Chin J Plant Ecol ›› 2011, Vol. 35 ›› Issue (6): 672-680.DOI: 10.3724/SP.J.1258.2011.00672
• Research Articles • Previous Articles Next Articles
LI Lei1,2,3, LI Xiang-Yi1,3,*(), LIN Li-Sha1,3, WANG Ying-Ju1,2,3, XUE Wei1,2,3
Received:
2010-12-20
Accepted:
2011-04-22
Online:
2011-12-20
Published:
2011-06-30
Contact:
LI Xiang-Yi
LI Lei, LI Xiang-Yi, LIN Li-Sha, WANG Ying-Ju, XUE Wei. Comparison of chlorophyll content and fluorescence parameters of six pasture species in two habitats in China[J]. Chin J Plant Ecol, 2011, 35(6): 672-680.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.3724/SP.J.1258.2011.00672
Fig. 1 Changes of pigment content of pasture in two habitats (mean ± SE). Different alphabet indicate significant difference between species (p < 0.05). AC, Agropyron cristatum; BI, Bromus inermis; ED, Elymus dahuricus; FE, Festuca elataa; MS, Medicago sativa var. luxurians; OP, Onobrychis pulchell. Chl, Chlorophyll.
Fig. 2 Changes of chlorophyll fluorescence parameters of pasture in two habitats (mean ± SE). Different alphabet indicate significant difference between species (p < 0.05). AC, Agropyron cristatum; BI, Bromus inermis; ED, Elymus dahuricus; FE, Festuca elata; MS, Medicago sativa var. luxurians; OP, Onobrychis pulchella. Fm, maximum fluorescence yield; Fo, minimum fluorescence yield; Fv, variable fluorescence yield; Fv/Fm, maximum photochemical efficiency of PSII; Fv/Fo, potential activity of PSII.
Fig. 3 Changes of energy flow distribute in PSII reaction center of pasture in two habitats (mean ± SE). Different alphabet indicate significant difference between species (p < 0.05). AC, Agropyron cristatum; BI, Bromus inermis; ED, Elymus dahuricus; FE, Festuca elata; MS, Medicago sativa var. luxurians; OP, Onobrychis pulchella. The specific energy fluxes (per reaction centers, RC) for absorption (ABS/RC), trapping (TRo/RC), and dissipation (DIo/RC); RC/CSo, active reaction centers per cross-section; Mo, initial slope of fluorescence intensity.
Fig. 4 Changes of chlorophyll fluorescence transients fo pasture in two habitats. A, Kunlun Mountains. B, Cele oasis. The meaning of each point referred Li et al. (2005).
参数 Parameter | 变异来源 Source of variation | 自由度 df | 平方和 SS | 均方 Mean square | F | p |
---|---|---|---|---|---|---|
叶绿素a Chlorophyll a | 生境 Habitat | 1 | 1.081 81 | 1.081 81 | 161.71 | 0.000** |
物种 Species | 5 | 3.373 93 | 0.674 79 | 100.87 | 0.000** | |
生境×物种 Interaction | 5 | 2.363 28 | 0.472 66 | 70.65 | 0.000** | |
误差 Error | 24 | 0.160 55 | 0.006 69 | |||
总变异 Total variation | 35 | 6.979 58 | ||||
叶绿素b Chlorophyll b | 生境 Habitat | 1 | 0.306 63 | 0.306 63 | 272.80 | 0.000** |
物种 Species | 5 | 0.339 89 | 0.067 98 | 60.48 | 0.000** | |
生境×物种 Interaction | 5 | 0.409 85 | 0.081 97 | 72.93 | 0.000** | |
误差 Error | 24 | 0.026 98 | 0.001 12 | |||
总变异 Total variation | 35 | 1.083 36 | ||||
总叶绿素 Chlorophyll | 生境 Habitat | 1 | 2.540 3 | 2.540 3 | 212.47 | 0.000** |
物种 Species | 5 | 5.848 1 | 1.169 6 | 97.83 | 0.000** | |
生境×物种 Interaction | 5 | 4.683 2 | 0.936 6 | 78.34 | 0.000** | |
误差 Error | 24 | 0.286 9 | 0.012 0 | |||
总变异 Total variation | 35 | 13.358 7 | ||||
初始荧光 Fo | 生境 Habitat | 1 | 504 214 | 530 337 | 61.73 | 0.000** |
物种 Species | 5 | 424 867 | 84 734 | 9.86 | 0.000** | |
生境×物种 Interaction | 5 | 293 673 | 58 735 | 6.84 | 0.000** | |
误差 Error | 34 | 292 116 | 8 592 | |||
总变异 Total variation | 45 | 1 514 871 | ||||
最大荧光 Fm | 生境 Habitat | 1 | 14 193 581 | 14 403 083 | 180.04 | 0.000** |
物种 Species | 5 | 1 616 251 | 339 166 | 4.24 | 0.004** | |
生境×物种 Interaction | 5 | 2 440 896 | 488 179 | 6.84 | 0.000** | |
误差 Error | 34 | 2 719 966 | 79 999 | |||
总变异 Total variation | 45 | 20 970 694 | ||||
最大光化学效率 Fv/Fm | 生境 Habitat | 1 | 0.594 401 | 0.624 560 | 166.16 | 0.000** |
物种 Species | 5 | 0.259 409 | 0.053 059 | 14.12 | 0.000** | |
生境×物种 Interaction | 5 | 0.232 687 | 0.046 537 | 12.38 | 0.000** | |
误差 Error | 34 | 0.127 798 | 0.003 759 | |||
总变异 Total variation | 45 | 1.214 295 |
Table 1 The two-way ANOVA of chlorophyll content and fluorescence parameters of six pasture species in two habitats
参数 Parameter | 变异来源 Source of variation | 自由度 df | 平方和 SS | 均方 Mean square | F | p |
---|---|---|---|---|---|---|
叶绿素a Chlorophyll a | 生境 Habitat | 1 | 1.081 81 | 1.081 81 | 161.71 | 0.000** |
物种 Species | 5 | 3.373 93 | 0.674 79 | 100.87 | 0.000** | |
生境×物种 Interaction | 5 | 2.363 28 | 0.472 66 | 70.65 | 0.000** | |
误差 Error | 24 | 0.160 55 | 0.006 69 | |||
总变异 Total variation | 35 | 6.979 58 | ||||
叶绿素b Chlorophyll b | 生境 Habitat | 1 | 0.306 63 | 0.306 63 | 272.80 | 0.000** |
物种 Species | 5 | 0.339 89 | 0.067 98 | 60.48 | 0.000** | |
生境×物种 Interaction | 5 | 0.409 85 | 0.081 97 | 72.93 | 0.000** | |
误差 Error | 24 | 0.026 98 | 0.001 12 | |||
总变异 Total variation | 35 | 1.083 36 | ||||
总叶绿素 Chlorophyll | 生境 Habitat | 1 | 2.540 3 | 2.540 3 | 212.47 | 0.000** |
物种 Species | 5 | 5.848 1 | 1.169 6 | 97.83 | 0.000** | |
生境×物种 Interaction | 5 | 4.683 2 | 0.936 6 | 78.34 | 0.000** | |
误差 Error | 24 | 0.286 9 | 0.012 0 | |||
总变异 Total variation | 35 | 13.358 7 | ||||
初始荧光 Fo | 生境 Habitat | 1 | 504 214 | 530 337 | 61.73 | 0.000** |
物种 Species | 5 | 424 867 | 84 734 | 9.86 | 0.000** | |
生境×物种 Interaction | 5 | 293 673 | 58 735 | 6.84 | 0.000** | |
误差 Error | 34 | 292 116 | 8 592 | |||
总变异 Total variation | 45 | 1 514 871 | ||||
最大荧光 Fm | 生境 Habitat | 1 | 14 193 581 | 14 403 083 | 180.04 | 0.000** |
物种 Species | 5 | 1 616 251 | 339 166 | 4.24 | 0.004** | |
生境×物种 Interaction | 5 | 2 440 896 | 488 179 | 6.84 | 0.000** | |
误差 Error | 34 | 2 719 966 | 79 999 | |||
总变异 Total variation | 45 | 20 970 694 | ||||
最大光化学效率 Fv/Fm | 生境 Habitat | 1 | 0.594 401 | 0.624 560 | 166.16 | 0.000** |
物种 Species | 5 | 0.259 409 | 0.053 059 | 14.12 | 0.000** | |
生境×物种 Interaction | 5 | 0.232 687 | 0.046 537 | 12.38 | 0.000** | |
误差 Error | 34 | 0.127 798 | 0.003 759 | |||
总变异 Total variation | 45 | 1.214 295 |
[1] |
Anderson JM, Aro EM (1994). Grana stacking and protection of photosystem II in thylakoid membranes of higher plant leaves under sustained high irradiance: an hypothesis. Photosynthesis Research, 41, 315-326.
URL PMID |
[2] |
Baker NR (1991). A possible role for photosystem II in environmental perturbations of photosynthesis. Physiologia Plantarum, 81, 563-570.
DOI URL |
[3] | Cao Y (曹昀), Wang GX (王国祥), Zhang D (张聃) (2008). Effects of drought stress on the growth and chlorophyll fluorescence of reed seedling. Arid Land Geography (干旱区地理), 31, 862-869. (in Chinese with English abstract) |
[4] | Gao Y (高玉), Gao ZK (高志奎), Zhang XH (张晓慧), Gao RF (高荣孚) (2009). Heat shock stress on photosystem II in white cucumbers probed by the fast fluorescence rise OJIP. Acta Ecologica Sinica (生态学报), 29, 3335-3341. (in Chinese with English abstract) |
[5] | Han RH (韩瑞宏), Lu XS (卢欣石), Gao GJ (高桂娟), Yang XJ (杨秀娟) (2007). Photosynthetic physiological response of alfalfa (Medicago sativa) to drought stress. Acta Ecologica Sinica (生态学报), 27, 5229-5237. (in Chinese with English abstract) |
[6] |
Havaux M (1996). Short-term responses of photosystem I to heat stress: induction of a PSII-independent electron transport through PSI fed by stromal components. Photosynthesis Research, 47, 85-97.
DOI URL PMID |
[7] | Jiang CD, Gao HY, Zou Q (2003). Changes of donor and accepter side in photosystem 2 complex induced by iron deficiency in attached soybean and maize leaves. Photosynthetia, 41, 267-271. |
[8] | Larcher W (1994). Hochgebirge: an den grenzen des wachs- tums. In: Morawetz W ed. Ökologische Grundwerte in Österreich Biosystematics and Ecology Series. Osterr Akad Wiss, Wien. 304-343. |
[9] | Li HS (李合生) (2000). Plant Physiological Biochemical Experiment Principles and Techniques (植物生理生化试验原理和技术). Higher Education Press, Beijing. 137. (in Chinese) |
[10] | Li PM (李鹏民), Gao HY (高辉远), Strasser RJ (2005). Application of the fast chlorophyll fluorescence induction dynamics in photosynthesis study. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 31, 559-566. (in Chinese with English abstract) |
[11] | Li W (李伟), Cao KF (曹坤芳) (2006). Effects of drought stress on photosynthetic characteristics and chlorophyll fluorescence parameters in seedling of Terminthia paniculata grown under different light level. Acta Botanica Boreal-Occidentalia Sinica (西北植物学报), 26, 266-275. (in Chinese with English abstract) |
[12] | Li YH (李彦慧), Meng QR (孟庆瑞), Li XY (李向应), Li BG (李保国), Yang JM (杨建民) (2008). Contents of photosynthetic pigment and chlorophyll fluorescence parameters in Prunus cerasifera var. atropurea leaves under SO2 stress. Acta Scientiae Circumstantiae (环境科学学报), 28, 2236-2242. (in Chinese with English abstract) |
[13] | Qin JQ (秦建桥), Xia BC (夏北成), Zhao P (赵鹏) (2010). Photosynthetic physiological response of two Miscanthus floridulus populations to Cd stress. Acta Ecologica Sinica (生态学报), 30, 288-299. (in Chinese with English abstract) |
[14] |
Schreiber U, Berry JA (1977). Heat-induced changes in chlorophyll fluorescence in intact leaves correlated with damage of the photosynthetic apparatus. Planta, 136, 233-238.
DOI URL PMID |
[15] | Shi SB (师生波), Ben GY (贲桂英), Han F (韩发) (1999). Analysis of the solar UV-B radiation and plant UV-B- absorbing compounds in different regions. Acta Phytoecologica Sinica (植物生态学报), 23, 529-535. (in Chinese with English abstract) |
[16] | Song CY (宋春雨), Liu XB (刘晓冰), Jin CX (金彩霞) (2002). Mechanisms of damage and acclimation of photosynthetic apparatus due to heat stress. System Sciences and Comprehensive Studies in Agriculture (农业系统科学与综合研究), 18, 252-256. (in Chinese with English abstract) |
[17] | Srivastava A, Guissé B, Greppin H, Strasser RJ (1997). Regulation of antenna structure and electron transport in photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 1320, 95-106. |
[18] |
Srivastava A, Strasser RJ (1996). Stress and stress management of land plants during a regular day. Journal of Plant Physiology, 148, 445-455.
DOI URL |
[19] | Strasser RJ, Srivastava A, Tsimilli-Michael M (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M, Pathre U, Mohanty P eds. Photosynthesis: Mechanisms, Regulation and Adaptation. Taylor and Francis Press, London. 445-483. |
[20] | Strasser RJ, Tsimill-Michael M, Srivastava A (2004). Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou G, Govindjee eds. Advances in Photosynthesis and Respiration. KAP Press, Dordrecht, The Netherlands. 1-47. |
[21] | Sundby C, Melis A, Mäenpää P, Andersson B (1986). Temperature-dependent changes in the antenna size of photosystem II. Reversible conversion of photosystem IIα to photosystem IIβ. Biochimica et Biophysica Acta (BBA)- Bioenergetics, 851, 475-483. |
[22] | Sun XZ (孙宪芝), Zheng CS (郑成淑), Wang XF (王秀峰) (2008). Effects of high temperature stress on photosynthesis and chlorophyll fluorescence of cut flower chrysanthemum (Dendranthema grandiflora ‘Jinba’). Chinese Journal of Applied Ecology (应用生态学报), 19, 2149-2154. (in Chinese with English abstract) |
[23] | Wang M (王梅), Gao ZK (高志奎), Huang RH (黄瑞虹), Wang HY (王惠英), Zhang WL (张文丽), Gao RF (高荣孚) (2007). Heat stress characteristics of photosystem II in eggplant. Chinese Journal of Applied Ecology (应用生态学报), 18, 63-68. (in Chinese with English abstract) |
[24] | Wang WJ (王文杰), Li WX (李文馨), Zu YG (祖元刚), Wang XP (王晓鹏), He HS (贺海升) (2009). Differences in pigments and chlorophyll fluorescence parameters between stems and leaves of Eupatorium adenophorum under different temperature treatments. Acta Ecologica Sinica (生态学报), 29, 5424-5433. (in Chinese with English abstract) |
[25] | Wen GS (温国胜), Tian HT (田海涛), Zhang MR (张明如), Jiang WW (蒋文伟) (2006). Application of chlorophyll fluorescence analysis in forest tree cultivation. Chinese Journal of Applied Ecology (应用生态学报), 17, 1973-1977. (in Chinese with English abstract) |
[26] | Wu HY (吴韩英), Shou SY (寿森炎), Zhu ZJ (朱祝军), Yang XT (杨信廷) (2001). Effects of high temperature stress on photosynthesis and chlorophyll fluorescence in sweet pepper (Capsicum fructescens L.). Acta Horticulturate Sinica (园艺学报), 28, 517-521. (in Chinese with English abstract) |
[27] | Zhu JT (朱军涛), Li XY (李向义), Zhang XM (张希明), Zeng FJ (曾凡江), Lin LS (林丽莎), Yang SG (杨尚功), Gui DW (桂东伟), Wang H (王辉), Liu B (刘波) (2010). Ecophysiological response of Calligonum roborovskii to the habitats in different altitudes in north slope of Kunlun Mountain. Acta Ecologica Sinica (生态学报), 30, 602-609. (in Chinese with English abstract) |
[1] |
Jia WEN Xin-Na ZHANG 娟 王 Xiu-Hai ZHAO Chun-Yu ZHANG.
Responses of seedling survival rate to neighbor competition and environmental variables regulated by traits [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | MA Chang-Qin, HUANG Hai-Long, PENG Zheng-Lin, WU Chun-Ze, WEI Qing-Yu, JIA Hong-Tao, WEI Xing. Response of compound leaf types and photosynthetic function of male and female Fraxinus mandschurica to different habitats [J]. Chin J Plant Ecol, 2023, 47(9): 1287-1297. |
[3] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[4] | FENG Shan-Shan, HUANG Chun-Hui, TANG Meng-Yun, JIANG Wei-Xin, BAI Tian-Dao. Geographical variation of needles phenotypic and anatomic traits between populations of Pinus yunnanensis var. tenuifolia and its environmental interpretation [J]. Chin J Plant Ecol, 2023, 47(8): 1116-1130. |
[5] | FENG Ke, LIU Dong-Mei, ZHANG Qi, AN Jing, HE Shuang-Hui. Effect of tourism disturbance on soil microbial diversity and community structure in a Pinus tabuliformis forest [J]. Chin J Plant Ecol, 2023, 47(4): 584-596. |
[6] | SHI Dang, GUO Chuan-Chao, JIANG Nan-Lin, TANG Ying-Ying, ZHENG Feng, WANG Jin, LIAO Kang, LIU Li-Qiang. Characteristics and spatial distribution pattern of natural regeneration young plants of Prunus armeniaca in Xinjiang, China [J]. Chin J Plant Ecol, 2023, 47(4): 515-529. |
[7] | REN Pei-Xin, LI Peng, PENG Chang-Hui, ZHOU Xiao-Lu, YANG Ming-Xia. Temporal and spatial variation of vegetation photosynthetic phenology in Dongting Lake basin and its response to climate change [J]. Chin J Plant Ecol, 2023, 47(3): 319-330. |
[8] | SHI Sheng-Bo, ZHOU Dang-Wei, LI Tian-Cai, DE Ke-Jia, GAO Xiu-Zhen, MA Jia-Lin, SUN Tao, WANG Fang-Lin. Responses of photosynthetic function of Kobresia pygmaea to simulated nocturnal low temperature on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(3): 361-373. |
[9] | WANG Jing-Jing, WANG Jia-Hao, HUANG Zhi-Yun, Vanessa Chiamaka OKECHUKW, HU Die, QI Shan-Shan, DAI Zhi-Cong, DU Dao-Lin. Effects of endophytic nitrogen-fixing bacteria on the growth strategy of an invasive plant Sphagneticola trilobata under different nitrogen levels [J]. Chin J Plant Ecol, 2023, 47(2): 195-205. |
[10] | YU Yu-Rong, WU Hao, GAO Ya-Fei, ZHAO Yuan-Bo, LI Xiao-Ling, BU Gui-Jun, XUE Dan, LIU Zheng-Xiang, WU Hai-Wen, WU Lin. Effects of simulated nitrogen deposition on physiological and morphological characteristics of Sphagnum in wetland, southwestern Hubei Province, China [J]. Chin J Plant Ecol, 2023, 47(11): 1493-1506. |
[11] | SHI Sheng-Bo, SHI Rui, ZHOU Dang-Wei, ZHANG Wen. Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves [J]. Chin J Plant Ecol, 2023, 47(10): 1441-1452. |
[12] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[13] | YU Qiu-Wu, YANG Jing, SHEN Guo-Chun. Relationship between canopy structure and species composition of an evergreen broadleaf forest in Tiantong region, Zhejiang, China [J]. Chin J Plant Ecol, 2022, 46(5): 529-538. |
[14] | MENG Qing-Jing, FAN Wei-Guo. Calcium-tolerance type and adaptability to high-calcium habitats of Rosa roxburghii [J]. Chin J Plant Ecol, 2022, 46(12): 1562-1572. |
[15] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn