植物生态学报 ›› 2013, Vol. 37 ›› Issue (4): 317-325.DOI: 10.3724/SP.J.1258.2013.00031
所属专题: 生态化学计量
牛得草1, 李茜1, 江世高1, 常佩静2, 傅华1,*()
收稿日期:
2012-09-04
接受日期:
2013-03-05
出版日期:
2013-09-04
发布日期:
2013-04-09
通讯作者:
傅华
作者简介:
*(E-mail:fuhua@lzu.edu.cn)基金资助:
NIU De-Cao1, LI Qian1, JIANG Shi-Gao1, CHANG Pei-Jing2, FU Hua1,*()
Received:
2012-09-04
Accepted:
2013-03-05
Online:
2013-09-04
Published:
2013-04-09
Contact:
FU Hua
摘要:
为了解同一生活型不同种植物叶片碳(C)、氮(N)、磷(P)生态化学计量学特征随季节变化的响应规律, 在生长季不同月份, 对阿拉善荒漠区6种主要灌木植物霸王(Zygophyllum xanthoxylum)、白刺(Nitraria tangutorum)、红砂(Reaumuria soongorica)、驼绒藜(Ceratoides latens)、猫头刺(Oxytropis aciphylla)、沙冬青(Ammopiptanthus mongolicus)的物候期进行了连续的观察, 并采集植物叶片, 分析了其C、N、P含量及计量比在不同月份的变化。结果显示: 1)同一生活型的6种植物的叶片C、N、P及C:N、C:P和N:P在整个生长季内的变化规律不同, 且以上各指标季节间的变异系数在6种植物之间也存在差异; 2)单个植物种叶片C、N、P含量及其计量比的季节变异分析显示, 叶片C、N含量及C:N的季节变异较小, 叶片P含量及C:P和N:P的季节变异较大, 6种植物叶片C、N含量及C:N由于季节变异所计算的变异系数变化范围分别为0.60%-10.20%、6.09%-20.50%和5.87%-18.78%, 6种植物叶片P含量的季节变异所产生的变异系数范围为16.43%-43.43%, 叶片C:P和N:P的变异系数范围分别为8.48%-31.95%和11.86%-40.73%; 3)综合分析6种植物叶片C、N、P及其计量比各指标在整个生长季节内的变异, 变异系数由大到小排序为: P (28.85%) > C:P (25.02%) > N:P (22.18%) > N (14.22%) > C:N (12.48%) > C (4.62%); 4) 生长季节与植物种类对植物叶片C、N、P及其计量比影响的交叉分析显示, 植物叶片C、N含量的变异主要受植物种类影响, 植物叶片P含量的变异主要受生长季节影响, 植物叶片C:N、C:P和N:P的变异都主要受植物种类影响。
牛得草, 李茜, 江世高, 常佩静, 傅华. 阿拉善荒漠区6种主要灌木植物叶片C:N:P化学计量比的季节变化. 植物生态学报, 2013, 37(4): 317-325. DOI: 10.3724/SP.J.1258.2013.00031
NIU De-Cao, LI Qian, JIANG Shi-Gao, CHANG Pei-Jing, FU Hua. Seasonal variations of leaf C:N:P stoichiometry of six shrubs in desert of China’s Alxa Plateau. Chinese Journal of Plant Ecology, 2013, 37(4): 317-325. DOI: 10.3724/SP.J.1258.2013.00031
物种 Species | 5月 May | 6月 Jun. | 7月 Jul. | 8月 Aug. | 9月 Sept. | 10月 Oct. |
---|---|---|---|---|---|---|
霸王 Zygophyllum xanthoxylon | D | F | A | A | A | H |
白刺 Nitraria tangutorum | A | F | G | A | A | H |
红砂 Reaumuria soongorica | A | A | A | C | D | F |
驼绒藜 Ceratoides latens | A | A | A | A | A | F |
猫头刺 Oxytropis aciphylla | C | F | A | A | A | H |
沙冬青 Ammopiptanthus mongolicus | F | F | A | A | A | A |
表1 6种灌木植物采样物候期记录
Table 1 Observation of the phonological stage in six shrubs when collecting samples
物种 Species | 5月 May | 6月 Jun. | 7月 Jul. | 8月 Aug. | 9月 Sept. | 10月 Oct. |
---|---|---|---|---|---|---|
霸王 Zygophyllum xanthoxylon | D | F | A | A | A | H |
白刺 Nitraria tangutorum | A | F | G | A | A | H |
红砂 Reaumuria soongorica | A | A | A | C | D | F |
驼绒藜 Ceratoides latens | A | A | A | A | A | F |
猫头刺 Oxytropis aciphylla | C | F | A | A | A | H |
沙冬青 Ammopiptanthus mongolicus | F | F | A | A | A | A |
图1 6种植物不同物候期叶片C、N、P及C:N、C:P、N:P的动态(平均值±标准误差, n = 7)。
Fig. 1 Seasonal dynamics of leaf C, N, P contents and C: N, C: P, N: P mass ratios in six plant species (mean ± SE, n = 7).
参数 Parameter | 物种 Species | 平均值 Mean | 极差 Range | 最小值 Minimum | 最大值 Maximum | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|---|---|
C (mg·g-1) | 霸王 Zygophyllum xanthoxylon | 322.87 | 88.03 | 281.53 | 369.56 | 10.20 |
白刺 Nitraria tangutorum | 375.24 | 34.49 | 365.71 | 400.20 | 3.40 | |
红砂 Reaumuria soongorica | 342.43 | 93.32 | 301.73 | 395.04 | 9.97 | |
驼绒藜 Ceratoides latens | 377.03 | 14.53 | 368.49 | 383.01 | 1.45 | |
猫头刺 Oxytropis aciphylla | 417.81 | 24.25 | 408.04 | 432.29 | 2.07 | |
沙冬青 Ammopiptanthus mongolicus | 470.59 | 7.29 | 467.63 | 474.92 | 0.60 | |
N (mg·g-1) | 霸王 Zygophyllum xanthoxylon | 27.02 | 12.44 | 21.19 | 33.64 | 20.50 |
白刺 Nitraria tangutorum | 41.53 | 18.56 | 35.67 | 54.23 | 16.36 | |
红砂 Reaumuria soongorica | 33.60 | 14.76 | 25.66 | 40.42 | 14.68 | |
驼绒藜 Ceratoides latens | 38.91 | 11.24 | 34.51 | 45.75 | 11.47 | |
猫头刺 Oxytropis aciphylla | 28.72 | 11.43 | 23.22 | 34.65 | 16.19 | |
沙冬青 Ammopiptanthus mongolicus | 31.01 | 4.36 | 28.28 | 32.64 | 6.09 | |
P (mg·g-1) | 霸王 Zygophyllum xanthoxylon | 1.73 | 1.29 | 1.16 | 2.45 | 28.20 |
白刺 Nitraria tangutorum | 2.02 | 2.33 | 1.37 | 3.70 | 42.71 | |
红砂 Reaumuria soongorica | 1.35 | 1.64 | 0.84 | 2.47 | 43.43 | |
驼绒藜 Ceratoides latens | 1.94 | 1.49 | 1.26 | 2.75 | 24.78 | |
猫头刺 Oxytropis aciphylla | 2.10 | 0.91 | 1.46 | 2.37 | 16.43 | |
沙冬青 Ammopiptanthus mongolicus | 1.21 | 0.61 | 0.99 | 1.60 | 17.56 | |
C:N | 霸王 Zygophyllum xanthoxylon | 12.38 | 4.02 | 10.29 | 14.31 | 11.94 |
白刺 Nitraria tangutorum | 9.20 | 2.88 | 7.39 | 10.27 | 11.55 | |
红砂 Reaumuria soongorica | 10.41 | 5.15 | 8.76 | 13.91 | 18.78 | |
驼绒藜 Ceratoides latens | 9.85 | 2.99 | 8.12 | 11.12 | 11.92 | |
猫头刺 Oxytropis aciphylla | 14.89 | 5.59 | 12.21 | 17.81 | 14.81 | |
沙冬青 Ammopiptanthus mongolicus | 15.26 | 2.08 | 14.48 | 16.56 | 5.87 | |
C:P | 霸王 Zygophyllum xanthoxylon | 234.59 | 187.76 | 151.95 | 339.71 | 31.95 |
白刺 Nitraria tangutorum | 229.79 | 174.74 | 125.48 | 300.22 | 28.71 | |
红砂 Reaumuria soongorica | 305.21 | 264.85 | 182.00 | 446.86 | 30.28 | |
驼绒藜 Ceratoides latens | 218.22 | 171.42 | 149.09 | 320.52 | 26.30 | |
猫头刺 Oxytropis aciphylla | 235.61 | 155.38 | 186.96 | 342.33 | 24.45 | |
沙冬青 Ammopiptanthus mongolicus | 429.07 | 92.05 | 388.88 | 480.94 | 8.48 | |
N:P | 霸王 Zygophyllum xanthoxylon | 19.56 | 22.09 | 12.32 | 34.42 | 40.73 |
白刺 Nitraria tangutorum | 24.59 | 15.69 | 17.06 | 32.74 | 22.44 | |
红砂 Reaumuria soongorica | 29.18 | 16.60 | 18.46 | 35.06 | 19.52 | |
驼绒藜 Ceratoides latens | 22.12 | 14.04 | 14.82 | 28.87 | 21.63 | |
猫头刺 Oxytropis aciphylla | 15.77 | 7.69 | 12.17 | 19.86 | 16.90 | |
沙冬青 Ammopiptanthus mongolicus | 28.18 | 8.93 | 23.70 | 32.64 | 11.86 |
表2 6种灌木植物不同物候期叶片C、N、P及C:N、C:P、N:P的变化
Table 2 Variation of leaf C, N, P, and C:N, C:P, N:P mass ratios for six shrubs
参数 Parameter | 物种 Species | 平均值 Mean | 极差 Range | 最小值 Minimum | 最大值 Maximum | 变异系数 Coefficient of variation (%) |
---|---|---|---|---|---|---|
C (mg·g-1) | 霸王 Zygophyllum xanthoxylon | 322.87 | 88.03 | 281.53 | 369.56 | 10.20 |
白刺 Nitraria tangutorum | 375.24 | 34.49 | 365.71 | 400.20 | 3.40 | |
红砂 Reaumuria soongorica | 342.43 | 93.32 | 301.73 | 395.04 | 9.97 | |
驼绒藜 Ceratoides latens | 377.03 | 14.53 | 368.49 | 383.01 | 1.45 | |
猫头刺 Oxytropis aciphylla | 417.81 | 24.25 | 408.04 | 432.29 | 2.07 | |
沙冬青 Ammopiptanthus mongolicus | 470.59 | 7.29 | 467.63 | 474.92 | 0.60 | |
N (mg·g-1) | 霸王 Zygophyllum xanthoxylon | 27.02 | 12.44 | 21.19 | 33.64 | 20.50 |
白刺 Nitraria tangutorum | 41.53 | 18.56 | 35.67 | 54.23 | 16.36 | |
红砂 Reaumuria soongorica | 33.60 | 14.76 | 25.66 | 40.42 | 14.68 | |
驼绒藜 Ceratoides latens | 38.91 | 11.24 | 34.51 | 45.75 | 11.47 | |
猫头刺 Oxytropis aciphylla | 28.72 | 11.43 | 23.22 | 34.65 | 16.19 | |
沙冬青 Ammopiptanthus mongolicus | 31.01 | 4.36 | 28.28 | 32.64 | 6.09 | |
P (mg·g-1) | 霸王 Zygophyllum xanthoxylon | 1.73 | 1.29 | 1.16 | 2.45 | 28.20 |
白刺 Nitraria tangutorum | 2.02 | 2.33 | 1.37 | 3.70 | 42.71 | |
红砂 Reaumuria soongorica | 1.35 | 1.64 | 0.84 | 2.47 | 43.43 | |
驼绒藜 Ceratoides latens | 1.94 | 1.49 | 1.26 | 2.75 | 24.78 | |
猫头刺 Oxytropis aciphylla | 2.10 | 0.91 | 1.46 | 2.37 | 16.43 | |
沙冬青 Ammopiptanthus mongolicus | 1.21 | 0.61 | 0.99 | 1.60 | 17.56 | |
C:N | 霸王 Zygophyllum xanthoxylon | 12.38 | 4.02 | 10.29 | 14.31 | 11.94 |
白刺 Nitraria tangutorum | 9.20 | 2.88 | 7.39 | 10.27 | 11.55 | |
红砂 Reaumuria soongorica | 10.41 | 5.15 | 8.76 | 13.91 | 18.78 | |
驼绒藜 Ceratoides latens | 9.85 | 2.99 | 8.12 | 11.12 | 11.92 | |
猫头刺 Oxytropis aciphylla | 14.89 | 5.59 | 12.21 | 17.81 | 14.81 | |
沙冬青 Ammopiptanthus mongolicus | 15.26 | 2.08 | 14.48 | 16.56 | 5.87 | |
C:P | 霸王 Zygophyllum xanthoxylon | 234.59 | 187.76 | 151.95 | 339.71 | 31.95 |
白刺 Nitraria tangutorum | 229.79 | 174.74 | 125.48 | 300.22 | 28.71 | |
红砂 Reaumuria soongorica | 305.21 | 264.85 | 182.00 | 446.86 | 30.28 | |
驼绒藜 Ceratoides latens | 218.22 | 171.42 | 149.09 | 320.52 | 26.30 | |
猫头刺 Oxytropis aciphylla | 235.61 | 155.38 | 186.96 | 342.33 | 24.45 | |
沙冬青 Ammopiptanthus mongolicus | 429.07 | 92.05 | 388.88 | 480.94 | 8.48 | |
N:P | 霸王 Zygophyllum xanthoxylon | 19.56 | 22.09 | 12.32 | 34.42 | 40.73 |
白刺 Nitraria tangutorum | 24.59 | 15.69 | 17.06 | 32.74 | 22.44 | |
红砂 Reaumuria soongorica | 29.18 | 16.60 | 18.46 | 35.06 | 19.52 | |
驼绒藜 Ceratoides latens | 22.12 | 14.04 | 14.82 | 28.87 | 21.63 | |
猫头刺 Oxytropis aciphylla | 15.77 | 7.69 | 12.17 | 19.86 | 16.90 | |
沙冬青 Ammopiptanthus mongolicus | 28.18 | 8.93 | 23.70 | 32.64 | 11.86 |
参数 Parameter | 变异来源 Source of variation | df | 离差平方和 SS | 均方 MS | F |
---|---|---|---|---|---|
C (mg·g-1) | 物种 Species (S) | 5 | 597 711.49 | 119 542.30 | 148.64* |
物种间误差 S-error | 36 | 28 953.23 | 804.26 | ||
月份 Month (M) | 5 (1) | 34 439.91 | 6 887.98 | 29.92* | |
物种×月份 S × M | 25 (5) | 53 994.40 | 2 159.78 | 9.38* | |
月份间误差 M-error | 180 (36) | 41 444.84 | 230.25 | ||
N (mg·g-1) | 物种 Species (S) | 5 | 6 916.68 | 1 383.34 | 75.89* |
物种间误差 S-error | 36 | 656.19 | 18.23 | ||
月份 Month (M) | 5 (1) | 1 443.42 | 288.68 | 36.61* | |
物种×月份 S × M | 25 (5) | 3 676.34 | 147.05 | 18.65* | |
月份间误差 M-error | 180 (36) | 1 419.24 | 7.88 | ||
P (mg·g-1) | 物种 Species (S) | 5 | 28.51 | 5.70 | 11.97* |
物种间误差 S-error | 36 | 17.14 | 0.48 | ||
月份 Month (M) | 5 (1) | 39.07 | 7.81 | 12.16* | |
物种×月份 S × M | 25 (5) | 21.12 | 0.84 | 1.32 | |
月份间误差 M-error | 180 (36) | 115.64 | 0.64 | ||
C:N | 物种 Species (S) | 5 | 1 435.30 | 287.06 | 173.29* |
物种间误差 S-error | 36 | 59.64 | 1.66 | ||
月份 Month (M) | 5 (1) | 68.78 | 13.76 | 21.33* | |
物种×月份 S × M | 25 (5) | 427.37 | 17.09 | 26.51* | |
月份间误差 M-error | 180 (36) | 116.07 | 0.64 | ||
C:P | 物种 Species (S) | 5 | 1402 340.42 | 280 468.08 | 41.53* |
物种间误差 S-error | 36 | 243 097.02 | 6 752.69 | ||
月份 Month (M) | 5 (1) | 345 548.68 | 69 109.74 | 9.12* | |
物种×月份 S × M | 25 (5) | 564 090.30 | 22 563.61 | 2.98* | |
月份间误差 M-error | 180 (36) | 1 363 342.92 | 7 574.13 | ||
N:P | 物种 Species (S) | 5 | 5 524.04 | 1 104.81 | 23.28* |
物种间误差 S-error | 36 | 1 708.24 | 47.45 | ||
月份 Month (M) | 5 (1) | 2 445.29 | 489.06 | 9.80* | |
物种×月份 S × M | 25 (5) | 3 334.12 | 133.36 | 2.67* | |
月份间误差 M-error | 180 (36) | 8 978.80 | 49.88 |
表3 6种灌木植物叶片C、N、P含量及C: N、C: P、N: P的整体变异来源分析
Table 3 Summary about the effect of variation from plant species, month and both interactions on leaf C, N, P, and C:N, C:P, N:P mass ratios
参数 Parameter | 变异来源 Source of variation | df | 离差平方和 SS | 均方 MS | F |
---|---|---|---|---|---|
C (mg·g-1) | 物种 Species (S) | 5 | 597 711.49 | 119 542.30 | 148.64* |
物种间误差 S-error | 36 | 28 953.23 | 804.26 | ||
月份 Month (M) | 5 (1) | 34 439.91 | 6 887.98 | 29.92* | |
物种×月份 S × M | 25 (5) | 53 994.40 | 2 159.78 | 9.38* | |
月份间误差 M-error | 180 (36) | 41 444.84 | 230.25 | ||
N (mg·g-1) | 物种 Species (S) | 5 | 6 916.68 | 1 383.34 | 75.89* |
物种间误差 S-error | 36 | 656.19 | 18.23 | ||
月份 Month (M) | 5 (1) | 1 443.42 | 288.68 | 36.61* | |
物种×月份 S × M | 25 (5) | 3 676.34 | 147.05 | 18.65* | |
月份间误差 M-error | 180 (36) | 1 419.24 | 7.88 | ||
P (mg·g-1) | 物种 Species (S) | 5 | 28.51 | 5.70 | 11.97* |
物种间误差 S-error | 36 | 17.14 | 0.48 | ||
月份 Month (M) | 5 (1) | 39.07 | 7.81 | 12.16* | |
物种×月份 S × M | 25 (5) | 21.12 | 0.84 | 1.32 | |
月份间误差 M-error | 180 (36) | 115.64 | 0.64 | ||
C:N | 物种 Species (S) | 5 | 1 435.30 | 287.06 | 173.29* |
物种间误差 S-error | 36 | 59.64 | 1.66 | ||
月份 Month (M) | 5 (1) | 68.78 | 13.76 | 21.33* | |
物种×月份 S × M | 25 (5) | 427.37 | 17.09 | 26.51* | |
月份间误差 M-error | 180 (36) | 116.07 | 0.64 | ||
C:P | 物种 Species (S) | 5 | 1402 340.42 | 280 468.08 | 41.53* |
物种间误差 S-error | 36 | 243 097.02 | 6 752.69 | ||
月份 Month (M) | 5 (1) | 345 548.68 | 69 109.74 | 9.12* | |
物种×月份 S × M | 25 (5) | 564 090.30 | 22 563.61 | 2.98* | |
月份间误差 M-error | 180 (36) | 1 363 342.92 | 7 574.13 | ||
N:P | 物种 Species (S) | 5 | 5 524.04 | 1 104.81 | 23.28* |
物种间误差 S-error | 36 | 1 708.24 | 47.45 | ||
月份 Month (M) | 5 (1) | 2 445.29 | 489.06 | 9.80* | |
物种×月份 S × M | 25 (5) | 3 334.12 | 133.36 | 2.67* | |
月份间误差 M-error | 180 (36) | 8 978.80 | 49.88 |
[1] | Aerts R, Chapin III FS (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67. |
[2] |
Agren GI (2008). Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology Evolution and Systematics, 39, 153-170.
DOI URL |
[3] |
Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540-550.
DOI URL |
[4] |
Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385.
DOI URL |
[5] |
He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z (2006). Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia, 149, 115-122.
URL PMID |
[6] |
He JS, Wang XP, Schmid B, Flynn DFB, Li XF, Reich PB, Fang JY (2010). Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across Chinese grassland biomes. Journal of Plant Research, 123, 551-561.
URL PMID |
[7] |
Kerkhoff AJ, Enquist BJ, Elser JJ, Fagan WF (2005). Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 14, 585-598.
DOI URL |
[8] | Kuo S(1996). Phosphorus. In: Sparks DL ed. Methods of Soil Analysis. Part 3, Chemical Methods. Soil Science Society of America, Inc., American Society of Agronomy, Inc., Madison, Wisconsin, USA. 869-919. |
[9] |
Li YL, Mao W, Zhao XY, Zhang TH (2010). Leaf nitrogen and phosphorus stoichiometry in typical desert and desertified regions, North China. Environmental Science, 31, 1716-1725. (in Chinese with English abstract)
DOI URL |
[ 李玉霖, 毛伟, 赵学勇, 张铜会 (2010). 北方典型荒漠及荒漠化地区植物叶片氮磷化学计量特征研究. 环境科学, 31, 1716-1725.] | |
[10] |
Li Z, Han L, Liu YH, An SQ, Leng X (2012). C, N and P stoichiometric characteristics in leaves of Suaeda salsa during different growth phase in coastal wetlands of China. Chinese Journal of Plant Ecology, 36, 1054-1061. (in Chinese with English abstract)
DOI URL |
[ 李征, 韩琳, 刘玉红, 安树青, 冷欣 (2012). 滨海盐地碱蓬不同生长阶段叶片C、N、P化学计量特征. 植物生态学报, 36, 1054-1061.]
DOI URL |
|
[11] |
Liu C, Wang Y, Wang N, Wang GX (2012). Advances research in plant nitrogen, phosphorus and their stoichiometry in terrestrial ecosystems: a review. Chinese Journal of Plant Ecology, 36, 1205-1216. (in Chinese with English abstract)
DOI URL |
[ 刘超, 王洋, 王楠, 王根轩 (2012). 陆地生态系统植被氮磷化学计量研究进展. 植物生态学报, 36, 1205-1216.]
DOI URL |
|
[12] |
Pei SF, Fu H, Wan CG, Chen YM, Sosebee RE (2006). Observations on changes in soil properties in grazed and nongrazed areas of Alxa desert steppe, Inner Mongolia. Arid Land Research and Management, 20, 161-175.
DOI URL |
[13] |
Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
DOI URL PMID |
[14] |
Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734.
DOI URL PMID |
[15] |
Santa Regina I, Rico M, Rapp M, Gallego HA (1997). Seasonal variation in nutrient concentration in leaves and branches of Quercus pyrenaica. Journal of Vegetation Science, 8, 651-654.
DOI URL |
[16] | Sterner RW, Elser JJ (2002). Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton. 1-20. |
[17] | Sun RY, Li B, Zhu GY, Shang YC (1993). General Ecology . Higher Education Press, Beijing. 128-195. (in Chinese) |
[ 孙儒泳, 李博, 诸葛阳, 尚玉昌 (1993). 普通生态学. 高等教育出版社, 北京. 128-195.] | |
[18] |
Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485-496.
DOI URL |
[19] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[20] |
Wu TG, Wu M, Liu L, Xiao JH (2010). Seasonal variations of leaf nitrogen and phosphorus stoichiometry of three herbaceous species in Hangzhou Bay coastal wetlands, China. Chinese Journal of Plant Ecology, 34, 23-28. (in Chinese with English abstract)
DOI URL |
[ 吴统贵, 吴明, 刘丽, 萧江华 (2010). 杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化. 植物生态学报, 34, 23-28.]
DOI URL |
|
[21] |
Yang K, Huang JH, Dong D, Ma WH, He JS (2010). Canopy leaf N and P stoichiometry in grassland communities of Qinghai-Tibetan Plateau, China. Chinese Journal of Plant Ecology, 34, 17-22. (in Chinese with English abstract)
DOI URL |
[ 杨阔, 黄建辉, 董丹, 马文红, 贺金生 (2010). 青藏高原草地植物群落冠层叶片氮磷化学计量学分析. 植物生态学报, 34, 17-22.]
DOI URL |
|
[22] | Zeng DH, Chen GS (2005). Ecological stoichiometry: a science to explore the complexity of living systems. Acta Phytoecologica Sinica, 29, 1007-1019. (in Chinese with English abstract) |
[ 曾德慧, 陈广生 (2005). 生态化学计量学: 复杂生命系统奥秘的探索. 植物生态学报, 29, 1007-1019.]
DOI URL |
|
[23] | Zhang WY, Fan JW, Zhong HP, Hu ZM, Song LL, Wang N (2010). The nitrogen: phosphorus stoichiometry of different plant functional groups for dominant species of typical steppes in China. Acta Agrestia Sinica, 18, 503-509. (in Chinese with English abstract) |
[ 张文彦, 樊江文, 钟华平, 胡中民, 宋璐璐, 王宁 (2010). 中国典型草原优势植物功能群氮磷化学计量学特征研究. 草业学报, 18, 503-509.] |
[1] | 张文瑾 佘维维 秦树高 乔艳桂 张宇清. 氮和水分添加对黑沙蒿群落优势植物叶片氮磷化学计量特征的影响[J]. 植物生态学报, 2024, 48(5): 590-600. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 韩路, 冯宇, 李沅楷, 王雨晴, 王海珍. 地下水埋深对灰胡杨叶片与土壤养分生态化学计量特征及其内稳态的影响[J]. 植物生态学报, 2024, 48(1): 92-102. |
[4] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[5] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[6] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[7] | 林少颖, 曾瑜, 杨文文, 陈斌, 阮敏敏, 尹晓雷, 阳祥, 王维奇. 添加秸秆及其生物炭对茉莉植株与土壤碳氮磷生态化学计量特征的影响[J]. 植物生态学报, 2023, 47(4): 530-545. |
[8] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[9] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[10] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[11] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[12] | 翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡[J]. 植物生态学报, 2022, 46(6): 700-711. |
[13] | 张玉林, 尹本丰, 陶冶, 李永刚, 周晓兵, 张元明. 早春首次降雨时间及降雨量对古尔班通古特沙漠两种短命植物形态特征与叶绿素荧光的影响[J]. 植物生态学报, 2022, 46(4): 428-439. |
[14] | 师斌, 窦建德, 黄维, 李小伟. 宁夏贺兰山斑子麻黄荒漠群落特征[J]. 植物生态学报, 2022, 46(3): 362-367. |
[15] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19