Chin J Plan Ecolo ›› 2015, Vol. 39 ›› Issue (4): 383-387.doi: 10.17521/cjpe.2015.0037

• Orginal Article • Previous Articles     Next Articles

Correlation analysis between arbuscular mycorrhizal fungal community and host plant phylogeny

YANG Hai-Shui*(), WANG Qi, GUO Yi, XIONG Yan-Qin, XU Ming-Min, DAI Ya-Jun   

  1. College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
  • Received:2014-10-11 Accepted:2015-01-17 Online:2015-04-21 Published:2015-04-01
  • Contact: Hai-Shui YANG
  • About author:

    # Co-first authors

Abstract: <i>Aims</i>

The objective of this study was to understand how arbuscular mycorrhizal (AM) fungal community would vary with plant evolution.


Data-mining was carried out against MaarjAM database with ribosomal small subunit (SSU) gene. We predicted that the richness of root-associated AM fungal species increases from lower to higher modern land plants. Totally, 188 host plant species were selected in this analysis.

<i>Important findings</i>

The AM fungal species richness increased with the divergence of host plant species, and significantly differed among plant phylogenetic groups. The more recently diverged host plants (i.e. gymnosperms and angiosperms) harbored higher AM fungal species richness, whereas the earlier-originated plants (liverworts, hornworts and ferns) possessed lower AM fungal species richness. The myco-heterotrophytes in angiosperms showed similarly low richness of AM fungal species to the lower plants. In addition, the AM fungal community composition significantly differed among different plant phylogenetic groups. Findings in this study provided some indirect evidence that AM fungal communities varied with plant evolution. It is suggested that plants might maintain the most effective AM fungi but discard those inefficient ones during evolution.

Key words: arbuscular mycorrhizal fungi, host-specificity, diversity, evolution

Fig. 1

Relationship between the time of divergence of hosts (MYA, million year) and the richness of arbuscular mycorrhizal fungal (AMF) species in roots."

Fig. 2

Distribution of species richness of arbuscular mycorrhizal fungi (AMF) in different plant phylogenetic groups (mean ± SE). Different lowercase letters indicate significant differences among different plant phylogenetic groups (p < 0.05). D, dicotyledons; M, monocotyledons."

Fig. 3

Non-metric multidimensional scaling (NMDS) analysis of arbuscular mycorrhizal fungal community composition in different phylogenetic groups. D, dicotyledons; M, monocotyledons."

Table 1

One-way NPMANOVA of arbuscular mycorrhizal fungal community composition in different phylogenetic groups of host plants"

L - 0.02 <0.01 0.46 <0.01 <0.01 <0.01 <0.01
H - 0.02 0.02 0.01 <0.01 <0.01 <0.01
F - 0.07 0.01 <0.01 <0.01 <0.01
G - 0.21 0.58 <0.01 0.68
NPM - <0.01 <0.01 <0.01
M - <0.01 0.94
NPD - <0.01
D -
[1] Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Domínguez L, Sersic A, Leake JR, Read DJ (2002). Epiparasitic plants specialized on arbuscular mycorrhizal fungi.Nature, 419, 389-392.
[2] Borowicz VA (2001). Do arbuscular mycorrhizal fungi alter plant-pathogen relations? Ecology, 82, 3057-3068.
[3] Field KJ, Cameron DD, Leake JR, Tille S, Bidartondo MI, Beerling DJ (2012). Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated palaeozoic CO2 decline.Nature Communica- tions, 3, 1-8.
[4] Fiz-Palacios O, Schneider H, Heinrichs J, Savolainen V (2011). Diversification of land plants: Insights from a family-level phylogenetic analysis.BMC Evolutionary Biology, 11, 341.
[5] Fonseca HMAC, Berbara RLL (2008). Does Lunularia cruciata form symbiotic relationships with either Glomus proliferum or G. intraradices?Mycological Research, 112, 1063-1068.
[6] Franke T, Beenken L, Döring M, Kocyan A, Agerer R (2006). Arbuscular mycorrhizal fungi of the Glomus-group A lineage (Glomerales; Glomeromycota) detected in myco- heterotrophic plants from tropical Africa.Mycological Progress, 5, 24-31.
[7] Hammer Ø, Harper DAT, Ryan PD (2001). PAST: Paleontolo- gical statistics software package for education and data analysis.Palaeontologia Electronica, 4, 1-9.
[8] Humphreys CP, Franks PJ, Rees M, Bidartondo MI, Leake JR, Beerling DJ (2010). Mutualistic mycorrhiza-like symbiosis in the most ancient group of land plants.Nature Communications, 1, 103.
[9] Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis.Science, 333, 880-882.
[10] Koide R, Dickie I (2002). Effects of mycorrhizal fungi on plant populations.Plant and Soil, 244, 307-317.
[11] Kottke I, Nebel M (2005). The evolution of mycorrhiza-like associations in liverworts: An update.New Phytologist, 167, 330-334.
[12] Kovács GM, Balázs T, Pénzes Z (2007). Molecular study of arbuscular mycorrhizal fungi colonizing the sporophyte of the eusporangiate rattlesnake fern (Botrychium virginian- um, Ophioglossaceae). Mycorrhiza, 17, 597-605.
[13] Ligrone R, Carafa A, Lumini E, Bianciotto V, Bonfante P, Duckett JG (2007). Glomeromycotean associations in liverworts: A molecular, cellular, and taxonomic analysis.American Journal of Botany, 94, 1756-1777.
[14] Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010). The online database Maarj AM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromy- cota).New Phytologist, 188, 223-241.
[15] Pirozynski KA, Malloch DW (1975). The origin of land plants: Amatter of mycotrophism.Biosystems, 6, 153-164.
[16] Read D, Duckett J, Francis R, Ligrone R, Russell A (2000). Symbiotic fungal associations in “lower” land plants.Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 355, 815-831.
[17] Redecker D, Kodner R, Graham LE (2000). Glomalean fungi from the Ordovician.Science, 289, 1920-1921.
[18] Remy W, Taylor TN, Hass H, Kerp H (1994). Four hundred- million-year-old vesicular arbuscular mycorrhizae.Proceedings of the National Academy of Sciences of the United of America, 91, 11841-11843.
[19] Russell J, Bulman S (2005). The liverwort Marchantia foliacea forms a specialized symbiosis with arbuscular mycorrhizal fungi in the genus Glomus.New Phytologist, 165, 567-579.
[20] Sanderson MJ (2003). r8s: Inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock.Bioinformatics, 19, 301-302.
[21] Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. 3rd edn. Academic Press, San Diego, USA.
[22] Stamatakis A (2006). RAxML-VI-HPC: Maximum likelihood- based phylogenetic analyses with thousands of taxa and mixed models.Bioinformatics, 22, 2688-2690.
[23] van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity.Nature, 396, 69-72.
[24] van der Heijden MGA, Scheublin TR, Brader A (2004). Taxon- omic and functional diversity in arbuscular mycorrhizal fungi―Is there any relationship?New Phytologist, 164, 201-204.
[25] Wagg C, Jansa J, Stadler M, Schmid B, van der Heijden MGA (2011). Mycorrhizal fungal identity and diversity relaxes plant-plant competition.Ecology, 92, 1303-1313.
[26] Wang B, Yeun LH, Xue JY, Liu Y, Ané JM, Qiu YL (2010). Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants.New Phytologist, 186, 514-525.
[27] Winther JL, Friedman WE (2007). Arbuscular mycorrhizal symbionts in Botrychium (Ophioglossaceae).American Journal of Botany, 94, 1248-1255.
[28] Wu JP, Liu ZF, Wang XL, Sun YX, Zhou LX, Lin YB, Fu SL (2011). Effects of understory removal and tree girdling on soil microbial community composition and litter decomposition in two Eucalyptus plantations in South China.Functional Ecology, 25, 921-931.
[1] Hai-Yan YI Yujin Zhao 朝菊 郑. Forest species diversity mapping based on clustering algorithm [J]. Chin J Plant Ecol, 2020, 44(预发表): 0-0.
[2] Wei Fu Hui Wu Aihua Zhao Zhipeng Hao Bao-Dong CHEN. The ecological impacts of nitrogen deposition on terrestrial ecosystems: Research progresses and prospects [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[3] Ben-Feng HAN Xin Zhou Xue Zhang. Verification of virus identity and host association using genomics technologies [J]. Biodiv Sci, 2020, 28(5): 0-0.
[4] Binbin V Li. Create synergy between biodiversity conservation and Human Health — One Health [J]. Biodiv Sci, 2020, 28(5): 0-0.
[5] . Stepping out of the Shadow of Goethe: for a More Scientific Plant Systematics [J]. Chin Bull Bot, 2020, 55(4): 0-0.
[6] Zhiliang Yao,Handong Wen,Yun Deng,Min Cao,Luxiang Lin. Driving forces underlying the beta diversity of tree species in subtropical mid-mountain moist evergreen broad-leaved forests in Ailao Mountains [J]. Biodiv Sci, 2020, 28(4): 445-454.
[7] Lintao Huang,Hui Huang,Lei Jiang. A revised taxonomy for Chinese hermatypic corals [J]. Biodiv Sci, 2020, 28(4): 515-523.
[8] Huiyu Wei,Kai Chen,Beixin Wang. The spatial scale dependency of elevational patterns of taxonomic and functional diversity in aquatic insects in the Lancang River, Yunnan, China [J]. Biodiv Sci, 2020, 28(4): 504-514.
[9] Cunlu Wang,Hu Chen,Hua Xiao,Hongmei Zhang,Linzhi Li,Cheng Guo,Jing Chen,Qiang Wei. Diversity and habitat selection of amphibians in rocky desertification area in northwestern Guizhou [J]. Biodiv Sci, 2020, 28(4): 485-495.
[10] huang sanwensanwen. A 360-degree scanning of population genetic variations—a pan-genome study of soybean [J]. Chin Bull Bot, 2020, 55(4): 0-0.
[11] Yuanyuan Li,Chaonan Liu,Rong Wang,Shuixing Luo,Shouqian Nong,Jingwen Wang,Xiaoyong Chen. Applications of molecular markers in conserving endangered species [J]. Biodiv Sci, 2020, 28(3): 367-375.
[12] Jinyuan Su,Yu Yan,Chong Li,Dan Li,Fang K. Du. Informing conservation strategies with genetic diversity in Wild Plant with Extremely Small Populations: A review on gymnosperms [J]. Biodiv Sci, 2020, 28(3): 376-384.
[13] Dan Liu,Zhongling Guo,Xiaoyang Cui,Chunnan Fan. Comparison of five associations of Taxus cuspidata and their species diversity [J]. Biodiv Sci, 2020, 28(3): 340-349.
[14] Yisheng Ma,Qingqing Ma,Nianjun He,Dapeng Zhu,Kaihui Zhao,Hongcai Liu,Shuai Li,Liang Sun,Liubin Tang. Camera-trapping survey of mammals and birds in the Foping National Nature Reserve, China [J]. Biodiv Sci, 2020, 28(2): 226-230.
[15] Zhenyuan Liu,Xingliang Meng,Zhengfei Li,Junqian Zhang,Jing Xu,Senlu Yin,Zhicai Xie. Diversity assessment and protection strategies for the mollusk community in the southern Dongting Lake [J]. Biodiv Sci, 2020, 28(2): 155-165.
Full text



[1] Chne Fu-heng and Fan Jun-shen. [J]. Chin Bull Bot, 1988, 5(02): 127 .
[2] Zhou Guang-sheng Xing Xue-rong Wang Hui-min. Feedback of Forest on Climate[J]. Chin Bull Bot, 1995, 12(专辑2): 190 -194 .
[3] ZHOU Qing;YANG Jing;SHAO Ai-Hua and WANG Ya-Ling. Effect of NaHSO3 on Root Growth and The Physiological Characteristics in Rice Seedling[J]. Chin Bull Bot, 1998, 15(03): 51 -53 .
[4] HAN Yan-Lai XU Fang-Sen DUAN Hai-Yan SHI Lei WANG Yun-Hua. Advances in Study on Proteins which Transport Nutrients in Arabidopsis thaliana[J]. Chin Bull Bot, 2003, 20(01): 23 -35 .
[5] Jie Wu, Xin Zhao, Wei Ning. Micro-morphological Characteristics of Taraxacum F. H. Wigg. Seeds from Northeastern China and Taxonomic Significance[J]. Chin Bull Bot, 2011, 46(4): 437 -446 .
[6] Miao Dong, Yue Huang, Wenduo Chen, Tao Xu, Qiulei Lang. Use of Degradome Sequencing in Study of Plant MicroRNAs[J]. Chin Bull Bot, 2013, 48(3): 344 -353 .
[7] CHONG Yun-Xiao, YU Dan, XIA Sheng-Lin, KANG Hui. A Preliminary Study on the Floristic Geography of Aquatic Macrophytes and Helophytes in Taibai County, Shaanxi Province[J]. Chin J Plan Ecolo, 1999, 23(199901): 28 -38 .
[8] . [J]. Chin J Plan Ecolo, 1963, (2): 156 -157 .
[10] Hu Yi-hui, Chen Ling-zhi, Chen Qing-lang, Kong Fan-zhi, Miao You-gui. Studies on the Litter Decom position Rates of Several Plants[J]. Chin J Plan Ecolo, 1987, 11(2): 124 -132 .