on photosynthetic efficiency of some major vegetable crops. Acta Agriculturae Boreali-Occidentalis Sinica (西北农业学报), 9, 33-35, 62. (in Chinese with English abstract) |
[6] | Demmig-Adams B, Adams III WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 98, 253-264. |
[7] | Dordas CA, Sioulas C (2008). Safflower yield, chlorophyll content, photosynthesis, and water use efficiency response to nitrogen fertilization under rainfed conditions. Industrial Crops and Products, 27, 75-85. |
[8] | Fredeen AL, Gamon JA, Field CB (1991). Responses of photosynthesis and carbohydrate-partitioning to limitations in nitrogen and water availability in field-grown sunflower. Plant, Cell & Environment, 14, 963-970. |
[9] |
Gastal F, Lemaire G (2002). N uptake and distribution in crops: an agronomical and ecophysiological perspective. Journal of Experimental Botany, 53, 789-799.
URL PMID |
[10] |
Gomes FP, Olive MA, Mielke MS, de Almeida AAF, Leite HG (2006). Photosynthetic irradiance-response in leaves of dwarf coconut plam ( Cocos nucifera L. ‘nana’, Arecaceae): comparison of three models. Scientia Horticulturae, 109, 101-105.
DOI URL |
[11] |
Hamerlynck EP, Huxman TE, McAuliffe JR, Smith SD (2004). Carbon isotope discrimination and foliar nutrient status of Larrea tridentata (creosote bush) in contrasting Mojave Desert soils. Oecologia, 138, 210-215.
URL PMID |
[12] | Heller J (1996). Physic Nut (Jatropha curcas L.). Promoting the Conservation and Use of Underutilized and Neglected Crops. International Plant Genetic Resources Institute, Rome. 66. |
[13] |
Herrick JD, Thomas RB (1999). Effects of CO2 enrichment on the photosynthetic light response of sun and shade of canopy sweetgum trees ( Liquidambar styraciflua) in a forest ecosystem. Tree Physiology, 19, 779-786.
DOI URL PMID |
[14] | Huang L (黄亮), Wu Y (吴莹), Zhang J (张经), Li W (李伟), Zhou JZ (周菊珍) (2003). Distribution of C, N, P and δ 13C in aquatic plants of some lakes in the middle yangtze valley . Acta Geoscientica Sinica (地球学报), 24, 515-518. (in Chinese with English abstract) |
[15] |
Inskeep WP, Bloom PR (1985). Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiology, 77, 483-485.
URL PMID |
[16] | Iqbal RM, Rao AR, Rasul E, Wahid A (1997). Mathematical models and response functions in photosynthesis: an exponential model. In: Pessarakli M ed. Handbook of Photosynthesis. Marcel Dekker Inc., New York, USA. 803-810. |
[17] | Jiao JY (焦娟玉), Chen K (陈珂), Yin CY (尹春英) (2010). Effects of soil water content on growth, physiological and biochemical characteristics of Jatropha curcas L. Acta Ecologica Sinica (生态学报), 30, 4460-4466. (in Chinese with English abstract) |
[18] | Jie YL (接玉玲), Yang HQ (杨洪强), Cui MG (崔明刚), Luo XS (罗新书) (2001). Relationship between soil water content and water use efficiency of apple leaves. Chinese Journal of Applied Ecology (应用生态学报), 12, 387-390. (in Chinese with English abstract) |
[19] | Karam F, Kabalan R, Breidi J, Rouphael Y, Oweis T (2009). Yield and water-production functions of two durum wheat cultivars grown under different irrigation and nitrogen regimes. Agricultural Water Management, 96, 603-615. |
[20] | Li Y (李扬), Huang JH (黄建辉) (2009). Photosynthetic physiological responses of Glycyrrhiza uralensis under different water and nutrient supplies in Kubuqi desert, China. Chinese Journal of Plant Ecology (植物生态学报), 33, 1112-1124. (in Chinese with English abstract) |
[21] | Luo CW (罗长维), Li K (李昆), Chen Y (陈友), Liu FY (刘方炎), Sun YY (孙永玉) (2008). Biological characteristics of flowering and fruiting of Jatropha curcas in Yuanjiang Savanna Valley. Journal of Northeast Forestry University (东北林业大学学报), 36, 7-10. (in Chinese with English abstract) |
[22] | Maes WH, Achten WMJ, Reubens B, Raes D, Samson R, Muys B (2009). Plant-water relationships and growth strategies of Jatropha curcas L. seedlings under different levels of drought stress. Journal of Arid Environments, 73, 877-884. |
[23] |
Prueksakorn K, Gheewala SH, Malakul P, Bonnet S (2010). Energy analysis of Jatropha plantation systems for biodiesel production in Thailand. Energy for Sustainable Development, 14, 1-5.
DOI URL |
[24] |
Richardson AD, Berlyn GP (2002). Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA. American Journal of Botany, 89, 88-94.
DOI URL PMID |
[25] | Sandhu KS, Arora VK, Chand R, Sandhu BS, Khera KL (2000). Optimizing time distribution of water supply and fertilizer nitrogen rates in relation to targeted wheat yields. Experimental Agriculture, 36, 115-125. |
[26] | Shi SB (师生波), Li HM (李惠梅), Wang XY (王学英), Yue XG (岳向国), Xu WH (徐文华), Chen GC (陈桂琛) (2006). Comparative studies of photosynthetic characteristics in typical plants of the Qinghai-Tibet plateau. Journal of Plant Ecology (Chinese Version) (植物生态学报), 30, 40-46. (in Chinese with English abstract) |
[27] |
Silva EN, Ferreira-Silva SL, Fontenele Ade V, Ribeiro RV, Viégas RA, Silveira JA (2010). Photosynthetic changes and protective mechanisms against oxidative damage subjected to isolated and combined drought and heat stresses in Jatropha curcas plants. Journal of Plant Physiology, 167, 1157-1164.
URL PMID |
[28] | Song QA (宋庆安), Tong FP (童方平), Yi AQ (易霭琴), Li G (李贵), Pi B (皮兵) (2008). Studies on physiological characteristics of photosynthetic of Vihurnum opulus L. under light stress. Chinese Agricultural Science Bulletin (中国农学通报), 24(5), 166-170. (in Chinese with English abstract) |
[29] | Tong FP (童方平), Xu YP (徐艳平), Song QA (宋庆安), Long YZ (龙应忠), Yi AQ (易霭琴), Li G (李贵) (2009). The variance rule of character parameters responding to light and CO2 of slash pine’s half-sib. Journal of Nanjing Forestry University (Natural Sciences Edition) (南京林业大学学报(自然科学版)), 33, 54-58. (in Chinese with English abstract) |
[30] | Wang Z (王忠) (2002). Plant Physiology (植物生理学). Chinese Agricultural Press, Beijing. 68. (in Chinese) |
[31] | Wei JQ (韦记青), Jiang SY (蒋水元), Tang H (唐辉), Jiang YS (蒋运生), Qi XX (漆小雪), Wang ML (王满莲) (2006). Photosynthetic and transpiration characteristics of Corydalis saxicola and its response to light intensity and concentration of CO2. Guihaia (广西植物), 26, 317-320. (in Chinese with English abstract) |
[32] |
Wellburn AR (1994). The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307-313.
DOI URL |
[33] |
Ye M, Li CY, Francis G, Makkar HPS (2009). Current situation and prospects of Jatropha curcas as a multipurpose tree in China. Agroforestry Systems, 76, 487-497.
DOI URL |
[34] | Yin CY, Pang XY, Chen K (2009). The effects of water, nutrient availability and their interaction on the growth, morphology and physiology of two poplar species. Environmental and Experimental Botany, 67, 196-203. |
[35] | Zhuang WH (庄文化), Wu PT (吴普特), Feng H (冯浩), Xu FL (徐福利), Li BF (李百凤), Ning RC (宁荣昌) (2008). Effects of super absorbent polyer of sodium polyacrylate used in soil on the growth and yield of winter wheat. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 24, 37-41. (in Chinese with English abstract) |
[1] | Yuan-Lin LUO Wenhong Ma ZHANG XinYu Chuang SU Ya-Bo SHI Li-Qing ZHAO. Variation of functional traits of alternative distributed Caragana species along environmental gradients in Nei Mongol [J]. Chin J Plant Ecol, 2022, 46(11): 1364-1375. |
[2] | WU Yun-Tao, YANG Sen, WANG Xin, HUANG Jun-Sheng, WANG Bin, LIU Wei-Xing, LIU Ling-Li. Responses of soil nitrogen in different soil organic matter fractions to long-term nitrogen addition in a semi-arid grassland [J]. Chin J Plant Ecol, 2021, 45(7): 790-798. |
[3] | YU Qing-Han, JIN Guang-Ze, LIU Zhi-Li. Plant size, branch age and environment factors co-drive variations of branch traits of Pinus koraiensis [J]. Chin J Plant Ecol, 2020, 44(9): 939-950. |
[4] | LI Jian-Jun, LIU Lian, CHEN Di-Ma, XU Feng-Wei, CHENG Jun-Hui, BAI Yong-Fei. Effects of collar size and buried depth on the measurement of soil respiration in a typical steppe [J]. Chin J Plant Ecol, 2019, 43(2): 152-164. |
[5] | ZHU Qi-Lin, XIANG Rui, TANG Li, LONG Guang-Qiang. Effects of intercropping on photosynthetic rate and net photosynthetic nitrogen use efficiency of maize under nitrogen addition [J]. Chin J Plan Ecolo, 2018, 42(6): 672-680. |
[6] | WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plant Ecol, 2018, 42(3): 382-396. |
[7] | ZHANG Jing, LIU Yun-Hua, SHENG Jian-Dong, CHAI Qiang, LI Rui-Xia, ZHAO Dan. Carbon and nitrogen traits of typical shrubs in grassland of northern Xinjiang, China [J]. Chin J Plan Ecolo, 2018, 42(3): 307-316. |
[8] | CHAI Xi, LI Ying-Nian, DUAN Cheng, ZHANG Tao, ZONG Ning, SHI Pei-Li, HE Yong-Tao, ZHANG Xian-Zhou. CO2 flux dynamics and its limiting factors in the alpine shrub-meadow and steppe-meadow on the Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2018, 42(1): 6-19. |
[9] | Zhi-Cheng ZHU, Yin HUANG, Feng-Wei XU, Wen XING, Shu-Xia ZHENG, Yong-Fei BAI. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland [J]. Chin J Plant Ecol, 2017, 41(9): 938-952. |
[10] | Xiao-Lin SI, Wen-Yin WANG, Xiao-Gang GAO, Dang-Hui XU. Effects of nitrogen and silicon application on leaf nitrogen content and net photosynthetic rate of Elymus nutans in alpine meadow [J]. Chin J Plant Ecol, 2016, 40(12): 1238-1244. |
[11] | Peng-Sen SUN, Ning LIU, Shi-Rong LIU, Ge SUN. Trade-offs between water yield and carbon sequestration for sub-alpine catchments in western Sichuan, China [J]. Chin J Plant Ecol, 2016, 40(10): 1037-1048. |
[12] | XU Ming-Shan,HUANG Hai-Xia,SHI Qing-Ru,YANG Xiao-Dong,ZHOU Liu-Li,ZHAO Yan-Tao,ZHANG Qing-Qing,YAN En-Rong. Responses of soil water content to change in plant functional traits in evergreen broadleaved forests in eastern Zhejiang Province [J]. Chin J Plan Ecolo, 2015, 39(9): 857-866. |
[13] | WANG Chang-Shun,WANG Shi-Ping. A review of research on responses of leaf traits to climate change [J]. Chin J Plan Ecolo, 2015, 39(2): 206-216. |
[14] | WANG Qing-Kui,LI Yan-Peng,ZHANG Fang-Yue,HE Tong-Xin. Short-term nitrogen fertilization decreased root and microbial respiration in a young Cunninghamia lanceolata plantation [J]. Chin J Plan Ecolo, 2015, 39(12): 1166-1175. |
[15] | YANG Hao,LUO Ya-Chen. Responses of the functional traits in Cleistogenes squarrosa to nitrogen addition and drought [J]. Chin J Plan Ecolo, 2015, 39(1): 32-42. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn