Chin J Plant Ecol ›› 2010, Vol. 34 ›› Issue (2): 160-169.DOI: 10.3773/j.issn.1005-264x.2010.02.007
Special Issue: 稳定同位素生态学
• Special feature: Stable isotope ecology • Previous Articles Next Articles
WU Tian-Xiang1,2, HUANG Jian-Hui1,*()
Received:
2009-01-21
Accepted:
2009-05-06
Online:
2010-01-21
Published:
2010-02-01
Contact:
HUANG Jian-Hui
WU Tian-Xiang, HUANG Jian-Hui. Effects of grazing on the δ 15N values of foliage and soil in a typical steppe ecosystem in Inner Mongolia, China[J]. Chin J Plant Ecol, 2010, 34(2): 160-169.
土地利用 Land use | 土层深度 Soil depth (cm) | 土壤含水量 Soil moisture (%) | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
围封 | 0-10 | 2.02 | 6.78 | 16.01 | 0.92 | 0.21 | 2.15 | 0.57 |
Fenced | 10-20 | 1.72 | 6.72 | 10.11 | 0.50 | 0.14 | 2.19 | 0.76 |
放牧 | 0-10 | 1.06 | 6.89 | 9.20 | 0.56 | 0.14 | 7.31 | 1.68 |
Grazed | 10-20 | 1.48 | 6.62 | 9.28 | 0.55 | 0.14 | 7.22 | 1.91 |
Table 1 Soil physiochemical properties in fenced and grazed plots
土地利用 Land use | 土层深度 Soil depth (cm) | 土壤含水量 Soil moisture (%) | pH | 有机质 Organic matter (g·kg-1) | 全氮 Total N (g·kg-1) | 全磷 Total P (g·kg-1) | 铵态氮 NH4+-N (mg·kg-1) | 硝态氮 NO3--N (mg·kg-1) |
---|---|---|---|---|---|---|---|---|
围封 | 0-10 | 2.02 | 6.78 | 16.01 | 0.92 | 0.21 | 2.15 | 0.57 |
Fenced | 10-20 | 1.72 | 6.72 | 10.11 | 0.50 | 0.14 | 2.19 | 0.76 |
放牧 | 0-10 | 1.06 | 6.89 | 9.20 | 0.56 | 0.14 | 7.31 | 1.68 |
Grazed | 10-20 | 1.48 | 6.62 | 9.28 | 0.55 | 0.14 | 7.22 | 1.91 |
Fig. 1 δ15N of rhizosphere soils of Caragana microphylla and Kochia prostrata in fenced and grazed plots (mean ± SE). a, b represent significant difference at p < 0.05.
Fig. 2 Foliar 15N natural abundance of plant species in fenced and grazed plots (mean ± SE). Asga., Astragalus galactites; Cami., Caragana microphylla; Heal., Heteropappus altaicus; Kopr., Kochia prostrata; Lech., Leymus chinensis; Meru., Melilotoides ruthenica; Poac., Potentilla acaulis; Stgr., Stipa grandis; *, p < 0.05, **, p < 0.01, ***, p < 0.001; ns denotes no significant difference
Fig. 3 Relationship between foliar δ15N and N concentration (%). A, legumes; B, all non-legumes; C, non-legumes except semi-shrub; Rf2, Rg2 represent R2 values under fenced and grazed conditions, respectively.
物种 Species | 土地利用 Land use | 密度 Density (plant·m-2) | 频度 Frequency (%) | 高度 Height (cm) |
---|---|---|---|---|
扁蓿豆 Melilotoides ruthenica | 围封 Fenced | 0.05 | 5 | 5.00 |
放牧 Grazed | 1.50 | 60 | 8.05 | |
小叶锦鸡儿 Caragana microphylla | 围封 Fenced | 0.95 | 40 | 22.42 |
放牧 Grazed | 1.15 | 35 | 15.76 | |
乳白花黄芪 Astragalus galactites | 放牧 Grazed | 1.10 | 55 | 3.93 |
Table 2 Distribution of legumes in grazed and fenced plots
物种 Species | 土地利用 Land use | 密度 Density (plant·m-2) | 频度 Frequency (%) | 高度 Height (cm) |
---|---|---|---|---|
扁蓿豆 Melilotoides ruthenica | 围封 Fenced | 0.05 | 5 | 5.00 |
放牧 Grazed | 1.50 | 60 | 8.05 | |
小叶锦鸡儿 Caragana microphylla | 围封 Fenced | 0.95 | 40 | 22.42 |
放牧 Grazed | 1.15 | 35 | 15.76 | |
乳白花黄芪 Astragalus galactites | 放牧 Grazed | 1.10 | 55 | 3.93 |
[1] | Abbadie L, Mariotti A, Menaut JC (1992). Independence of savanna grasses from soil organic matter for their nitrogen supply. Ecology, 73, 608-613. |
[2] | Amundson R, Austin AT, Schuur EAG, Yoo K, Matzek V, Kendall C, Uebersax A, Brenner D, Baisden WT (2003). Global patterns of the isotopic composition of soil and plant nitrogen. Global Biogeochemical Cycles, 17, 1031, doi: 10.1029/2002GB001903. |
[3] | Austin AT, Sala OE (1999). Foliar δ15N is negatively correlated with rainfall along the IGBP transect in Australia. Australian Journal of Soil Research, 26, 293-295. |
[4] | Bao YY (包玉英), Yan W (闫伟) (2004). Arbuscular mycorrhizae and their structural types on common plants in grasslands of mid-western Inner Mongolia. Biodiversity Science (生物多样性), 12, 501-508. (in Chinese with English abstract) |
[5] |
Bai Y, Han X, Wu J, Chen Z, Li L (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
DOI URL PMID |
[6] | Ben-David M, Bowyer RT, Duffy LK, Roby DD, Schell DM (1998). Social behavior and ecosystem processes: river otter latrines and nutrient dynamics of terrestrial vegetation. Ecology, 79, 2567-2571. |
[7] | Boddey RM, Peoples MB, Palmer B, Dart PJ (2000). Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutrient Cycling in Agroecosystems, 57, 235-270. |
[8] | Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu KP (2002). Stable isotopes in plant ecology. Annual Review of Ecology and Systmatics, 33, 507-559. |
[9] | Eom AH, Wilson GWT, Hartnett DC (2001). Effects of ungulate grazers on arbuscular mycorrhizal symbiosis and fungal community structure in tallgrass prairie. Mycologia, 93, 233-242. |
[10] |
Evans RD (2001). Physiological mechanisms influencing plant nitrogen isotope composition. Trends in Plant Science, 6, 121-126.
DOI URL PMID |
[11] | Evans RD (2007). Soil nitrogen isotope composition. In: Michener R, Lajtha K eds. Stable Isotopes in Ecology and Environmental Science. Blackwell Publishing, Malden, USA. 83-98. |
[12] | Evans RD, Belnap J (1999). Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology, 80, 150-160. |
[13] | Frank DA, Evans RD (1997). Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology, 78, 2238-2248. |
[14] | Frank DA, Evans RD, Tracy BF (2004). The role of ammonia volatilization in controlling the natural 15N abundance of a grazed grassland. Biogeochemistry, 68, 169-178. |
[15] | Gao YZ, Giese M, Lin S, Sattelmacher B, Zhao Y, Brueck H (2008). Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant and Soil, 307, 41-50. |
[16] | Gao YZ (高英志), Han XG (韩兴国), Wang SP (汪诗平) (2004a). The effects of grazing on grassland soils. Acta Ecologica Sinica (生态学报), 24, 790-797. (in Chinese with English abstract) |
[17] | Gao YZ (高英志), Wang SP (汪诗平), Han XG (韩兴国), Chen QS (陈全胜), Wang YF (王艳芬), Zhou ZY (周志勇), Zhang SM (张淑敏), Yang J (杨晶) (2004b). Soil nitrogen regime and the relationship between aboveground green phytobiomass and soil nitrogen fractions at different stocking rates in the Xilin River Basin, Inner Mongolia. Acta Phytoecologica Sinica (植物生态学报), 28, 285-293. (in Chinese with English abstract) |
[18] |
Garten CT (1993). Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch Watershed. Ecology, 74, 2098-2113.
DOI URL |
[19] | Guan XQ (关秀清), Du QY (杜千有), Wang JW (王继伟) (1989). Determination of the seasonal changes of the biological nitrogen-fixation activity of different plants in the Xilingoule grassland, Inner Mongolia. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学学报), 13, 387-391. (in Chinese with English abstract) |
[20] | Guan XQ (关秀清), Du QY (杜千有), Yu JZ (于井朝) (1997). Isolation and characteristics of N2-fixers from rhizosphere of plant Leymus chinensis in rangeland of Inner Mongolia. Acta Agrestia Sinica (草地学报), 5, 101-107. (in Chinese with English abstract) |
[21] | Högberg P (1997). 15N natural abundance in soil-plant systems. New Phytologist, 137, 179-203. |
[22] | Harris WN, Moretto AS, Distel RA, Boutton TW, Bóo RM (2007). Fire and grazing in grasslands of the Argentine Caldenal: effects on plant and soil carbon and nitrogen. Acta Oecologica, 32, 207-214. |
[23] |
Hobbie EA, Macko SA, Williams M (2000). Correlations between foliar δ15N and nitrogen concentrations may indicate plant-mycorrhizal interactions. Oecologia, 122, 273-283.
DOI URL PMID |
[24] |
Huygens D, Denef K, Vandeweyer R, Godoy R, Cleemput OV, Boeckx P (2008). Do nitrogen isotope patterns reflect microbial colonization of soil organic matter fractions? Biology and Fertility of Soils, 44, 955-964.
DOI URL |
[25] |
Kahmen A, Wanek W, Buchmann N (2008). Foliar δ15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia, 156, 861-870.
DOI URL PMID |
[26] | Kitayama K, Iwamoto K (2001). Patterns of natural 15N abundance in the leaf-to-soil continuum of tropical rain forests differing in N availability on Mount Kinabalu, Borneo. Plant and Soil, 229, 203-212. |
[27] | Ledgard S, Freney J, Simpson JR (1984). Variations in natural enrichment of 15N in the profiles of some Australian pasture soils. Australian Journal of Soil Research, 22, 155-164. |
[28] | Li XZ (李香真), Chen ZZ (陈佐忠) (1998). Influences of stocking rates on C, N, P contents in plant-soil systems. Acta Agrestia Sinica (草地学报), 6, 90-98. (in Chinese with English abstract) |
[29] | Ma CL (马昌燐), Yao YY (姚允寅), Chen M (陈明), Liu XL (刘晓兰), Liu ZY (刘泽银), Wang ZD (王志东), Hou JQ (侯景琴), Luo YY (骆永云), He FR (何凤茹) (1989). Application of 15N natural abundance method for assessing N2 fixation of nodulated crops. Journal of Nuclear Agricultural Sciences (核农学报), 3, 65-74. (in Chinese) |
[30] |
Miller AE, Bowman WD (2002). Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition by nitrogen form? Oecologia, 130, 609-616.
URL PMID |
[31] | Nadelhoffer KJ, Fry B (1994). Nitrogen isotope studies in forest ecosystems. In: Lajtha K, Michener R eds. Stable Isotopes in Ecology. Blackwell, Oxford, UK. 22-44. |
[32] |
Nadelhoffer KJ, Shaver G, Fry B, Giblin A, Johnson L, McKane R (1996). 15N natural abundances and N use by tundra plants. Oecologia, 107, 386-394.
URL PMID |
[33] |
Ometto JPHB, Ehleringer JR, Domingues TF, Berry JA, Ishida FY, Mazzi E, Higuchi N, Flangan LB, Nardoto GB, Martinelli LA (2006). The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry, 79, 251-274.
DOI URL |
[34] | Pardo LH, Hemond HF, Montoya JP, Fahey TJ, Siccama TG (2002). Response of the natural abundance of 15N in forest soils and foliage to high nitrate loss following clear-cutting. Canadian Journal of Forest Reseach, 32, 1126-1136. |
[35] | Pardo LH, Hemond HF, Montoya JP, Pett-Ridge J (2007). Natural abundance 15N in soil and litter across a nitrate-output gradient in New Hampshire. Forest Ecology and Management, 251, 217-230. |
[36] | Pardo LH, Templer PH, Goodale CL, Duke S, Groffman PM, Adams MB, Boeckx P, Boggs J, Campbell J, Colman B, Compton J, Emmett B, Gudersen P, Kjønaas J, Lovett G, Mack M, Magill A, Mbila M, Mitchell MJ, McGee G, McNulty S, Nadelhoffer K, Ollinger S, Ross D, Rueth H, Rustad L, Schaberg P, Schiff S, Schleppi P, Spoelstra J, Wessel W (2006). Regional assessment of N saturation using foliar and root δ15N. Biogeochemistry, 80, 143-171. |
[37] | Pastor J, Dewey B, Naiman RJ, McInnes PF, Cohen Y (1993). Moose browsing and soil fertility in the boreal forests of Isle Royale National Park. Ecology, 74, 467-480. |
[38] |
Robinson D (2001). δ15N as an integrator of the nitrogen cycle. Trends in Ecology and Evolution, 16, 153-162.
DOI URL PMID |
[39] | Sah SP, Rita H, Ilvesniemi H (2006). 15N natural abundance of foliage and soil across boreal forests of Finland. Biogeochemistry, 80, 277-288. |
[40] |
Schmidt S, Stewart GR (2003). 15N values of tropical savanna and monsoon forest species reflect root specialisations and soil nitrogen status. Oecologia, 134, 569-577.
URL PMID |
[41] | Schulze ED, Williams RJ, Farquhar GD, Schulze W, Langridge J, Miller JM, Walker BH (1998). Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Australian Journal of Plant Physiology, 25, 413-425. |
[42] |
Schulze ED, Chapin FS, Gebauer G (1994). Nitrogen nutrition and isotope differences among life forms at the northern treeline of Alaska. Oecologia, 100, 406-412.
DOI URL PMID |
[43] | Shearer G, Kohl DH (1986). N2-fixation in field settings: estimations based on natural 15N abundance. Australian Journal of Plant Physiology, 13, 699-756. |
[44] | Shi WQ (石伟琦), Wang GA (王国安), Li XL (李晓林) (2008). Effects of arbuscular mycorrhizal fungi on gas exchange and stable isotope ratio of δ13C, δ15N of Leymus chinensis plant. Journal of Nuclear Agricultural Sciences (核农学报), 22, 353-358. (in Chinese with English abstract) |
[45] | Sirotnak JM, Huntly NJ (2000). Direct and indirect effects of herbivoreson nitrogen dynamics: voles in riparian areas. Ecology, 81, 78-87. |
[46] |
Sprent JI, Geoghegan IE, Whitty PW (1996). Natural abundance of 15N and 13C in nodulated legumes and other plants in the cerrado and neighbouring regions of Brazil. Oecologia, 105, 440-446.
DOI URL PMID |
[47] |
Su YY, Guo LD (2007). Arbuscular mycorrhizal fungi in non-grazed, restored and over-grazed grassland in the Inner Mongolia steppe. Mycorrhiza, 17, 689-693.
DOI URL PMID |
[48] | Swap RJ, Aranibar JN, Dowty PR, Gilhooly WP, Macko SA (2004). Natural abundance of 13C and 15N in C3 and C4 vegetation of southern Africa: patterns and implications. Global Change Biology, 10, 350-358. |
[49] |
Templer PH, Arthur MA, Lovett GM, Weathers KC (2007). Plant and soil natural abundance 15N: indicators of relative rates of nitrogen cycling in temperate forest ecosystems. Oecologia, 153, 399-406.
DOI URL PMID |
[50] | Vitousek PM, Howarth RW (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115. |
[51] |
Vitousek PM, Shearer G, Kohl DH (1989). Foliar 15N natural abundance in Hawaiian rainforest: patterns and possible mechanisms. Oecologia, 78, 383-388.
DOI URL PMID |
[52] | Wang FJ (王芳玖) (1985). Primary investigation on the root nodulation of wild legume plants. In: Inner Mongolia Grassland Ecosystem Research Station, Chinese Academy of Sciences ed. Research on Grassland Ecosystem No.5 (草原生态系统研究第五集), Inner Mongolia Grassland Ecosystem Research Station (inside materials), Inner Mongolia 124-134. (in Chinese) |
[53] | Wang YF (王艳芬), Wang SP (汪诗平) (1999). Influence of different stocking rates on belowground biomass in Inner Mongolia steppe. Acta Agrestia Sinica (草地学报), 7, 198-203. (in Chinese with English abstract) |
[54] | Xu YQ, Wan SQ, Cheng WX, Lin LH (2008). Impacts of grazing intensity on denitrification and N2O production in a semi-arid grassland ecosystem. Biogeochemistry, 88, 103-115. |
[55] | Xu YQ (徐雨晴) (2007). Effect of Grazing on N Distribution and Transformation in the Soil-Plant System in a Typical Temperate Steppe (家畜放牧对典型草原土壤-植被系统氮素转化的影响). PhD Dissertation, Institute of Botany, Chinese Academy of Sciences, Beijing. (in Chinese with English abstract) |
[56] |
Zacheis A, Ruess RW, Hupp JW (2002). Nitrogen dynamics in an Alaskan salt marsh following spring use by geese. Oecologia, 130, 600-608.
DOI URL PMID |
[57] | Zhou LS, Huang JH, Lv FM, Han XG (2009). Effects of prescribed burning and seasonal and interannual climate variation on nitrogen mineralization in a typical steppe in Inner Mongolia. Soil Biology and Biochemistry, 41, 796-803. |
[1] | Kangwei Jiang Qing-Qing QINGZHANG Wang Yafei Li Hong Ding Yu Yang Yongqiang Tuerxunnayi Reyimu. Characteristics of plant functional groups and the relationships with soil environmental factors in the middle part of the northern slope of Tianshan Mountain under different grazing intensities [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[3] | SACHURA , ZHANG Xia, ZHU Lin, KANG Saruul. Leaf anatomical changes of Cleistogenes songorica under long-term grazing with different intensities in a desert steppe [J]. Chin J Plant Ecol, 2024, 48(3): 331-340. |
[4] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[5] | CHEN Bao-Dong, FU Wei, WU Song-Lin, ZHU Yong-Guan. Involvements of mycorrhizal fungi in terrestrial ecosystem carbon cycling [J]. Chin J Plant Ecol, 2024, 48(1): 1-20. |
[6] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
[7] | WANG De-Li, LIANG Cun-Zhu. Restoration state of degraded grasslands: climate climax or disturbance climax? [J]. Chin J Plant Ecol, 2023, 47(10): 1464-1470. |
[8] | DONG Quan-Min, ZHAO Xin-Quan, LIU Yu-Zhen, FENG Bin, YU Yang, YANG Xiao-Xia, ZHANG Chun-Ping, CAO Quan, LIU Wen-Ting. Effects of different herbivore assemblage on relationship between Kobresia humilis seed size and seed number in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(9): 1018-1026. |
[9] | ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession [J]. Chin J Plant Ecol, 2022, 46(2): 176-187. |
[10] | HAO Jian-Feng, ZHOU Run-Hui, YAO Xiao-Lan, YU Jing, CHEN Cong-Lin, XIANG Lin, WANG Yao-Yao, SU Tian-Cheng, QI Jin-Qiu. Effects of the second generation wild boar grazing on species diversity and soil physicochemical properties of coniferous-broad-leaved mixed forest in Jiajin Mountain, China [J]. Chin J Plant Ecol, 2022, 46(2): 197-207. |
[11] | HUANG Kuai-Kuai, HU Gang, PANG Qing-Ling, ZHANG Bei, HE Ye-Yong, HU Cong, XU Chao-Hao, ZHANG Zhong-Hua. Effects of grazing on species composition and community structure of shrub tussock in subtropical karst mountains, southwest China [J]. Chin J Plant Ecol, 2022, 46(11): 1350-1363. |
[12] | LI Ying, GONG Ji-Rui, LIU Min, HOU Xiang-Yang, DING Yong, YANG Bo, ZHANG Zi-He, WANG Biao, ZHU Chen-Chen. Defense strategies of dominant plants under different grazing intensity in the typical temperate steppe of Nei Mongol, China [J]. Chin J Plant Ecol, 2020, 44(6): 642-653. |
[13] | ZHANG Yang-Jian, ZHU Jun-Tao, SHEN Ruo-Nan, WANG Li. Research progress on the effects of grazing on grassland ecosystem [J]. Chin J Plant Ecol, 2020, 44(5): 553-564. |
[14] | FENG Xiao-Juan, WANG Yi-Yun, LIU Ting, JIA Juan, DAI Guo-Hua, MA Tian, LIU Zong-Guang. Biomarkers and their applications in ecosystem research [J]. Chin J Plant Ecol, 2020, 44(4): 384-394. |
[15] | ZHANG Liang, WANG Zhi-Lei, XUE Ting-Ting, HAO Xiao-Yun, YANG Chen-Lu, GAO Fei-Fei, WANG Ying, HAN Xing, LI Hua, WANG Hua. Progress in studies of carbon source/sink and emission reduction strategies in vineyard ecosystem [J]. Chin J Plant Ecol, 2020, 44(3): 179-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn