Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (4): 284-295.DOI: 10.17521/cjpe.2018.0213
• Reviews • Previous Articles Next Articles
LIU Cheng-Zhu1,2,JIA Juan1,2,DAI Guo-Hua1,MA Tian1,2,FENG Xiao-Juan1,2,*()
Received:
2018-08-27
Revised:
2019-04-18
Online:
2019-04-20
Published:
2019-08-29
Contact:
FENG Xiao-Juan ORCID:0000-0002-0443-0628
Supported by:
LIU Cheng-Zhu, JIA Juan, DAI Guo-Hua, MA Tian, FENG Xiao-Juan. Origin and distribution of neutral sugars in soils[J]. Chin J Plant Ecol, 2019, 43(4): 284-295.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2018.0213
步骤 Procedure | 方法 Method | 优点 Advantage | 缺点 Drawback | 参考文献 Reference |
---|---|---|---|---|
提取 Extraction | 硫酸 H2SO4 | 硫酸不易被除去 H2SO4 can not be removed easily | ||
盐酸 HCl | 会水解一部分纤维素; 产率较低 The hydrolysis products include a few cellulosic neutral sugars; low yields | 1983 | ||
三氟乙酸 TFA | 产率高; 不会破坏单糖结构; 具有挥发性, 可通过旋转蒸发去除; 水解的多糖主要为半纤维素 High yields; Not destructive to monosaccharides; TFA is volatile and can be easily removed by evaporation; Hydrolysis products are mainly released from hemicellulose | |||
检测 Detection | GC-MS | 精度、准确度、敏感性和效率较高 High accuracy, precision, sensibility and efficiency | 需要衍生化 Derivatization is required | |
HPLC | 无需衍生化; 纯化过程简单 No need for derivatization; Simple purification procedures | 精度、准确度、敏感性较低 Low accuracy, precision, sensibility and efficiency | ||
HPAEC-PAD | 无需衍生化; 应用范围广, 可同时分析糖醛酸和中性糖 No need for derivatization; Wide application and simultaneous analysis of uronic acid and neutral sugars | 精度、准确度、敏感性较低 Low accuracy, precision, sensibility and efficiency |
Table 1 Comparison of extraction and detection methods of neutral sugars in soils
步骤 Procedure | 方法 Method | 优点 Advantage | 缺点 Drawback | 参考文献 Reference |
---|---|---|---|---|
提取 Extraction | 硫酸 H2SO4 | 硫酸不易被除去 H2SO4 can not be removed easily | ||
盐酸 HCl | 会水解一部分纤维素; 产率较低 The hydrolysis products include a few cellulosic neutral sugars; low yields | 1983 | ||
三氟乙酸 TFA | 产率高; 不会破坏单糖结构; 具有挥发性, 可通过旋转蒸发去除; 水解的多糖主要为半纤维素 High yields; Not destructive to monosaccharides; TFA is volatile and can be easily removed by evaporation; Hydrolysis products are mainly released from hemicellulose | |||
检测 Detection | GC-MS | 精度、准确度、敏感性和效率较高 High accuracy, precision, sensibility and efficiency | 需要衍生化 Derivatization is required | |
HPLC | 无需衍生化; 纯化过程简单 No need for derivatization; Simple purification procedures | 精度、准确度、敏感性较低 Low accuracy, precision, sensibility and efficiency | ||
HPAEC-PAD | 无需衍生化; 应用范围广, 可同时分析糖醛酸和中性糖 No need for derivatization; Wide application and simultaneous analysis of uronic acid and neutral sugars | 精度、准确度、敏感性较低 Low accuracy, precision, sensibility and efficiency |
Fig. 1 Content and distribution of neutral sugars across different land-use regimes in the top soils (Nierop et al., 2001; Spielvogel et al., 2007; Eder et al., 2010; Rumpel et al., 2010; Zhao et al., 2014; Conti et al., 2016; Cui et al., 2016; Wang et al., 2016; Creme et al., 2017; Llorente et al., 2017; Evgrafova et al., 2018; Zhu et al., 2018). A, Neutral sugar absolute content. B, Neutral sugar relative content. C, GM/AX ((galactose + mannose)/(arabinose + xylose)). D, RF/AX ((rhamnose + fucose)/(arabinose + xylose)). The upper and lower end of boxes denote the 0.25 and 0.75 percentiles, respectively. The solid bar in the box mark the median of each dataset. The circles indicate outliers of each dataset. Different lowercase letters indicate differences in various land-use regimes (p < 0.05). n = 8, 25, 4, 8, 15 (from deciduous, coniferous, shrub, grassland to crops in the A, C). n = 8, 22, 4, 8, 15 (from deciduous, coniferous, shrub, grassland to crops in the B). n = 3, 19, 4, 8, 27 (from deciduous, coniferous, shrub, grassland to crops in the D). OC, soil organic carbon.
[1] | Abdelrahman HM, Olk DC, Dinnes D, Ventrella D, Miano T, Cocozza C ( 2016). Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions. Journal of Soils and Sediments, 16, 2375-2384. |
[2] | Amelung W, Cheshire MV, Guggenberger G ( 1996). Determination of neutral and acidic sugars in soil by capillary gas-liquid chromatography after trifluoroacetic acid hydrolysis. Soil Biology & Biochemistry, 28, 1631-1639. |
[3] | Andrews MA ( 1989). Capillary gas-chromatographic analysis of monosaccharides: Improvements and comparisons using trifluoroacetylation and trimethylsilylation of sugar O-benzyl- and O-methyl-oximes. Carbohydrate Research, 194, 1-19. |
[4] | Angers DA, Mehuys GR ( 1989). Effects of cropping on carbohydrate content and water-stable aggregation of a clay soil. Canadian Journal of Soil Science, 69, 373-380. |
[5] | Angers DA, Nadeau P, Mehuys GR ( 1988). Determination of carbohydrate-composition of soil hydrolysates by high- performance liquid-chromatography. Journal of Chromatography, 454, 444-449. |
[6] | Barron-Gafford G, Martens D, Grieve K, Biel K, Kudeyarov V, Mclain JET, Lipson D, Murthy R ( 2005). Growth of eastern cottonwoods (Populus deltoides) in elevated CO2 stimulates stand-level respiration and rhizodeposition of carbohydrates, accelerates soil nutrient depletion, yet stimulates above- and belowground biomass production. Global Change Biology, 11, 1220-1233. |
[7] | Basler A, Dippold M, Helfrich M, Dyckmans J ( 2015a). Microbial carbon recycling: An underestimated process controlling soil carbon dynamics―Part 1: A long-term laboratory incubation experiment. Biogeosciences, 12, 5929-5940. |
[8] | Basler A, Dippold M, Helfrich M, Dyckmans J ( 2015b). Microbial carbon recycling: An underestimated process controlling soil carbon dynamics―Part 2: A C3-C4 vegetation change field labelling experiment. Biogeosciences, 12, 6291-6299. |
[9] | Basler A, Dyckmans J ( 2013). Compound-specific δ 13C analysis of monosaccharides from soil extracts by high- performance liquid chromatography/isotope ratio mass spectrometry. Rapid Communications in Mass Spectrometry , 27, 2546-2550. |
[10] | Baumann K, Dignac MF, Rumpel C, Bardoux G, Sarr A, Steffens M, Maron PA ( 2013). Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil. Biogeochemistry, 114, 201-212. |
[11] | Biernath C, Fischer H, Kuzyakov Y ( 2008). Root uptake of N-containing and N-free low molecular weight organic substances by maize: A 14C/ 15N tracer study . Soil Biology & Biochemistry, 40, 2237-2245. |
[12] | Bischoff N, Mikutta R, Shibistova O, Dohrmann R, Herdtle D, Gerhard L, Fritzsche F, Puzanov A, Silanteva M, Grebennikova A, Guggenberger G ( 2018). Organic matter dynamics along a salinity gradient in Siberian steppe soils. Biogeosciences, 15, 13-29. |
[13] | Black GE, Fox A ( 1996). Recent progress in the analysis of sugar monomers from complex matrices using chromatography in conjunction with mass spectrometry or stand- alone tandem mass spectrometry. Journal of Chromatography A, 720, 51-60. |
[14] | Blagodatskaya E, Kuzyakov Y ( 2013). Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biology & Biochemistry, 67, 192-211. |
[15] | Bock M, Glaser B, Millar N ( 2007). Sequestration and turnover of plant- and microbially derived sugars in a temperate grassland soil during 7 years exposed to elevated atmospheric pCO2. Global Change Biology, 13, 478-490. |
[16] | Bruggink C, Maurer R, Herrmann H, Cavalli S, Hoefler F ( 2005). Analysis of carbohydrates by anion exchange chromatography and mass spectrometry. Journal of Chromatography A, 1085, 104-109. |
[17] | Cheshire MV (1979). Nature and Origin of Carbohydrates in Soils. Academic Press, London. |
[18] | Cheshire MV, Russell JD, Fraser AR, Bracewell JM, Robertsons GW, Benzing-Purdie LM, Ratcliffe CI, Ripmeester JA, Goodman BA ( 1992). Nature of soil carbohydrate and its association with soil humic substances. Journal of Soil Science, 43, 359-373. |
[19] | Conti G, Kowaljow E, Baptist F, Rumpel C, Cuchietti A, Perez Harguindeguy N, Diaz S ( 2016). Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant and Soil, 403, 375-387. |
[20] | Creme A, Chabbi A, Gastal F, Rumpel C ( 2017). Biogeochemical nature of grassland soil organic matter under plant communities with two nitrogen sources. Plant and Soil, 415, 189-201. |
[21] | Cui LF, Liang C, Duncan DS, Bao XL, Xie HT, He HB, Wickings K, Zhang XD, Chen FS ( 2016). Impacts of vegetation type and climatic zone on neutral sugar distribution in natural forest soils. Geoderma, 282, 139-146. |
[22] | Dao TT, Gentsch N, Mikutta R, Sauheitl L, Shibistova O, Wild B, Schnecker J, Barta J, Capek P, Gittel A, Lashchinskiy N, Urich T, Santruckova H, Richter A, Guggenberger G (2018). Fate of carbohydrates and lignin in north-east Siberian permafrost soils. Soil Biology & Biochemistry, 116, 311-322. |
[23] | Derrien D, Marol C, Balabane M, Balesdent J (2006). The turnover of carbohydrate carbon in a cultivated soil estimated by 13C natural abundances . European Journal of Soil Science, 57, 547-557. |
[24] | Derrien D, Marol C, Balesdent J (2007). Microbial biosyntheses of individual neutral sugars among sets of substrates and soils. Geoderma, 139, 190-198. |
[25] | Eder E, Spielvogel S, Koelbl A, Albert G, Kögel-Knabner I ( 2010). Analysis of hydrolysable neutral sugars in mineral soils: Improvement of alditol acetylation for gas chromatographic separation and measurement. Organic Geochemistry, 41, 580-585. |
[26] | Evgrafova A, De La Haye TR, Haase I, Shibistova O, Guggenberger G, Tananaev N, Sauheitl L, Spielvogel S ( 2018). Small-scale spatial patterns of soil organic carbon and nitrogen stocks in permafrost-affected soils of northern Siberia. Geoderma, 329, 91-107. |
[27] | Farhadi A, Keshavarzian A, Fields JZ, Sheikh M, Banan A ( 2006). Resolution of common dietary sugars from probe sugars for test of intestinal permeability using capillary column gas chromatography. Journal of Chromatography B, 836, 63-68. |
[28] | Feller C, Beare MH ( 1997). Physical control of soil organic matter dynamics in the tropics. Geoderma, 79, 69-116. |
[29] | Fischer H, Ingwersen J, Kuzyakov Y ( 2010). Microbial uptake of low-molecular-weight organic substances out-competes sorption in soil. European Journal of Soil Science, 61, 504-513. |
[30] | Gentsch N, Mikutta R, Alves RJE, Barta J, Čapek P, Gittel A, Hugelius G, Kuhry P, Lashchinskiy N, Palmtag J ( 2015a). Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic. Biogeosciences Discussions, 12, 2697-2743. |
[31] | Gentsch N, Mikutta R, Shibistova O, Wild B, Schnecker J, Richter A, Urich T, Gittel A, Šantrůčková H, Bárta J ( 2015b). Properties and bioavailability of particulate and mineral-associated organic matter in Arctic permafrost soils. European Journal of Soil Science, 66, 722-734. |
[32] | Gleixner G, Poirier N, Bol R, Balesdent J ( 2002). Molecular dynamics of organic matter in a cultivated soil. Organic Geochemistry, 33, 357-366. |
[33] | Greenland DJ, Oades JM ( 1975). Saccharides. Springer, Berlin, Heidelberg. |
[34] | Guan ZH, Li XG, Wang L, Mou XM, Kuzyakov Y ( 2018). Conversion of Tibetan grasslands to croplands decreases accumulation of microbially synthesized compounds in soil. Soil Biology & Biochemistry, 123, 10-20. |
[35] | Guggenberger G, Christensen BT, Zech W ( 1994). Land-use effects on the composition of organic matter in particle-size separates of soil: I. Lignin and carbohydrate signature. European Journal of Soil Science, 45, 449-458. |
[36] | Gunina A, Kuzyakov Y (2015). Sugars in soil and sweets for microorganisms: Review of origin, content, composition and fate. Soil Biology & Biochemistry, 90, 87-100. |
[37] | Hamada R, Ono A ( 1984). Determination of carbohydrates in hydrolysates of volcanic ash soil by liquid chromatography with fluorescence spectroscopy. Soil Science & Plant Nutrition, 30, 145-150. |
[38] | Hu S, Coleman DC, Beare MH, Hendrix PF ( 1995a). Soil carbohydrates in aggrading and degrading agroecosystems: Influences of fungi and aggregates. Agriculture Ecosystems & Environment, 54, 77-88. |
[39] | Hu S, Coleman DC, Hendrix PF, Beare MH ( 1995b). Biotic manipulation effects on soil carbohydrates and microbial biomass in a cultivated soil. Soil Biology & Biochemistry, 27, 1127-1135. |
[40] | Jolivet C, Angers DA, Chantigny MH, Andreux F, Arrouays D ( 2006). Carbohydrate dynamics in particle-size fractions of sandy spodosols following forest conversion to maize cropping. Soil Biology & Biochemistry, 38, 2834-2842. |
[41] | Kleber M, Eusterhues K, Keiluweit M, Mikutta C, Mikutta R, Nico PS ( 2015). Chapter One―Mineral-organic associations: Formation, properties, and relevance in soil environments. Advances in Agronomy, 130, 1-140. |
[42] | Kögel-Knabner I ( 2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology & Biochemistry, 34, 139-162. |
[43] | Kögel-Knabner I, Amelung W ( 2014). Dynamics, chemistry, and preservation of organic matter in soils. Treatise on Geochemistry, 13, 157-215. |
[44] | Kuzyakov Y ( 2010). Priming effects: Interactions between living and dead organic matter. Soil Biology & Biochemistry, 42, 1363-1371. |
[45] | Kuzyakov Y, Domanski G ( 2000). Carbon input by plants into the soil. Review. Journal of Plant Nutrition and Soil Science, 163, 421-431. |
[46] | Kuzyakov Y, Jones DL ( 2006). Glucose uptake by maize roots and its transformation in the rhizosphere. Soil Biology & Biochemistry, 38, 851-860. |
[47] | Larré-Larrouy MC, Blanchart E, Albrecht A, Feller C ( 2004). Carbon and monosaccharides of a tropical vertisol under pasture and market-gardening: Distribution in secondary organomineral separates. Geoderma, 119, 163-178. |
[48] | Larré-Larrouy MC, Feller C ( 1997). Determination of carbohydrates in two ferrallitic soils: Analysis by capillary gas chromatography after derivatization by silylation. Soil Biology & Biochemistry, 29, 1585-1589. |
[49] | Llorente M, Glaser B, Turrion MB ( 2017). Effect of land use change on contents and distribution of monosacharides within density fractions of calcareous soil. Soil Biology & Biochemistry, 107, 260-268. |
[50] | Martens DA, Frankenberger WT ( 1993). Soil saccharide extraction and detection. Plant and Soil, 149, 145-147. |
[51] | Martens DA, Reedy TE, Lewis DT ( 2004). Soil organic carbon content and composition of 130-year crop, pasture and forest land-use managements. Global Change Biology, 10, 65-78. |
[52] | Mastrolonardo G, Rumpel C, Forte C, Doerr SH, Certini G ( 2015). Abundance and composition of free and aggregate- occluded carbohydrates and lignin in two forest soils as affected by wildfires of different severity. Geoderma, 245, 40-51. |
[53] | Miltner A, Bombach P, Schmidt-Brücken B, Kästner M ( 2012). SOM genesis: Microbial biomass as a significant source. Biogeochemistry, 111, 41-55. |
[54] | Moers MEC, Jones DM, Eakin PA, Fallick AE, Griffiths H, Larter SR ( 1993). Carbohydrate diagenesis in hypersaline environments: Application of GC-IRMS to the stable isotope analysis of derivatized saccharides from surficial and buried sediments. Organic Geochemistry, 20, 927-933. |
[55] | Murata T, Tanaka H, Yasue S, Hamada R, Sakagami K, Kurokawa Y ( 1999). Seasonal variations in soil microbial biomass content and soil neutral sugar composition in grassland in the Japanese Temperate Zone. Applied Soil Ecology, 11, 253-259. |
[56] | Nacro HB, Larré-larrouy MC, Feller C, Abbadie L ( 2005). Hydrolysable carbohydrate in tropical soils under adjacent forest and savanna vegetation in Lamto, Côte d’Ivoire. Soil Research, 43, 705-711. |
[57] | Navarrete IA, Tsutsuki K ( 2008). Land-use impact on soil carbon, nitrogen, neutral sugar composition and related chemical properties in a degraded Ultisol in Leyte, Philippines. Soil Science & Plant Nutrition, 54, 321-331. |
[58] | Nierop KGJ, Van Lagen B, Buurman P ( 2001). Composition of plant tissues and soil organic matter in the first stages of a vegetation succession. Geoderma, 100, 1-24. |
[59] | Oades JM ( 1984). Soil organic matter and structural stability: Mechanisms and implications for management. Plant and Soil, 76, 319-337. |
[60] | Oades JM, Kirkman MA, Wagner GH ( 1970). The use of gas-liquid chromatography for the determination of sugars extracted from soils by sulfuric acid. Soil Science Society of America Journal, 34, 230-235. |
[61] | Philben M, Holmquist J, Macdonald G, Duan D, Kaiser K, Benner R ( 2015). Temperature, oxygen, and vegetation controls on decomposition in a James Bay peatland. Global Biogeochemical Cycles, 29, 729-743. |
[62] | Phuong-Thi N, Rumpel C, Thu-Thuy D, Jouquet P ( 2012). The effect of earthworms on carbon storage and soil organic matter composition in tropical soil amended with compost and vermicompost. Soil Biology & Biochemistry, 50, 214-220. |
[63] | Prietzel J, Dechamps N, Spielvogel S ( 2012). Analysis of non-cellulosic polysaccharides helps to reveal the history of thick organic surface layers on calcareous Alpine soils. Plant and Soil, 365, 93-114. |
[64] | Puget P, Angers DA, Chenu C ( 1999). Nature of carbohydrates associated with water-stable aggregates of two cultivated soils. Soil Biology & Biochemistry, 31, 55-63. |
[65] | Ruiz-Matute AI, Hernandez-Hernandez O, Rodriguez-Sanchez S, Sanz ML, Martinez-Castro I ( 2011). Derivatization of carbohydrates for GC and GC-MS analyses. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 879, 1226-1240. |
[66] | Rumpel C, Dignac MF ( 2006). Gas chromatographic analysis of monosaccharides in a forest soil profile: Analysis by gas chromatography after trifluoroacetic acid hydrolysis and reduction-acetylation. Soil Biology & Biochemistry, 38, 1478-1481. |
[67] | Rumpel C, Eusterhues K, Kögel-Knabner I ( 2010). Non- cellulosic neutral sugar contribution to mineral associated organic matter in top- and subsoil horizons of two acid forest soils. Soil Biology & Biochemistry, 42, 379-382. |
[68] | Six J, Conant RT, Paul EA, Paustian K ( 2002). Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant and Soil, 241, 155-176. |
[69] | Sollins P, Homann P, Caldwell BA ( 1996). Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma, 74, 65-105. |
[70] | Sowden FJ, Ivarson KC ( 1962). Methods for the analysis of carbohydrate material in soil: 2. Soil Science, 94, 340-344. |
[71] | Spielvogel S, Prietzel J, Kögel-Knabner I ( 2007). Changes of lignin phenols and neutral sugars in different soil types of a high-elevation forest ecosystem 25 years after forest dieback. Soil Biology & Biochemistry, 39, 655-668. |
[72] | Steffens M, Kölbl A, Kögel-Knabner I ( 2009). Alteration of soil organic matter pools and aggregation in semi-arid steppe topsoils as driven by organic matter input. European Journal of Soil Science, 60, 198-212. |
[73] | Stevenson FJ ( 1994). Humus Chemistry: Genesis, Composition, Reactions, 2nd edn. Wiley, New York. |
[74] | Takeuchi M, Takasaki S, Inoue N, Kobata A ( 1987). Sensitive method for carbohydrate-composition analysis of glycoproteins by high-performance liquid- chromatography. Journal of Chromatography, 400, 207-213. |
[75] | Tanaka H, Hamada R, Kondoh A, Sakagami K (1990). Determination of component sugars in soil organic-matter by HPLC. Zentralblatt für Mikrobiologie, 145, 621-628. |
[76] | Thompson TL, Zaady E, Huancheng P, Wilson TB, Martens DA ( 2006). Soil C and N pools in patchy shrublands of the Negev and Chihuahuan Deserts. Soil Biology & Biochemistry, 38, 1943-1955. |
[77] | Tian QX, Zhang B, He HB, Zhang XD, Chen WX ( 2013). Distribution pattern of neutral sugar in forest soils along an altitude gradient in Changbai Mountains, Northeast China. Chinese Journal of Applied Ecology, 24, 1777-1783. |
[ 田秋香, 张彬, 何红波, 张旭东, 程维信 ( 2013). 长白山不同海拔梯度森林土壤中性糖分布特征. 应用生态学报, 24, 1777-1783.] | |
[78] | Trouve C, Disnar JR, Mariotti A, Guillet B ( 1996). Changes in the amount and distribution of neutral monosaccharides of savanna soils after plantation of Pinus and Eucalyptus in the Congo. European Journal of Soil Science, 47, 51-59. |
[79] | Uzaki M, Ishiwatari R ( 1983). Determination of cellulose and non-cellulose carbohydrates in recent sediments by gas chromatography. Journal of Chromatography A, 260, 487-492. |
[80] | Von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H ( 2006). Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions―A review. European Journal of Soil Science, 57, 426-445. |
[81] | Wang X, Zhang L, Wu J, Xu W, Wang X, Lu X ( 2017). Improvement of simultaneous determination of neutral monosaccharides and uronic acids by gas chromatography. Food Chemistry, 220, 198-207. |
[82] | Wang YP, Li XG, Fu T, Wang L, Turner NC, Siddique KHM, Li FM ( 2016). Multi-site assessment of the effects of plastic- film mulch on the soil organic carbon balance in semiarid areas of China. Agricultural and Forest Meteorology, 228, 42-51. |
[83] | Weil J, Brewer M, Hendrickson R, Sarikaya A, Ladisch MR ( 1998). Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Applied Biochemistry and Biotechnology, 70-72, 99-111. |
[84] | Xie H, Li J, Zhu P, Peng C, Wang J, He H, Zhang X ( 2014). Long-term manure amendments enhance neutral sugar accumulation in bulk soil and particulate organic matter in a Mollisol. Soil Biology & Biochemistry, 78, 45-53. |
[85] | Zhang B, Du JF, Xie HT, Li WF, Wang LF, Zhang XD ( 2010). Effects of long-term fertilization on features of neutral sugars in particulate organic matter. Chinese Journal of Soil Science, 41, 617-621. |
[ 张彬, 杜介方, 解宏图, 李维福, 王连峰, 张旭东 ( 2010). 长期施肥对颗粒有机质中中性糖特性的影响. 土壤通报, 41, 617-621.] | |
[86] | Zhang LM, Xu MG, Lou YL, Wang XL, Li ZF ( 2014). Soil organic carbon fractionation methods. Soil and Fertilizer Sciences in China, ( 4), 1-6. |
[ 张丽敏, 徐明岗, 娄翼来, 王小利, 李忠芳 ( 2014). 土壤有机碳分组方法概述. 中国土壤与肥料, ( 4), 1-6.] | |
[87] | Zhang S, Li C, Zhou G, Che G, You J, Suo Y ( 2013). Determination of the carbohydrates from Notopterygium forbesii Boiss by HPLC with fluorescence detection. Carbohydrate Polymers, 97, 794-799. |
[88] | Zhang W, He H, Zhang X ( 2007). Determination of neutral sugars in soil by capillary gas chromatography after derivatization to aldononitrile acetates. Soil Biology & Biochemistry, 39, 2665-2669. |
[89] | Zhang ZQ, Khan NM, Nunez KM, Chess EK, Szabo CM ( 2012). Complete monosaccharide analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Analytical Chemistry, 84, 4104-4110. |
[90] | Zhao NN, Guggenberger G, Shibistova O, Thao DT, Shi WJ, Li XG ( 2014). Aspect-vegetation complex effects on biochemical characteristics and decomposability of soil organic carbon on the eastern Qinghai-Tibetan Plateau. Plant and Soil, 384, 289-301. |
[91] | Zhu X, Liang C, Masters MD, Kantola IB, Delucia EH ( 2018). The impacts of four potential bioenergy crops on soil carbon dynamics as shown by biomarker analyses and DRIFT spectroscopy. Global Change Biology Bioenergy, 10, 489-500. |
[1] | nianxun xi Yuan-Ye Zhang Shu-Rong ZHOU. Plant-soil feedbacks in community ecology [J]. Chin J Plant Ecol, 2023, 47(预发表): 0-0. |
[2] | . A review of stable hydrogen and oxygen isotopic offset in plant water source research [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[3] | Meng YAO Ang Wang Fangyuan Ma Jin Li Zihan Tai Yun-Ting FANG. Foliar assimilation and distribution of NO2 in tree seedlings using 15N stable isotope tracing technique [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[4] | Xiao-Yue WANG XU YiXin Chun huan LI Hai-Long YU Ju-Ying HUANG. Plant biomass, species diversity, and their influencing factors in a desert steppe of northwestern China under long-term changing precipitation [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[5] | Hui ZHANG Jing WenZENG Tao GONG. The relationships between root hairs and mycorrhizal fungi across typical subtropical tree species [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[6] |
Yuan-He YANG Dianye Zhang Wei Bin Liu Yang Feng Xuehui Mao Chao Xu Weijie He Mei Wang Lu Zheng Zhihu Wang Yuanyuan Lei-Yi CHEN.
Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[7] | LI Yi-Ding, SANG Qing-Tian, ZHANG Hao, LIU Long-Chang, PAN Qing-Min, WANG Yu, LIU Wei, YUAN Wen-Ping. Effects of air and soil humidification on the growth of young Pinus sylvestris var. mongolica trees in semi-arid area of Nei Mongol, China [J]. Chin J Plant Ecol, 2022, 46(9): 1077-1085. |
[8] | LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization [J]. Chin J Plant Ecol, 2022, 46(9): 1109-1124. |
[9] | FENG Ji-Guang, ZHANG Qiu-Fang, YUAN Xia, ZHU Biao. Effects of nitrogen and phosphorus addition on soil organic carbon: review and prospects [J]. Chin J Plant Ecol, 2022, 46(8): 855-870. |
[10] | YUAN Chun-Yang, LI Ji-Hong, HAN Xin, HONG Zong-Wen, LIU Xuan, DU Ting, YOU Cheng-Ming, LI Han, TAN Bo, XU Zhen-Feng. Effects of tree species on soil microbial biomass carbon and nitrogen: a case study of common garden experiment [J]. Chin J Plant Ecol, 2022, 46(8): 882-889. |
[11] | SUN Cai-Li, QIU Mo-Sheng, HUANG Chao-Xiang, WANG Yi-Wei. Characteristics of soil extracellular enzyme activities and their stoichiometry during rocky desertification in southwestern Guizhou, China [J]. Chin J Plant Ecol, 2022, 46(7): 834-845. |
[12] | YAN Han, MA Song-Mei, WEI Bo, ZHANG Hong-Xiang, ZHANG Dan. Historical distribution patterns and environmental drivers of relict shrub Amygdalus pedunculata [J]. Chin J Plant Ecol, 2022, 46(7): 766-774. |
[13] | XIA Ti-Ze, LI Lu-Shuang, YANG Han-Qi. Soil fungal community characteristics at the upper and lower altitudinal range limits of Cephalostachyum pingbianense [J]. Chin J Plant Ecol, 2022, 46(7): 823-833. |
[14] | GAN Zi-Ying, WANG Hao, DING Chi, LEI Mei, YANG Xiao-Gang, CAI Jing-Yan, QIU Qing-Yan, HU Ya-Lin. Effects of dissolved organic matter derived from different plant and tissues in a subtropical forest on soil priming effect and the underlying mechanisms [J]. Chin J Plant Ecol, 2022, 46(7): 797-810. |
[15] | QIN Jiang-Huan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Testing Janzen-Connell hypothesis based on plant-soil feedbacks in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 624-631. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn