Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (10): 1351-1360.DOI: 10.17521/cjpe.2023.0116 cstr: 32100.14.cjpe.2023.0116
• Research Articles • Previous Articles Next Articles
WANG Li-Li1,2, SONG Xiao-Tong2, GU Ji-Qi2, SHAO Xiao-Ming2,3,*()(
)
Received:
2023-05-04
Accepted:
2023-12-21
Online:
2024-10-20
Published:
2024-01-22
Contact:
SHAO Xiao-Ming
Supported by:
WANG Li-Li, SONG Xiao-Tong, GU Ji-Qi, SHAO Xiao-Ming. Relationship between morphological characteristics of Didymodon constrictus and environmental changes in Xizang and its response strategies[J]. Chin J Plant Ecol, 2024, 48(10): 1351-1360.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0116
Fig. 2 Schematic diagram of morphological characteristics measurement of Didymodon constrictus in Xizang. A, Leaf. B, Leaf middle cell. C, Leaf base cell. ①, length of leaf; ②, width of leaf; ③, length of rib; ④, width of rib; ⑤, length of leaf middle cell cavity; ⑥, width of leaf middle cell cavity; ⑦, length of leaf bas cell cavity; ⑧, width of leaf bas cell cavity.
形态属性 Morphological trait | 样本量 Sample size | 极小值 Minimum | 极大值 Maximum | 平均值 Mean | 标准误 Standard error | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 可塑性指数 Plasticity index |
---|---|---|---|---|---|---|---|---|
s_leaf | 77 | 0.172 | 0.622 | 0.372 | 0.011 | 0.097 | 26.15 | 0.723 |
height | 77 | 0.170 | 0.540 | 0.300 | 0.009 | 0.076 | 25.39 | 0.685 |
l_leaf | 77 | 0.862 | 1.765 | 1.339 | 0.023 | 0.203 | 15.12 | 0.512 |
l_rib | 77 | 0.908 | 1.858 | 1.436 | 0.024 | 0.214 | 14.91 | 0.511 |
d_rib | 77 | 0.040 | 0.079 | 0.057 | 0.001 | 0.009 | 15.00 | 0.494 |
d_leaf | 77 | 0.423 | 0.748 | 0.562 | 0.008 | 0.073 | 12.93 | 0.434 |
a_leaf | 77 | 31.780 | 55.380 | 42.139 | 0.601 | 5.273 | 12.51 | 0.426 |
l/d_leaf | 77 | 1.719 | 2.919 | 2.387 | 0.029 | 0.253 | 10.61 | 0.411 |
Table 1 Morphological characteristics at plant and leaf levels of Didymodon constrictus in Xizang
形态属性 Morphological trait | 样本量 Sample size | 极小值 Minimum | 极大值 Maximum | 平均值 Mean | 标准误 Standard error | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 可塑性指数 Plasticity index |
---|---|---|---|---|---|---|---|---|
s_leaf | 77 | 0.172 | 0.622 | 0.372 | 0.011 | 0.097 | 26.15 | 0.723 |
height | 77 | 0.170 | 0.540 | 0.300 | 0.009 | 0.076 | 25.39 | 0.685 |
l_leaf | 77 | 0.862 | 1.765 | 1.339 | 0.023 | 0.203 | 15.12 | 0.512 |
l_rib | 77 | 0.908 | 1.858 | 1.436 | 0.024 | 0.214 | 14.91 | 0.511 |
d_rib | 77 | 0.040 | 0.079 | 0.057 | 0.001 | 0.009 | 15.00 | 0.494 |
d_leaf | 77 | 0.423 | 0.748 | 0.562 | 0.008 | 0.073 | 12.93 | 0.434 |
a_leaf | 77 | 31.780 | 55.380 | 42.139 | 0.601 | 5.273 | 12.51 | 0.426 |
l/d_leaf | 77 | 1.719 | 2.919 | 2.387 | 0.029 | 0.253 | 10.61 | 0.411 |
形态属性 Morphological trait | 样本量 Sample size | 极小值 Minimum | 极大值 Maximum | 平均值 Mean | 标准误 Standard error | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 可塑性指数 Plasticity index |
---|---|---|---|---|---|---|---|---|
s_mid | 77 | 56.282 | 190.631 | 92.794 | 2.818 | 24.730 | 26.65 | 0.705 |
s_bas | 77 | 87.021 | 289.856 | 131.243 | 4.423 | 38.816 | 29.58 | 0.700 |
cwt_bas | 77 | 0.281 | 0.697 | 0.502 | 0.009 | 0.079 | 15.67 | 0.597 |
cwt_mid | 77 | 0.277 | 0.656 | 0.451 | 0.009 | 0.076 | 16.79 | 0.578 |
l/d_bas | 77 | 1.210 | 2.467 | 1.630 | 0.027 | 0.235 | 14.39 | 0.510 |
d_bas | 77 | 7.069 | 14.056 | 8.938 | 0.143 | 1.259 | 14.09 | 0.497 |
l_bas | 77 | 10.858 | 21.526 | 14.488 | 0.282 | 2.471 | 17.06 | 0.496 |
d_mid | 77 | 6.576 | 12.754 | 8.471 | 0.122 | 1.074 | 12.68 | 0.484 |
l_mid | 77 | 8.555 | 15.811 | 10.809 | 0.169 | 1.486 | 13.74 | 0.459 |
l/d_mid | 77 | 1.055 | 1.579 | 1.279 | 0.013 | 0.114 | 8.88 | 0.332 |
Table 2 Morphological traits of leaf cells of Didymodon constrictus in Xizang
形态属性 Morphological trait | 样本量 Sample size | 极小值 Minimum | 极大值 Maximum | 平均值 Mean | 标准误 Standard error | 标准差 Standard deviation | 变异系数 Coefficient of variation (%) | 可塑性指数 Plasticity index |
---|---|---|---|---|---|---|---|---|
s_mid | 77 | 56.282 | 190.631 | 92.794 | 2.818 | 24.730 | 26.65 | 0.705 |
s_bas | 77 | 87.021 | 289.856 | 131.243 | 4.423 | 38.816 | 29.58 | 0.700 |
cwt_bas | 77 | 0.281 | 0.697 | 0.502 | 0.009 | 0.079 | 15.67 | 0.597 |
cwt_mid | 77 | 0.277 | 0.656 | 0.451 | 0.009 | 0.076 | 16.79 | 0.578 |
l/d_bas | 77 | 1.210 | 2.467 | 1.630 | 0.027 | 0.235 | 14.39 | 0.510 |
d_bas | 77 | 7.069 | 14.056 | 8.938 | 0.143 | 1.259 | 14.09 | 0.497 |
l_bas | 77 | 10.858 | 21.526 | 14.488 | 0.282 | 2.471 | 17.06 | 0.496 |
d_mid | 77 | 6.576 | 12.754 | 8.471 | 0.122 | 1.074 | 12.68 | 0.484 |
l_mid | 77 | 8.555 | 15.811 | 10.809 | 0.169 | 1.486 | 13.74 | 0.459 |
l/d_mid | 77 | 1.055 | 1.579 | 1.279 | 0.013 | 0.114 | 8.88 | 0.332 |
Fig. 3 Pearson correlation analysis of leaf-level indicators of Didymodon constrictus and environmental factors in Xizang. AI, aridity index; K, humidity; Light, solar radiation; NDVI, normalized difference vegetation index; PET, potential evapotranspiration; Pysum, annual precipitation; Substrate, soil matrix; Tymean, annual mean air temperature; morphological indicators are the same as Table 1. The indicators within the blue dashed box participate in the analysis.
Fig. 4 Pearson correlation analysis of cell-level indicators of Didymodon constrictus and environmental factors in Xizang. AI, aridity index; K, humidity; Light, solar radiation; NDVI, normalized difference vegetation index; PET, potential evapotranspiration; Pysum, annual precipitation; Substrate, soil matrix; Tymean, annual mean air temperature; morphological indicators are the same as Table 2. The indicators within the blue dashed box participate in the analysis.
Fig. 5 Redundancy analysis (RDA) of morphological characteristics of Didymodon constrictus under different environmental conditions. AI, aridity index; Light, solar radiation; NDVI, normalized difference vegetation index; PET, potential evapotranspiration; Pysum, annual precipitation; Substrate, soil matrix; Tymean, annual mean air temperature; morphological indicators are the same as Table 1 and Table 2.
[1] | Chen S, Ferry Slik JW, Mao L, Zhang J, Sa R, Zhou K, Gao J (2015). Spatial patterns and environmental correlates of bryophyte richness: sampling effort matters. Biodiversity and Conservation, 24, 593-607. |
[2] |
Delucia EH, Sipe TW, Herrick J, Maherali H (1998). Sapling biomass allocation and growth in the understory of a deciduous hardwood forest. American Journal of Botany, 85, 955-963.
PMID |
[3] | Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, Laughlin DC, Sutton-Grier AE, Williams L, Wright J (2017). Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biological Reviews, 92, 1156-1173. |
[4] | Huang SL, Wang ZJ, Zhao JC, Li Z, Jin HX, Cao Z (2009). Study on the vertical distribution of pleudocarpous mosses from Hebei Province. Journal of Hebei Normal University (Natural Science Edition), 33, 666-670. |
[ 黄士良, 王振杰, 赵建成, 李志, 金红霞, 曹珍 (2009). 河北省侧蒴藓类植物垂直分布研究. 河北师范大学学报(自然科学版), 33, 666-670.] | |
[5] | Jiménez-Alfaro B, Marcenó C, Bueno A, Gavilán R, Obeso JR (2014). Biogeographic deconstruction of alpine plant communities along altitudinal and topographic gradients. Journal of Vegetation Science, 25, 160-171. |
[6] | Karger DN, Kluge J, Abrahamczyk S, Salazar L, Homeier J, Lehnert M, Amoroso VB, Kessler M (2012). Bryophyte cover on trees as proxy for air humidity in the tropics. Ecological Indicators, 20, 277-281. |
[7] | Kattge J, Diaz S, Lavoreli S, Prentice IC, Leadly P, Bönisch G, Garnier E, Westoby M, Reich P, Wright I, Cornelissen J, Violle C, Harrison S, Bodegom P, Reichstein M, et al. (2011). TRY—A global database on plant traits. Global Change Biology, 17, 2905-2935. |
[8] | Li DS, Shi ZM, Feng QH, Liu F (2013). Response of leaf morphometric traits of Quercus species to climate in the temperate zone of the north-south transect of eastern China. Chinese Journal of Plant Ecology, 37, 793-802. |
[ 李东胜, 史作民, 冯秋红, 刘峰 (2013). 中国东部南北样带暖温带区栎属树种叶片形态性状对气候条件的响应. 植物生态学报, 37, 793-802.]
DOI |
|
[9] | Liu L, Jiang YB, Song XT, Tang JW, Kou J, Fan YJ, Shao XM (2021). Temperature, not precipitation, drives the morphological traits of Didymodon rigidulus in Tibet. Ecological Indicators, 133, 108401. DOI: 10.1016/j.ecolind.2021.108401. |
[10] | Liu XJ, Ma KP (2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[11] | Luo XZ, Xiong YX, Cao W, Zhong SM, Tan HY, Xia X, Zhou SQ (2016). Vertical distribution of bryophytes in Yueliang Mountain Nature Reserve. Guihaia, 36, 1008-1013. |
[ 罗先真, 熊源新, 曹威, 钟世梅, 谈洪英, 夏欣, 周书芹 (2016). 月亮山自然保护区苔藓植物垂直分布初步研究. 广西植物, 36, 1008-1013.] | |
[12] | McLean EH, Prober SM, Stock WD, Steane DA, Potts BM, Vaillancourt RE, Byrne M (2014). Plasticity of functional traits varies clinally along a rainfall gradient in Eucalyptus tricarpa. Plant, Cell & Environment, 37, 1440-1451. |
[13] | Medina NG, Albertos B, Lara F, Mazimpaka V, Garilleti R, Draper D, Hortal J (2014). Species richness of epiphytic bryophytes: drivers across scales on the edge of the Mediterranean. Ecography, 37, 80-93. |
[14] | Nasrulhaq-Boyce A, Haji Mohamed MA, Lim AL, Barakbah SS, Yong K, Nor DM (2011). Comparative morphological and photosynthetic studies on three Malaysian species of Pogonatum from habitats of varying light irradiances. Journal of Bryology, 33, 35-41. |
[15] |
Pélabon C, Hilde CH, Einum S, Gamelon M (2020). On the use of the coefficient of variation to quantify and compare trait variation. Evolution Letters, 4, 180-188.
DOI PMID |
[16] | Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2016). New handbook for standardized measurement of plant functional traits worldwide. Australian Journal of Botany, 64, 715-716. |
[17] | Pressel S, Png KMY, Duckett JG (2010). A cryo-scanning electron microscope study of the water relations of the remarkable cell wall in the moss Rhacocarpus purpurascens (Rhacocarpaceae, Bryophyta). Nova Hedwigia, 91, 289-299. |
[18] | Souza ML, Duarte AA, Lovato MB, Fagundes M, Valladares F, Lemos-Filho JP (2018). Climatic factors shaping intraspecific leaf trait variation of a neotropical tree along a rainfall gradient. PLoS ONE, 13, e0208512. DOI: 10.1371/journal.pone.0208512. |
[19] | Traiser C, Klotz S, Uhl D, Mosbrugger V (2005). Environmental signals from leaves—A physiognomic analysis of European vegetation. New Phytologist, 166, 465-484. |
[20] | Valladares F, Sanchez-Gomez D, Zavala MA (2006). Quantitative estimation of phenotypic plasticity: bridging the gap between the evolutionary concept and its ecological applications. Journal of Ecology, 94, 1103-1116. |
[21] | Wang H, Lu X, Chen QY (2017). Leaf morphological structure of twelve moss species from the No.1 glacier of the Tianshan Mountains. Plant Science Journal, 35(1), 21-29. |
[ 王虹, 路雄, 陈秋艳 (2017). 新疆天山一号冰川地区12种藓类植物叶形态结构研究. 植物科学学报, 35(1), 21-29.] | |
[22] | Wang LL, Zhao L, Song XT, Wang QG, Kou J, Jiang YB, Shao XM (2019). Morphological traits of Bryum argenteum and its response to environmental variation in arid and semi-arid areas of Tibet. Ecological Engineering, 136, 101-107. |
[23] | Wang XQ, Yang PF, Zhang XF, Xu YN, Kuang TY, Shen SH, He YK (2009). Proteomic analysis of the cold stress response in the moss, Physcomitrella patens. Proteomics, 9, 4529-4538. |
[24] | Wang Z, Bader MY (2018). Associations between shoot-level water relations and photosynthetic responses to water and light in 12 moss species. AoB PLANTS, 10, ply034. DOI: 10.1093/aobpla/ply034. |
[25] | Westoby M (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227. |
[26] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ (2007). Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Annals of Botany, 99, 1003-1015.
DOI PMID |
[27] |
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, Wang H, Wilf P (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
DOI PMID |
[28] | Xiao HJ, Li JQ, Wang JQ, Du QJ (2020). Effects of sub-low temperature and drought stress on water transport and morphological anatomy of tomato plant. Chinese Journal of Applied Ecology, 31, 2630-2636. |
[ 肖怀娟, 李娟起, 王吉庆, 杜清洁 (2020). 亚低温与干旱胁迫对番茄植株水分传输和形态解剖结构的影响. 应用生态学报, 31, 2630-2636.]
DOI |
|
[29] | Xie XW, Guo SL, Huang H (2003). A study of the relationships between terrestrial bryophytes and their environmental factors in Jinhua City, Zhejiang. Journal of Wuhan Botanical Research, 21(2), 129-136. |
[ 谢小伟, 郭水良, 黄华 (2003). 浙江金华市区地面苔藓植物分布与环境因子关系研究. 武汉植物学研究, 21(2), 129-136.] | |
[30] | Xue L, Cao H (2010). Changes of leaf traits of plants under stress resistance. Ecology and Environmental Sciences, 19, 2004-2009. |
[ 薛立, 曹鹤 (2010). 逆境下植物叶性状变化的研究进展. 生态环境学报, 19, 2004-2009.]
DOI |
|
[31] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713. |
[ 杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[32] | Yasunari T, Niles D, Taniguchi M, Chen D (2013). Asia: proving ground for global sustainability. Current Opinion in Environmental Sustainability, 5, 288-292. |
[33] | Yu WT, Jiang ZS, Li XY, Ding HX (2007). Effects of land use type on soil organic carbon storage in aquic brown soil. Chinese Journal of Applied Ecology, 18, 2760-2764. |
[ 宇万太, 姜子绍, 李新宇, 丁怀香 (2007). 不同土地利用方式对潮棕壤有机碳含量的影响. 应用生态学报, 18, 2760-2764.] | |
[34] | Zhang HN, Su PX, Li SJ, Zhou ZJ, Xie TT, Zhao QF (2013). Indicative effect of the anatomical structure of plant photosynthetic organ on WUE in desert region. Acta Ecologica Sinica, 33, 4909-4918. |
[ 张海娜, 苏培玺, 李善家, 周紫鹃, 解婷婷, 赵庆芳 (2013). 荒漠区植物光合器官解剖结构对水分利用效率的指示作用. 生态学报, 33, 4909-4918.] | |
[35] | Zhang XN, Wang BP, Sun XY, Qiao J, Cui LJ (2011). Ability of anti-dehydration and aridity to anatomical structure of leaves of Larrea tridentata. Ecology and Environmental Sciences, 20, 1634-1637. |
[ 张香凝, 王保平, 孙向阳, 乔杰, 崔令军 (2011). Larrea tridentata叶片解剖结构与保水特性的研究. 生态环境学报, 20, 1634-1637.] | |
[36] | Zhang XZ, He YT, Shen ZX, Wang JS, Yu CQ, Zhang YJ, Shi PL, Fu G, Zhu JT (2015). Frontier of the ecological construction support the sustainable development in Tibet Autonomous Region. Bulletin of Chinese Academy of Sciences, 30, 306-312. |
[ 张宪洲, 何永涛, 沈振西, 王景升, 余成群, 张扬建, 石培礼, 付刚, 朱军涛 (2015). 西藏地区可持续发展面临的主要生态环境问题及对策. 中国科学院院刊, 30, 306-312.] |
[1] | FU Zhao-Qi, HU Xu, TIAN Qin-Rui, GE Yan-Ling, ZHOU Hong-Juan, WU Xiao-Yun, CHEN Li-Xin. Nocturnal sap flow characteristics of two typical forest tree species and responses to environmental factors in the loess region of West Shanxi, China [J]. Chin J Plant Ecol, 2024, 48(9): 1128-1142. |
[2] | PAN Yuan-Fang, PAN Liang-Hao, QIU Si-Ting, QIU Guang-Long, SU Zhi-Nan, SHI Xiao-Fang, FAN Hang-Qing. Variations in tree height among mangroves and their environmental adaptive mechanisms in China’s coastal areas [J]. Chin J Plant Ecol, 2024, 48(4): 483-495. |
[3] | LI An-Yan, HUANG Xian-Fei, TIAN Yuan-Bin, DONG Ji-Xing, ZHENG Fei-Fei, XIA Pin-Hua. Chlorophyll a variation and its driving factors during phase shift from macrophyte- to phytoplankton-dominated states in Caohai Lake, Guizhou, China [J]. Chin J Plant Ecol, 2023, 47(8): 1171-1181. |
[4] | ZHAO Meng-Juan, JIN Guang-Ze, LIU Zhi-Li. Vertical variations in leaf functional traits of three typical ferns in mixed broadleaved- Korean pine forest [J]. Chin J Plant Ecol, 2023, 47(8): 1131-1143. |
[5] | YANG Li-Lin, XING Wan-Qiu, WANG Wei-Guang, CAO Ming-Zhu. Variation of sap flow rate of Cunninghamia lanceolata and its response to environmental factors in the source area of Xinʼanjiang River [J]. Chin J Plant Ecol, 2023, 47(4): 571-583. |
[6] | ZHANG Xiao, WU Juan-Juan, JIA Guo-Dong, LEI Zi-Ran, ZHANG Long-Qi, LIU Rui, LÜ Xiang-Rong, DAI Yuan-Meng. Effects of precipitation variations on characteristics of sap flow and water source of Platycladus orientalis [J]. Chin J Plant Ecol, 2023, 47(11): 1585-1599. |
[7] | ZHAO Zhen-Xian, CHEN Yin-Ping, WANG Li-Long, WANG Tong-Tong, LI Yu-Qiang. Comparison on leaf construction cost of different plant groups in the desert area of the Hexi Corridor [J]. Chin J Plant Ecol, 2023, 47(11): 1551-1560. |
[8] | ZHENG Ning, LI Su-Ying, WANG Xin-Ting, LÜ Shi-Hai, ZHAO Peng-Cheng, ZANG Chen, XU Yu-Long, HE Jing, QIN Wen-Hao, GAO Heng-Rui. Dominance of different plant life forms in the typical steppe evidenced from impacts of environmental factors on chlorophyll [J]. Chin J Plant Ecol, 2022, 46(8): 951-960. |
[9] | PENG Xin, JIN Guang-Ze. Effects of plant characteristics and environmental factors on the dark diversity in a broadleaved Korean pine forest [J]. Chin J Plant Ecol, 2022, 46(6): 656-666. |
[10] | MA He-Ping, WANG Rui-Hong, QU Xing-Le, YUAN Min, MU Jin-Yong, LI Jin-Hang. Effects of different habitats on the diversity and biomass of ground moss in the southeast Xizang, China [J]. Chin J Plant Ecol, 2022, 46(5): 552-560. |
[11] | WANG Li-Shuang, TONG Xiao-Juan, MENG Ping, ZHANG Jin-Song, LIU Pei-Rong, LI Jun, ZHANG Jing-Ru, ZHOU Yu. Energy flux and evapotranspiration of two typical plantations in semi-arid area of western Liaoning, China [J]. Chin J Plant Ecol, 2022, 46(12): 1508-1522. |
[12] | HUANG Jie, LI Xiao-Ling, WANG Xue-Song, YANG Jin, HUANG Cheng-Ming. Characteristics of Distylium chinense communities and their relationships with soil environmental factors in different water level fluctuation zones of the Three Gorges Reservoir, China [J]. Chin J Plant Ecol, 2021, 45(8): 844-859. |
[13] | WANG Zi-Wei, WAN Song-Ze, JIANG Hong-Mao, HU Yang, MA Shu-Qin, CHEN You-Chao, LU Xu-Yang. Soil enzyme activities and their influencing factors among different alpine grasslands on the Qingzang Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 528-538. |
[14] | LUO Ming-Mo, CHEN Yue, YANG Gang, HU Bin, LI Wei, CHEN Huai. Short-term response of soil prokaryotic community structure to water level restoration in degraded peatland of the Zoigê Plateau [J]. Chin J Plant Ecol, 2021, 45(5): 552-561. |
[15] | ZHAO Wen-Qin, XI Ben-Ye, LIU Jin-Qiang, LIU Yang, ZOU Song-Yan, SONG Wu-Ye, CHEN Li-Xin. Transpiration process and environmental response of poplar plantation under different irrigation conditions [J]. Chin J Plant Ecol, 2021, 45(4): 370-382. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn