Chin J Plant Ecol ›› 2009, Vol. 33 ›› Issue (6): 1184-1190.DOI: 10.3773/j.issn.1005-264x.2009.06.019
• Original article • Previous Articles Next Articles
GU Shu-Ping1,2, YIN Li-Yan1,3, LI Jie-Lin1,2, LI Wei1,4,*()
Received:
2008-12-23
Accepted:
2009-05-15
Online:
2009-12-23
Published:
2009-11-30
Contact:
LI Wei
GU Shu-Ping, YIN Li-Yan, LI Jie-Lin, LI Wei. DIURNAL CO<sub>2</sub> EXCHANGE RATES OF THE AQUATIC CRASSULACEAN ACID METABOLISM PLANT ISOETES SINENSIS PALMER AT DIFFERENT ALKALINITIES[J]. Chin J Plant Ecol, 2009, 33(6): 1184-1190.
碱度 Alkalinity (mmol·L-1) | 氯化钙 CaCl2 (mmol·L-1) | 硫酸镁 MgSO4 (mmol·L-1) | 碳酸氢钠NaHCO3 (mmol·L-1) | 碳酸氢钾KHCO3 (mmol·L-1) | 总离子强度 Ionic strength (mmol·L-1) | |
---|---|---|---|---|---|---|
低碱度 Low alkalinity | 0.85 | 0.63 | 0.28 | 0.70 | 0.15 | 3.85 |
高碱度 High alkalinity | 1.75 | 0.45 | 0.20 | 1.39 | 0.31 | 3.86 |
Table 1 Alkalinity, chemical composition and ionic strength of the solution
碱度 Alkalinity (mmol·L-1) | 氯化钙 CaCl2 (mmol·L-1) | 硫酸镁 MgSO4 (mmol·L-1) | 碳酸氢钠NaHCO3 (mmol·L-1) | 碳酸氢钾KHCO3 (mmol·L-1) | 总离子强度 Ionic strength (mmol·L-1) | |
---|---|---|---|---|---|---|
低碱度 Low alkalinity | 0.85 | 0.63 | 0.28 | 0.70 | 0.15 | 3.85 |
高碱度 High alkalinity | 1.75 | 0.45 | 0.20 | 1.39 | 0.31 | 3.86 |
总碱度 Alk (mmol·L-1) | 最终pH Final pH | [CT] (mmol·L-1) | [CO2] (mmol·L-1) | [HCO- 3] (mmol·L-1) | CT/Alk |
---|---|---|---|---|---|
0.85 | 8.1 (0.3) | 0.858 (0.009) | 0.016 (0.006) | 0.834 (0.006) | 1.009 (0.01) |
1.70 | 7.9 (0.1) | 1.737 (0.007) | 0.045 (0.006) | 1.683 (0.002) | 1.022 (0.004) |
Table 2 Conditions and calculated carbon concentrations at the end of pH-drift experiments for Isoetes sinensis
总碱度 Alk (mmol·L-1) | 最终pH Final pH | [CT] (mmol·L-1) | [CO2] (mmol·L-1) | [HCO- 3] (mmol·L-1) | CT/Alk |
---|---|---|---|---|---|
0.85 | 8.1 (0.3) | 0.858 (0.009) | 0.016 (0.006) | 0.834 (0.006) | 1.009 (0.01) |
1.70 | 7.9 (0.1) | 1.737 (0.007) | 0.045 (0.006) | 1.683 (0.002) | 1.022 (0.004) |
时间 Time | 温度 Temperature (℃) | pH | 总碱度Alk (mmol·L-1) | [CO2] (mmol·L-1) |
---|---|---|---|---|
13:43 | 29.9 (1.5) | 6.1 (0) | 1.16 | 0.86 (0.14) |
17:42 | 26.4 (0.2) | 6.2 (0) | 1.59 | 0.81 (0.06) |
0:35 | 25.2 (0.1) | 5.9 (0) | 1.90 | 2.21 (0.42) |
6:00 | 25.7 (0.1) | 6.1 (0) | 1.69 | 1.28 (0) |
Table 3 Diel changes in water temperature, pH, alkalinity and concentration of free CO2 in a habitat of Isoetes sinensis
时间 Time | 温度 Temperature (℃) | pH | 总碱度Alk (mmol·L-1) | [CO2] (mmol·L-1) |
---|---|---|---|---|
13:43 | 29.9 (1.5) | 6.1 (0) | 1.16 | 0.86 (0.14) |
17:42 | 26.4 (0.2) | 6.2 (0) | 1.59 | 0.81 (0.06) |
0:35 | 25.2 (0.1) | 5.9 (0) | 1.90 | 2.21 (0.42) |
6:00 | 25.7 (0.1) | 6.1 (0) | 1.69 | 1.28 (0) |
[1] | Allen ED, Spence DHN (1981). The differential ability of aquatic plants to utilize the inorganic carbon supply in fresh waters. New Phytologist, 87,269-283. |
[2] | Black MA, Maberly SC, Spence DHN (1981). Resistances to carbon dioxide fixation in four submerged freshwater macrophytes. New Phytologist, 89,557-568. |
[3] | Browse JA, Dromgoole FI, Brown JMA (1979). Photosynthesis in the aquatic macrophyte Egeria densa. III. Gas exchange studies. Australian Journal of Plant Physiology, 6,499-512. |
[4] | Denny P, Orr PT, Erskine DJC (1983). Potentiometric measurements of carbon dioxide flux of submerged aquatic macrophytes in pH-statted natural waters. Freshwater Biology, 13,507-519. |
[5] | Gran G (1952). Determination of the equivalence point in potentiometric titrations. Part II. Analyst, 77,661-671. |
[6] | Hao RM (郝日明), Huang ZY (黄致远), Liu XJ (刘兴剑), Wang ZL (王中磊), Xu HQ (徐惠强), Yao ZG (姚志刚) (2000). The natural distribution and characteristics of the rare and endangered plants in Jiangsu, China. Chinese Biodiversity (生物多样性), 8,153-162. (in Chinese with English abstract) |
[7] | Keeley JE (1998). CAM photosynthesis in submerged aquatic plants. Botanical Review, 64,121-175. |
[8] | Keeley JE, Bowes G (1982). Gas exchange characteristics of the submerged aquatic crassulacean acid metabolism plant, Isoetes howellii. Plant Physiology, 70,1455-1458. |
[9] | Keeley JE, Busch G (1984). Carbon assimilation characteristics of the aquatic CAM plant,Isoetes howellii. Plant Physiology, 76,525-530. |
[10] | Keeley JE, Rundel P (2003). Evolution of CAM and C 4carbon concentrating mechanisms. International Journal of Plant Sciences, 164,55-77. |
[11] | Keeley JE, Sandquist DR (1991). Diurnal photosynthesis cycle in CAM and non-CAM seasonal-pool aquatic macrophytes. Ecology, 72,716-727. |
[12] | Li W (李伟), Yin LY (尹黎燕) (2008). The electrochemical methods measuring photosynthesis of submerged macrophytes. Journal of Wuhan Botanical Research (武汉植物学研究), 26,99-103. (in Chinese with English abstract) |
[13] | Maberly SC, Spence DHN (1983). Photosynthetic inorganic carbon use by freshwater plants. Journal of Ecology, 71,705-724. |
[14] | Mackereth FJH, Heron J, Talling JF (1978). Water Analysis: Some Revised Methods for Limnologists. Freshwater Biological Association Scientific Publication, Cumbria, 34-42. |
[15] | Pang XA (庞新安) (2003). The Research on Photosynthetic Physiology and Habitat Characteristics of Isoetes sinensis Palmer in China (中华水韭光合生理特性及其栖息地生境特征研究). Master degree dissertation, Wuhan University, Wuhan, 44-45. (in Chinese with English abstract) |
[16] | Pang XA, Wang QF, Gituru WR, Liu H, Yang XL, Liu X (2003). A preliminary study of crassulacean acid metabolism (CAM) in the endangered aquatic quillwort Isöetes sinensis Palmer in China. Wuhan University Journal of Natural Sciences, 8,455-458. |
[17] | Smart RM, Barko JW (1985). Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquatic Botany, 21,251-263. |
[18] | Smith FA, Walker NA (1980). Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO 2 and HCO- 3 and to carbon isotopic discrimination. New Phytologist, 86,245-259. |
[19] | Spence DHN, Maberly SC (1985). Occurrence and ecological importance of HCO- 3 use among aquatic higher plants. In: Lucas WJ, Berry JA eds. Inorganic Carbon Uptake by Aquatic Photosynthetic Organisms. American Society of Plant Physiologists, Rockville, Maryland, 125-143. |
[20] | Stumm W, Morgan JJ (1981). Aquatic Chemistry: an Introduction Emphasizing Chemical Equilibria in Natural Waters. John Wiley and Sons, New York, 780. |
[21] | Talling JF (1973). The application of some electrochemical methods to the measurement of photosynthesis and respiration in fresh waters. Freshwater Biology, 3,335-362. |
[22] | Taylor WC, Hickey RJ (1992). Habitat, evolution and speciation in Isoetes. Annals of the Missouri Botanical Garden, 79,613-622. |
[23] | Ting IP (1985). Crassulacean acid metabolism. Annual Review of Plant Physiology, 36,595-622. |
[24] | Vestergaard O, Sand-Jensen K (2000). Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquatic Botany, 67,85-107. |
[25] | Yu YF (于永福) (1999). A milestone of wild plant conservation in China. Plants (植物杂志), 5,3-11. (in Chinese) |
[1] | LI Wei-Bin, ZHANG Hong-Xia, ZHANG Yu-Shu, CHEN Ni-Na. Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China [J]. Chin J Plant Ecol, 2023, 47(9): 1225-1233. |
[2] | JIANG Hai-Gang, ZENG Yun-Hong, TANG Hua-Xin, LIU Wei, LI Jie-Lin, HE Guo-Hua, QIN Hai-Yan, WANG Li-Chao, Victor RESCO de DIOS, YAO Yin-An. Rhythmic regulation of carbon fixation and water dissipation in three mosses [J]. Chin J Plant Ecol, 2023, 47(7): 988-997. |
[3] | LIU Hai-Yan, ZANG Sha-Sha, ZHANG Chun-Xia, ZUO Jin-Cheng, RUAN Zuo-Xi, WU Hong-Yan. Photochemical reaction of photosystem II in diatoms under phosphorus starvation and its response to high light intensity [J]. Chin J Plant Ecol, 2023, 47(12): 1718-1727. |
[4] | YUAN Yuan, MU Yan-Mei, DENG Yu-Jie, LI Xin-Hao, JIANG Xiao-Yan, GAO Sheng-Jie, ZHA Tian- Shan, JIA Xin. Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland [J]. Chin J Plant Ecol, 2022, 46(2): 162-175. |
[5] | WU Lin-Sheng, ZHANG Yong-Guang, ZHANG Zhao-Ying, ZHANG Xiao-Kang, WU Yun-Fei. Remote sensing of solar-induced chlorophyll fluorescence and its applications in terrestrial ecosystem monitoring [J]. Chin J Plant Ecol, 2022, 46(10): 1167-1199. |
[6] | JIN Chuan, LI Xin-Hao, JIANG Yan, XU Ming-Ze, TIAN Yun, LIU Peng, JIA Xin, ZHA Tian- Shan. Relative changes and regulation of photosynthetic energy partitioning components in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2021, 45(8): 870-879. |
[7] | WU Hong-Min, SHUANG Sheng-Pu, ZHANG Jin-Yan, CUN Zhu, MENG Zhen-Gui, LI Long-Gen, SHA Ben-Cai, CHEN Jun-Wen. Photodamage to photosystem in a typically shade-tolerant species Panax notoginseng exposed to a sudden increase in light intensity [J]. Chin J Plant Ecol, 2021, 45(4): 404-419. |
[8] | YE Zi-Piao, YU Feng, AN Ting, WANG Fu-Biao, KANG Hua-Jing. Investigation on CO2-response model of stomatal conductance for plants [J]. Chin J Plant Ecol, 2021, 45(4): 420-428. |
[9] | LI Jing, WANG Xin, WANG Zhen-Hua, WANG Bin, WANG Cheng-Zhang, DENG Mei-Feng, LIU Ling-Li. Effects of ozone and aerosol pollution on photosynthesis of poplar leaves [J]. Chin J Plant Ecol, 2020, 44(8): 854-863. |
[10] | LI Xu, WU Ting, CHENG Yan, TAN Na-Dan, JIANG Fen, LIU Shi-Zhong, CHU Guo-Wei, MENG Ze, LIU Ju-Xiu. Ecophysiological adaptability of four tree species in the southern subtropical evergreen broad-leaved forest to warming [J]. Chin J Plant Ecol, 2020, 44(12): 1203-1214. |
[11] | LIU Xiao-Ming, YANG Xiao-Fang, WANG Xuan, ZHANG Shou-Ren. Effects of simulated nitrogen deposition on growth and photosynthetic characteristics of Quercus wutaishanica and Acer pictum subsp. mono in a warm-temperate deciduous broad- leaved forest [J]. Chin J Plant Ecol, 2019, 43(3): 197-207. |
[12] | LI Xin-Hao, YAN Hui-Juan, WEI Teng-Zhou, ZHOU Wen-Jun, JIA Xin, ZHA Tian-Shan. Relative changes of resource use efficiencies and their responses to environmental factors in Artemisia ordosica during growing season [J]. Chin J Plant Ecol, 2019, 43(10): 889-898. |
[13] | CHENG Han-Ting, LI Qin-Fen, LIU Jing-Kun, YAN Ting-Liang, ZHANG Qiao-Yan, WANG Jin-Chuang. Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis [J]. Chin J Plant Ecol, 2018, 42(5): 585-594. |
[14] | ZHANG Na, ZHU Yang-Chun, LI Zhi-Qiang, LU Xin, FAN Ru-Qin, LIU Li-ZhuTONG , Fei, CHEN Jing, MU Chun-Sheng, ZHANG Zhen-Hua. Effect of Pb pollution on the growth, biomass allocation and photosynthesis of Phragmites australis in flood and drought environment [J]. Chin J Plant Ecol, 2018, 42(2): 229-239. |
[15] | Ji-Mei HAN, Wang-Feng ZHANG, Dong-Liang XIONG, Jaume FLEXAS, Ya-Li ZHANG. Mesophyll conductance and its limiting factors in plant leaves [J]. Chin J Plan Ecolo, 2017, 41(8): 914-924. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn