Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (7): 811-822.DOI: 10.17521/cjpe.2021.0280
Special Issue: 根系生态学; 菌根真菌; 微生物生态学
• Research Articles • Previous Articles Next Articles
XIE Huan1, ZHANG Qiu-Fang2, CHEN Ting-Ting1, ZENG Quan-Xin1, ZHOU Jia-Cong1, WU Yue1, LIN Hui-Ying1, LIU Yuan-Yuan1, YIN Yun-Feng1, CHEN Yue-Min1,*()
Received:
2021-08-02
Accepted:
2021-12-09
Online:
2022-07-20
Published:
2022-01-07
Contact:
CHEN Yue-Min
Supported by:
XIE Huan, ZHANG Qiu-Fang, CHEN Ting-Ting, ZENG Quan-Xin, ZHOU Jia-Cong, WU Yue, LIN Hui-Ying, LIU Yuan-Yuan, YIN Yun-Feng, CHEN Yue-Min. Interaction of soil arbuscular mycorrhizal fungi and plant roots acts on maintaining soil phosphorus availability under nitrogen addition[J]. Chin J Plant Ecol, 2022, 46(7): 811-822.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0280
Fig. 1 Extraction procedure and classification of soil phosphorus (P) fractions (Picture content referenced from Hedley et al. (1982), Tiessen & Moir (2007)). Pi, inorganic phosphorus; Po, organic phosphorus.
处理 Treatment | pH | 总碳含量 Total carbon (C) content (g·kg-1) | 总氮含量 Total N content (g·kg-1) | 有效氮含量 Available N content (mg·kg-1) | 可溶性有机碳含量 Dissolved organic C content (mg·kg-1) | 可溶性有机氮含量 Dissolved organic N content (mg·kg-1) |
---|---|---|---|---|---|---|
CK | 4.55 ± 0.06a | 16.30 ± 0.23a | 1.47 ± 0.03a | 7.97 ± 0.22b | 7.67 ± 0.60a | 4.61 ± 0.40b |
LN | 4.51 ± 0.06a | 16.20 ± 0.04a | 1.48 ± 0.05a | 8.58 ± 0.49a | 6.78 ± 0.44b | 6.68 ± 0.36a |
HN | 4.40 ± 0.09b | 16.61 ± 0.24a | 1.50 ± 0.02a | 8.83 ± 0.25a | 3.99 ± 0.71c | 7.24 ± 0.71a |
p | 0.03 | 0.06 | 0.57 | 0.01 | <0.01 | <0.01 |
Table 1 Effects of nitrogen (N) addition on soil physical and chemical properties at the Fuzhou Changʼan Mountain in Fujian Province
处理 Treatment | pH | 总碳含量 Total carbon (C) content (g·kg-1) | 总氮含量 Total N content (g·kg-1) | 有效氮含量 Available N content (mg·kg-1) | 可溶性有机碳含量 Dissolved organic C content (mg·kg-1) | 可溶性有机氮含量 Dissolved organic N content (mg·kg-1) |
---|---|---|---|---|---|---|
CK | 4.55 ± 0.06a | 16.30 ± 0.23a | 1.47 ± 0.03a | 7.97 ± 0.22b | 7.67 ± 0.60a | 4.61 ± 0.40b |
LN | 4.51 ± 0.06a | 16.20 ± 0.04a | 1.48 ± 0.05a | 8.58 ± 0.49a | 6.78 ± 0.44b | 6.68 ± 0.36a |
HN | 4.40 ± 0.09b | 16.61 ± 0.24a | 1.50 ± 0.02a | 8.83 ± 0.25a | 3.99 ± 0.71c | 7.24 ± 0.71a |
p | 0.03 | 0.06 | 0.57 | 0.01 | <0.01 | <0.01 |
Fig. 2 Effects of nitrogen (N) addition on soil phosphorus (P) components contents at the Fuzhou Changʼan Mountain in Fujian Province (mean ± SD). Different lowercase letters mean significant difference among different treatments (p < 0.05). CK, control; HN, high nitrogen; LN, low nitrogen. Pi, inorganic phosphorus; Po, organic phosphorus.
处理 Treatment | 子囊菌门 Ascomycota | 担子菌门 Basidiomycotaota | 被孢菌门 Mortierellomycota | 未定义 Unclassified | 罗兹菌门 Rozellomycota | 球囊菌门 Glomeromycota | 其他 Other |
---|---|---|---|---|---|---|---|
CK | 38.73 ± 9.28a | 26.04 ± 7.02a | 11.94 ± 3.16a | 11.18 ± 1.03a | 9.87 ± 6.22a | 0.27 ± 0.01b | 1.97 ± 0.56a |
LN | 39.02 ± 6.00a | 26.16 ± 3.33a | 16.86 ± 3.52a | 10.83 ± 4.13a | 4.61 ± 0.97a | 1.09 ± 0.11a | 1.43 ± 0.48a |
HN | 35.05 ± 12.21a | 37.24 ± 13.12a | 14.43 ± 2.39a | 8.11 ± 3.91a | 3.77 ± 1.27a | 0.62 ± 0.01a | 0.90 ± 0.63a |
p | 0.809 | 0.175 | 0.129 | 0.400 | 0.091 | <0.001 | 0.072 |
Table 2 Effects of nitrogen addition on soil fungi community (%) at the Fuzhou Changʼan Mountain in Fujian Province (mean ± SD)
处理 Treatment | 子囊菌门 Ascomycota | 担子菌门 Basidiomycotaota | 被孢菌门 Mortierellomycota | 未定义 Unclassified | 罗兹菌门 Rozellomycota | 球囊菌门 Glomeromycota | 其他 Other |
---|---|---|---|---|---|---|---|
CK | 38.73 ± 9.28a | 26.04 ± 7.02a | 11.94 ± 3.16a | 11.18 ± 1.03a | 9.87 ± 6.22a | 0.27 ± 0.01b | 1.97 ± 0.56a |
LN | 39.02 ± 6.00a | 26.16 ± 3.33a | 16.86 ± 3.52a | 10.83 ± 4.13a | 4.61 ± 0.97a | 1.09 ± 0.11a | 1.43 ± 0.48a |
HN | 35.05 ± 12.21a | 37.24 ± 13.12a | 14.43 ± 2.39a | 8.11 ± 3.91a | 3.77 ± 1.27a | 0.62 ± 0.01a | 0.90 ± 0.63a |
p | 0.809 | 0.175 | 0.129 | 0.400 | 0.091 | <0.001 | 0.072 |
处理 Treatment | 酸性磷酸单酯酶 Acid phosphomonoesterase (nmol·g-1·h-1) | 酸性磷酸双酯酶 Acid phosphodiesterase (nmol·g-1·h-1) | 微生物生物量碳含量 Microbial biomass carbon content (mg·kg-1) | 微生物生物量氮含量 Microbial biomass N content (mg·kg-1) | 微生物生物量磷含量 Microbial biomass phosphorus content (mg·kg-1) |
---|---|---|---|---|---|
CK | 24.68 ± 2.44b | 1.67 ± 0.08a | 215.42 ± 21.87c | 29.59 ± 1.40a | 41.07 ± 3.31a |
LN | 48.89 ± 4.08a | 1.72 ± 0.05a | 273.59 ± 18.53b | 26.45 ± 0.98b | 21.75 ± 2.09b |
HN | 19.59 ± 2.90c | 1.19 ± 0.03b | 358.27 ± 20.05a | 27.62 ± 0.95b | 20.78 ± 6.45b |
p | <0.001 | <0.001 | <0.001 | 0.003 | <0.001 |
Table 3 Effects of nitrogen (N) addition on soil enzymes activity and microbial biomass nutrient content at the Fuzhou Changʼan Mountain in Fujian Province (mean ± SD)
处理 Treatment | 酸性磷酸单酯酶 Acid phosphomonoesterase (nmol·g-1·h-1) | 酸性磷酸双酯酶 Acid phosphodiesterase (nmol·g-1·h-1) | 微生物生物量碳含量 Microbial biomass carbon content (mg·kg-1) | 微生物生物量氮含量 Microbial biomass N content (mg·kg-1) | 微生物生物量磷含量 Microbial biomass phosphorus content (mg·kg-1) |
---|---|---|---|---|---|
CK | 24.68 ± 2.44b | 1.67 ± 0.08a | 215.42 ± 21.87c | 29.59 ± 1.40a | 41.07 ± 3.31a |
LN | 48.89 ± 4.08a | 1.72 ± 0.05a | 273.59 ± 18.53b | 26.45 ± 0.98b | 21.75 ± 2.09b |
HN | 19.59 ± 2.90c | 1.19 ± 0.03b | 358.27 ± 20.05a | 27.62 ± 0.95b | 20.78 ± 6.45b |
p | <0.001 | <0.001 | <0.001 | 0.003 | <0.001 |
处理 Treatment | 根系生物量 Root biomass (g·plant-1) | 根系总碳含量 Root total carbon content (g·kg-1) | 根系总氮含量 Root total N content (g·kg-1) | 根系总磷含量 Root total phosphorous content (g·kg-1) | 侵染率 Root colonization rate (%) | 直径 root diameter (mm) | 比根长 Specific root length (m·g-1) | 比表面积 Specific root surface area (cm·g-1) | 组织密度 Root tissue density (g·cm-3) |
---|---|---|---|---|---|---|---|---|---|
CK | 2.79 ± 0.46b | 459.61 ± 4.62b | 9.61 ± 1.20a | 1.66 ± 0.23a | 58.23 ± 8.71c | 0.82 ± 0.13a | 36.13 ± 6.39a | 554.02 ± 25.53a | 0.20 ± 0.10a |
LN | 4.01 ± 0.39a | 467.72 ± 8.98a | 10.01 ± 0.98a | 1.37 ± 0.19ab | 80.09 ± 4.13b | 0.69 ± 0.44a | 35.36 ± 9.58a | 265.01 ± 62.72b | 0.62 ± 0.37a |
HN | 3.06 ± 0.49b | 470.08 ± 5.63a | 8.63 ± 1.18a | 1.31 ± 0.11b | 89.67 ± 4.69a | 0.39 ± 0.12a | 36.68 ± 12.59a | 342.53 ± 63.65b | 0.44 ± 0.21a |
p | 0.003 | <0.001 | 0.180 | 0.023 | <0.001 | 0.079 | 0.978 | <0.001 | 0.062 |
Table 4 Effects of nitrogen (N) addition on plant roots traits at the Fuzhou Changʼan Mountain in Fujian Province (mean ± SD)
处理 Treatment | 根系生物量 Root biomass (g·plant-1) | 根系总碳含量 Root total carbon content (g·kg-1) | 根系总氮含量 Root total N content (g·kg-1) | 根系总磷含量 Root total phosphorous content (g·kg-1) | 侵染率 Root colonization rate (%) | 直径 root diameter (mm) | 比根长 Specific root length (m·g-1) | 比表面积 Specific root surface area (cm·g-1) | 组织密度 Root tissue density (g·cm-3) |
---|---|---|---|---|---|---|---|---|---|
CK | 2.79 ± 0.46b | 459.61 ± 4.62b | 9.61 ± 1.20a | 1.66 ± 0.23a | 58.23 ± 8.71c | 0.82 ± 0.13a | 36.13 ± 6.39a | 554.02 ± 25.53a | 0.20 ± 0.10a |
LN | 4.01 ± 0.39a | 467.72 ± 8.98a | 10.01 ± 0.98a | 1.37 ± 0.19ab | 80.09 ± 4.13b | 0.69 ± 0.44a | 35.36 ± 9.58a | 265.01 ± 62.72b | 0.62 ± 0.37a |
HN | 3.06 ± 0.49b | 470.08 ± 5.63a | 8.63 ± 1.18a | 1.31 ± 0.11b | 89.67 ± 4.69a | 0.39 ± 0.12a | 36.68 ± 12.59a | 342.53 ± 63.65b | 0.44 ± 0.21a |
p | 0.003 | <0.001 | 0.180 | 0.023 | <0.001 | 0.079 | 0.978 | <0.001 | 0.062 |
Fig. 4 Redundancy analysis (RDA) of soil microbial (A) and plant roots characteristics (B) on soil phosphorus (P) components at the Fuzhou Changʼan Mountain in Fujian Province. AcP, acid phosphomonolase; AMF, arbuscular mycorrhizal fungi; FRD, fine root diameter; MBC, microbial biomass carbon; MBN, microbial biomass nitrogen; MBP, microbial biomass phosphorus; PD, acid phosphodiesterase; Pi, inorganic phosphorus; Po, organic phosphorus; RC, root colonization; RM, root biomass; RTC, root total carbon; RTD, special root density; RTN, root total nitrogen; RTP, root total phosphorous; SRA, special root area; SRL, special root length.
Fig. 5 Variation-partitioning analysis showing the percentages of the variance in soil phosphorus components explained by plant and microorganism variables.
根系生物量 Root biomass | 直径 Root diameter | 比根长 Specific root length | 比表面积 Specific root surface area | 组织密度 Root tissue density | 侵染率 Root colonization rate | 根系总碳含量 Root total carbon content | |
---|---|---|---|---|---|---|---|
酸性磷酸单酯酶活性 Acid phosphomonoesterase activity | 0.713** | 0.264 | -0.009 | -0.287 | -0.434 | 0.064 | 0.267 |
酸性磷酸双酯酶活性 Acid phosphodiesterase activity | 0.306 | 0.541* | 0.001 | 0.400 | -0.585* | -0.590* | -0.417 |
丛枝菌根真菌相对丰度 Mycorrhizal Fungi relative abundance | 0.789** | 0.013 | 0.032 | -0.668** | -0.112 | 0.485 | 0.625* |
微生物生物量碳含量 Microbial biomass carbon content | 0.007 | -0.639* | -0.042 | -0.713** | 0.537* | 0.740** | 0.796** |
微生物生物量氮含量 Microbial biomass nitrogen content | -0.566* | 0.061 | -0.068 | 0.687** | 0.041 | -0.589* | -0.642** |
微生物生物量磷含量 Microbial biomass phosphorus content | -0.439 | 0.362 | 0.119 | 0.829** | -0.177 | 0.855** | -0.894** |
Table 5 Correlation coefficients between soil microbial and plant roots characteristics at the Fuzhou Changʼan Mountain in Fujian Province
根系生物量 Root biomass | 直径 Root diameter | 比根长 Specific root length | 比表面积 Specific root surface area | 组织密度 Root tissue density | 侵染率 Root colonization rate | 根系总碳含量 Root total carbon content | |
---|---|---|---|---|---|---|---|
酸性磷酸单酯酶活性 Acid phosphomonoesterase activity | 0.713** | 0.264 | -0.009 | -0.287 | -0.434 | 0.064 | 0.267 |
酸性磷酸双酯酶活性 Acid phosphodiesterase activity | 0.306 | 0.541* | 0.001 | 0.400 | -0.585* | -0.590* | -0.417 |
丛枝菌根真菌相对丰度 Mycorrhizal Fungi relative abundance | 0.789** | 0.013 | 0.032 | -0.668** | -0.112 | 0.485 | 0.625* |
微生物生物量碳含量 Microbial biomass carbon content | 0.007 | -0.639* | -0.042 | -0.713** | 0.537* | 0.740** | 0.796** |
微生物生物量氮含量 Microbial biomass nitrogen content | -0.566* | 0.061 | -0.068 | 0.687** | 0.041 | -0.589* | -0.642** |
微生物生物量磷含量 Microbial biomass phosphorus content | -0.439 | 0.362 | 0.119 | 0.829** | -0.177 | 0.855** | -0.894** |
Fig. 6 A conceptual diagram of the responses of soil phosphorus (P) components to nitrogen (N) addition and the regulation effect of soil microbes and plant root systems. “ ”、“ ”、“ ” represent that the contents of soil microbial and plant root index show significant increase, decrease, and no significant change, respectively. “ ” and “ ” represent that soil phosphorus components show significant increase and decrease, respectively. Pi, inorganic phosphorus; Po, organic phosphorus.
[1] | Ackerman D, Millet DB, Chen X (2019). Global estimates of inorganic nitrogen deposition across four decades. Global Biogeochemical Cycles, 33, 100-107. |
[2] |
Aoki M, Fujii K, Kitayama K (2012). Environmental control of root exudation of low-molecular weight organic acids in tropical rainforests. Ecosystems, 15, 1194-1203.
DOI URL |
[3] | Bing HJ, Wu YH, Zhou J, Sun HY, Luo J, Wang JP, Yu D (2016). Stoichiometric variation of carbon, nitrogen, and phosphorus in soils and its implication for nutrient limitation in alpine ecosystem of eastern Tibetan Plateau. Journal of Soils & Sediments, 16, 405-416. |
[4] |
Braun S, Thomas VFD, Quiring R, Flückiger W (2010). Does nitrogen deposition increase forest production? The role of phosphorus. Environmental Pollution, 158, 2043-2052.
DOI URL |
[5] |
Brookes PC, Powlson DS, Jenkinson DS (1982). Measurement of microbial biomass phosphorus in soil. Soil Biology & Biochemistry, 14, 319-329.
DOI URL |
[6] |
Cao JL, Lin TC, Yang ZJ, Zheng Y, Xie L, Xiong DC, Yang YS (2020). Warming exerts a stronger effect than nitrogen addition on the soil arbuscular mycorrhizal fungal community in a young subtropical Cunninghamia lanceolata plantation. Geoderma, 367, DOI: 10.1016/j.geoderma.2020.114273.
DOI |
[7] |
Fan YX, Zhong XJ, Lin F, Liu CC, Yang LM, Wang MH, Chen GS, Chen YM, Yang YS (2019). Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 337, 246-255.
DOI URL |
[8] |
Fujii K, Aoki M, Kitayama K (2013). Reprint of “Biodegradation of low molecular weight organic acids in rhizosphere soils from a tropical montane rain forest”. Soil Biology & Biochemistry, 56, 3-9.
DOI URL |
[9] |
George TS, Turner BL, Gregory PJ, Cade-Menun BJ, Richardson AE (2006). Depletion of organic phosphorus from Oxisols in relation to phosphatase activities in the rhizosphere. European Journal of Soil Science, 57, 47-57.
DOI URL |
[10] |
Goswami S, Fisk MC, Vadeboncoeur MA, Garrison-Johnston M, Yanai RD, Fahey TJ (2018). Phosphorus limitation of aboveground production in northern hardwood forests. Ecology, 99, 438-449.
DOI URL |
[11] | Guo W, Geng ZZ, Chen Z, Li Q, Yang YX, Shen S, Jin DM, Wang CG (2018). Effects of nitrogen addition on mycorrhizal fungi community structure and diversity of Pinus koraiensis and Fraxinus mandshurica in Changbai Mountain. Ecology and Environmental Sciences, 27, 10-17. |
[郭伟, 耿珍珍, 陈朝, 李晴, 杨颜熙, 申思, 金大明, 王存国 (2018). 模拟氮沉降增加对长白山红松和水曲柳菌根真菌群落结构及多样性的影响. 生态环境学报, 27, 10-17.] | |
[12] |
Hedley MJ, Stewart JWB, Chauhan BS (1982). Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46, 970-976.
DOI URL |
[13] |
Helfenstein J, Tamburini F, von Sperber C, Massey MS, Pistocchi C, Chadwick OA, Vitousek PM, Kretzschmar R, Frossard E (2018). Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nature Communications, 9, 3226. DOI: 10.1038/s41467-018-05731-2.
DOI PMID |
[14] |
Heuck C, Smolka G, Whalen ED, Frey S, Gundersen P, Moldan F, Fernandez IJ, Spohn M (2018). Effects of long-term nitrogen addition on phosphorus cycling in organic soil horizons of temperate forests. Biogeochemistry, 141, 167-181.
DOI URL |
[15] |
Hou E, Chen C, Kuang Y, Zhang Y, Heenan M, Wen D (2016). A structural equation model analysis of phosphorus transformations in global unfertilized and uncultivated soils. Global Biogeochemical Cycles, 30, 1300-1309.
DOI URL |
[16] |
Huang WJ, Zhou GY, Liu JX, Duan HL, Liu XZ, Fang X, Zhang DQ (2014). Shifts in soil phosphorus fractions under elevated CO2and N addition in model forest ecosystems in subtropical China. Plant Ecology, 215, 1373-1384.
DOI URL |
[17] | James M, Bernard M (1997). Reviews: working with mycorrhizas in forestry and agriculture. New Phytologist, 135, 788. |
[18] | Jia LQ, Chen GS, Zhang LH, Chen TT, Jiang Q, Chen YH, Fan AL, Wang X (2019). Plastic responses of fine root morphological traits of Castanopsis fabri and Castanopsis carlesii to short-term nitrogen addition. Chinese Journal of Applied Ecology, 30, 4003-4011. |
[贾林巧, 陈光水, 张礼宏, 陈廷廷, 姜琦, 陈宇辉, 范爱连, 王雪 (2019). 罗浮栲和米槠细根形态功能性状对短期氮添加的可塑性响应. 应用生态学报, 30, 4003-4011.]
DOI |
|
[19] |
Kramer-Walter KR, Laughlin DC (2017). Root nutrient concentration and biomass allocation are more plastic than morphological traits in response to nutrient limitation. Plant and Soil, 416, 539-550.
DOI URL |
[20] |
Lambers H, Raven JA, Shaver GR, Smith SE (2008). Plant nutrient-acquisition strategies change with soil age. Trends in Ecology & Evolution, 23, 95-103.
DOI URL |
[21] |
Li L, McCormack ML, Chen FS, Wang HM, Ma ZQ, Guo DL (2019). Different responses of absorptive roots and arbuscular mycorrhizal fungi to fertilization provide diverse nutrient acquisition strategies in Chinese fir. Forest Ecology and Management, 433, 64-72.
DOI URL |
[22] |
Lin GG, Gao MX, Zeng DH, Fang YT (2020). Aboveground conservation acts in synergy with belowground uptake to alleviate phosphorus deficiency caused by nitrogen addition in a larch plantation. Forest Ecology and Management, 473, 118309. DOI: 10.1016/j.foreco.2020.118309.
DOI URL |
[23] |
Marklein AR, Houlton BZ (2012). Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytologist, 193, 696-704.
DOI PMID |
[24] |
Oehl F, Oberson A, Probst M, Fliessbach A, Roth HR, Frossard E (2001). Kinetics of microbial phosphorus uptake in cultivated soils. Biology and Fertility of Soils, 34, 31-41.
DOI URL |
[25] |
Ostonen I, Truu M, Helmisaari HS, Lukac M, Borken W, Vanguelova E, Godbold DL, Lõhmus K, Zang U, Tedersoo L, Preem JK, Rosenvald K, Aosaar J, Armolaitis K, Frey J, et al. (2017). Adaptive root foraging strategies along a boreal-temperate forest gradient. New Phytologist, 215, 977-991.
DOI PMID |
[26] |
Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA (2013). Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nature Communications, 4, 2934. DOI: 1038/ncomms3934.
DOI PMID |
[27] |
Rennenberg H, Herschbach C (2013). Phosphorus nutrition of woody plants: many questions-few answers. Plant Biology, 15, 785-788.
DOI PMID |
[28] |
Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
DOI URL |
[29] |
Shipley B, Meziane D (2002). The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Functional Ecology, 16, 326-331.
DOI URL |
[30] | Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. 3rd ed. Academic Press, Salt Lake City, USA. |
[31] | Solaiman MZ, Ezawa T, Kojima T, Saito M (1999). Polyphosphates in intraradical and extraradical hyphae of an arbuscular mycorrhizal fungus, Gigaspora margarita. Applied and Environmental Microbiology, 65, 5604-5606. |
[32] |
Tian J, Wei K, Condron LM, Chen Z, Xu Z, Chen L (2016). Impact of land use and nutrient addition on phosphatase activities and their relationships with organic phosphorus turnover in semi-arid grassland soils. Biology and Fertility of Soils, 52, 675-683.
DOI URL |
[33] | Tiessen H, Moir JO (2007). Characterization of available P by sequential extraction//Carter MR, Gregorich EG. Soil Sampling and Methods of Analysis. 2nd ed. CRC Press, Boca Raton, USA. 293-306. |
[34] |
Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007). Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiology Ecology, 61, 295-304.
PMID |
[35] |
Ushio M, Fujiki Y, Hidaka A, Kitayama K (2015). Linkage of root physiology and morphology as an adaptation to soil phosphorus impoverishment in tropical montane forests. Functional Ecology, 29, 1235-1245.
DOI URL |
[36] |
Vance ED, Brookes PC, Jenkinson DS (1987). An extraction method for measuring soil microbial biomass C. Soil Biology & Biochemistry, 19, 703-707.
DOI URL |
[37] |
Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010). Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications, 20, 5-15.
DOI URL |
[38] | Wardle DA, Walker LR, Bardgett RD (2005). Response to comment on “Ecosystem properties and forest decline in contrasting long-term chronosequences”. Science, 308, 633. |
[39] |
Wright SJ, Turner BJ, Yavitt JB, Harms KE, Kaspari M, Tanner EVJ, Bujan J, Griffin EA, Mayor JR, Pasquini SC, Sheldrake M, Garcia MN (2018). Plant responses to fertilization experiments in lowland, species-rich, tropical forests. Ecology, 99, 1129-1138.
DOI URL |
[40] |
Xiang W, Li L, Ouyang S, Xiao W, Zeng L, Chen L, Lei P, Deng X, Zeng Y, Fang J, Forrester DI (2021). Effects of stand age on tree biomass partitioning and allometric equations in Chinese fir (Cunninghamia lanceolata) plantations. European Journal of Forest Research, 140, 317-332.
DOI URL |
[41] | Xie H, Zhang QF, Zeng QX, Li YX, Ma YP, Lin HY, Liu YY, Yin YF, Chen YM (2020). Nitrogen application drives the transformation of phosphorus fractions in Cunninghamia lanceolata plantation by changing microbial biomass phosphorus. Chinese Journal of Ecology, 39, 3934-3942. |
[谢欢, 张秋芳, 曾泉鑫, 李宇轩, 马亚培, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民 (2020). 施氮通过改变微生物生物量磷驱动杉木人工林土壤磷组分转化. 生态学杂志, 39, 3934-3942.] | |
[42] | Zeng QX, Zeng XM, Lin KM, Zhang QF, Cheng L, Zhou JC, Lin QY, Chen YM, Xu JG (2020). Responses of soil phosphorus fractions and microorganisms to nitrogen application in a subtropical Phyllostachys pubescen forest. Chinese Journal of Applied Ecology, 31, 753-760. |
[曾泉鑫, 曾晓敏, 林开淼, 张秋芳, 程蕾, 周嘉聪, 林巧玉, 陈岳民, 徐建国 (2020). 亚热带毛竹林土壤磷组分和微生物对施氮的响应. 应用生态学报, 31, 753-760.]
DOI |
|
[43] | Zhang HZ, Shi LL, Wen D, Yu KL (2016). Soil potential labile but not occluded phosphorus forms increase with forest succession. Biology & Fertility of Soils, 52, 41-51. |
[44] | Zhang W (2013). Observation of N/S Deposition Fluxes and Investigation of Simulated S Deposition Effect on Soil N2O Production of Castanopsis carlesii Forests. Master degree dissertation, Fujian Normal University, Fuzhou. 15-19. |
[章伟 (2013). N/S沉降通量观测及模拟氮沉降对米槠林土壤N2O产生影响研究. 硕士学位论文, 福建师范大学, 福州. 15-19.] |
[1] | Qingshui Yu xiaofeng ni Jiangling Zhu Zhi-Yao TANG Jing-Yun FANG. Effects of 10 years of nitrogen and phosphorus additions on leaf non-structural carbohydrates of dominant plants in two tropical rainforests in the Jianfengling, Hainan [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Xu Zi-Yi Guang-Ze JIN. Variation and trade-offs in fine root functional traits of seedlings of different mycorrhizal types in mixed broadleaved-Korean pine forests [J]. Chin J Plant Ecol, 2024, 48(5): 612-622. |
[3] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[4] | WU Jun-Mei, ZENG Quan-Xin, MEI Kong-Can, LIN Hui-Ying, XIE Huan, LIU Yuan-Yuan, XU Jian-Guo, CHEN Yue-Min. Soil phosphorus availability regulates the response of soil enzyme activity and enzymatic stoichiometry to litter addition in a subtropical forest [J]. Chin J Plant Ecol, 2024, 48(2): 242-253. |
[5] | GAO Min, GOU Qian-Qian, WANG Guo-Hua, GUO Wen-Ting, ZHANG Yu, ZHANG Yan. Effects of low temperature stress on the physiology and growth of Caragana korshinskii seedlings from different mother tree ages [J]. Chin J Plant Ecol, 2024, 48(2): 201-214. |
[6] | YAN Chen-Yi, GONG Ji-Rui, ZHANG Si-Qi, ZHANG Wei-Yuan, DONG Xue-De, HU Yu-Xia, YANG Gui-Sen. Effects of nitrogen addition on soil active organic carbon in a temperate grassland of Nei Mongol, China [J]. Chin J Plant Ecol, 2024, 48(2): 229-241. |
[7] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[8] | SHU Wei-Wei, YANG Kun, MA Jun-Xu, MIN Hui-Lin, CHEN Lin, LIU Shi-Ling, HUANG Ri-Yi, MING An-Gang, MING Cai-Dao, TIAN Zu-Wei. Effects of nitrogen addition on the morphological and chemical traits of fine roots with different orders of Castanopsis hystrix [J]. Chin J Plant Ecol, 2024, 48(1): 103-112. |
[9] | WANG Yan-Ling, ZHAO Li-Jun, ZHU Li-Qiong, MO Ruo-Guo, LIN Ting, ZHAO Xiao-Yu. Seedling quantitative characteristics and dynamics of Syzygium hancei populations in Guangxi, China [J]. Chin J Plant Ecol, 2023, 47(9): 1278-1286. |
[10] | ZHAO Yan-Chao, CHEN Li-Tong. Soil nutrients modulate response of aboveground biomass to warming in alpine grassland on the Qingzang Plateau [J]. Chin J Plant Ecol, 2023, 47(8): 1071-1081. |
[11] | SU Wei, CHEN Ping, WU Ting, LIU Yue, SONG Yu-Ting, LIU Xu-Jun, LIU Ju-Xiu. Effects of nitrogen addition and extended dry season on non-structural carbohydrates, nutrients and biomass of Dalbergia odorifera seedlings [J]. Chin J Plant Ecol, 2023, 47(8): 1094-1104. |
[12] | LI Hong-Qin, ZHANG Fa-Wei, YI Lü-Bei. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow [J]. Chin J Plant Ecol, 2023, 47(7): 922-931. |
[13] | WU Fan, WU Chen, ZHANG Yu-Hui, YU Heng, WEI Zhi-Hua, ZHENG Wei, LIU Xiao-Fei, CHEN Shi-Dong, YANG Zhi-Jie, XIONG De-Cheng. Effects of warming on growth, morphology and physiological metabolism characteristics of fine roots in a mature Cunninghamia lanceolata plantation in different seasons [J]. Chin J Plant Ecol, 2023, 47(6): 856-866. |
[14] | HE Min, XU Qiu-Yue, XIA Yun, YANG Liu-Ming, FAN Yue-Xin, YANG Yu-Sheng. Plant phosphorus acquisition mechanisms and their response to global climate changes [J]. Chin J Plant Ecol, 2023, 47(3): 291-305. |
[15] | LUO Lai-Cong, LAI Xiao-Qin, BAI Jian, LI Ai-Xin, FANG Hai-Fu, Nasir SHAD, TANG Ming, HU Dong-Nan, ZHANG Ling. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chin J Plant Ecol, 2023, 47(2): 206-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn