Chin J Plan Ecolo ›› 2016, Vol. 40 ›› Issue (9): 871-882.doi: 10.17521/cjpe.2016.0117

• Research Articles • Previous Articles     Next Articles

Responses in allometric growth of two dominant species of subalpine meadow—Arundinella anomala and Miscanthus sinensis—to climate warming in Wugongshan Mountains, China

Xiao-Hong LI1,2, Jian-Cheng XU1,3, Yi-An XIAO1,2,*(), Wen-Hai HU1,2, Yu-Song CAO1,2   

  1. 1College of Life Sciences, Jinggangshan University, Ji’an, Jiangxi 343009, China

    2Key Laboratory for Biodiversity Science and Ecological Engineering of Jiangxi Province, Ji’an, Jiangxi 343009, China
    and
    3College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, China
  • Received:2016-03-30 Accepted:2016-07-23 Online:2016-09-29 Published:2016-09-10
  • Contact: Yi-An XIAO E-mail:iyanxiao@163.com

Abstract:

AimsArundinella anomala and Miscanthus sinensis are dominant species in the subalpine meadow of Wugongshan Mountains. Here we studied the effects of climate warming on allometric relationships among different growth components in the two species through simulated warming in natural habitat.
Methods The warming experiments were conducted with open-top chambers (OTCs) in natural habitat in a subalpine meadow community of Wugongshan Mountains. The two main Gramineae species, Arundinella anomala and Miscanthus sinensis, were selected as the study materials. Two sizes of OTCs were set up to create contrasting levels of warming (i.e. TD for low warming and TG for high warming). The morphological variables, such as the plant height and the basal diameter of shoots, were measured. Allometric analysis was conducted with the Smart Package in R software.
Important findings Significant or highly significant correlations and significant allometric relationships were found between and among growth components in both species. The allometry of the growth in most morphological features was strengthened and modified by simulated warming. Stem diameter and plant height, and spike length in A. anomala and M. sinensis changed from isometric to allometric following warming. The relationship The synchronized growth between stem diameter and spikelet in A. anomala was weakened, but their allometry was enhanced with increased warming. The allometric relationship between plant height and leaf length in A. anomala transformed into isometric growth, but it was in reversed pattern in M. sinensis. Warming promoted the plant height and leaf sheath length in A. anomala, whilst higher warming changed the growth relationship between plant height and leaf sheath length in M. sinensis. Similar allometric relationships among the leaf traits were observed, but warming did not significantly impact their allometric exponents. The results suggested that climate warming could have varied effects on different plants, and the differences are often related to the adaptability of plants.

Key words: allometry, climate warming, Gramineae, subalpine meadow, Wugongshan Mountains

Fig. 1

Effects of simulated warming on the relationships of stem diameter with plant height, spike length, and spikelet in Arundinella anomala and Miscanthus sinensis. CKI, control treatment of Arundinella anomala; CKII, control treatment of Miscanthus sinensis; TDI, low warming treatment of Arundinella anomala; TDII, low warming treatment of Miscanthus sinensis; TGI, high warming treatment of Arundinella anomala; TGII, high warming treatment of Miscanthus sinensis."

Table 1

Analysis of the effects of simulated warming on the relationships of stem diameter with plant height, spike length, and spikelet in Arundinella anomala and Miscanthus sinensis"

参数
Item
处理物种
Species
n R2 斜率检验
Shift A test
95%置信区间
95% confidence
intervals
截距检验
Shift B test
95%置信区间
95% confidence
intervals
共同斜率 Common slope
F p
茎粗-株高
D-H
CKI 59 0.329** 0.881b 0.710, 1.093 2.534 2.399, 2.670 7.395 0.029
TDI 59 0.198** 1.208a 0.955, 1.528 2.818 2.614, 3.023
TGI 58 0.071* 1.363a 1.056, 1.759 2.949 2.702, 3.195
CKII 60 0.419** 0.934b 0.766, 1.140 2.457 2.360, 2.554 9.911 0.002
TDII 46 0.300** 1.514a 1.177, 1.947 2.733 2.548, 2.917
TGII 45 0.292** 1.333a 1.032, 1.723 2.776 2.609, 2.943
茎粗-穗长
D-E
CKI 60 0.145** 1.111c 0.873, 1.413 1.958 1.768, 2.148 29.920 0.001
TDI 60 0.166** 1.566b 1.234, 1.986 2.229 1.962, 2.496
TGI 58 0.075* 2.981a 2.311, 3.846 3.166 2.627, 3.704
CKII 60 0.269** 1.526a 1.221, 1.907 1.927a 1.748, 2.105 4.938 0.090
TDII 46 0.232** 1.987a 1.527, 2.585 2.078b 1.825, 2.332
TGII 45 0.148** 2.237a 1.690, 2.960 2.251ab 1.943, 2.560
茎粗-小穗数
D-R
CKI 60 0.162** 1.689b 1.331, 2.143 2.450 2.164, 2.736 17.060 0.001
TDI 60 0.076* 2.076b 1.617, 2.666 2.645 2.272, 3.018
TGI 58 0.027 3.527a 2.717, 4.580 3.584 2.930, 4.238
CKII 60 0.177** 1.853b 1.463, 2.347 1.765 1.534, 1.995 8.858 0.015
TDII 46 0.381** 3.074a 2.426, 3.896 2.262 1.910, 2.614
TGII 45 0.263** 2.502ab 1.927, 3.248 2.002 1.682, 2.322

Fig. 2

Effects of simulated warming on the relationships between plant height and plant morphology in Arundinella anomala and Miscanthus sinensis. CKI, control treatment of Arundinella anomala; CKII, control treatment of Miscanthus sinensis; TDI, low warming treatment of Arundinella anomala; TDII, low warming treatment of Miscanthus sinensis; TGI, high warming treatment of Arundinella anomala; TGII, high warming treatment of Miscanthus sinensis."

Table 2

Analysis of the effects of simulated warming on the relationships between plant height and plant characteristics in Arundinella anomala and Miscanthus sinensis"

参数
Item
处理物种
Species
n R2 斜率检验
Shift A test
95%置信区间
95% confidence
intervals
截距检验
Shift B test
95%置信区间
95% confidence
intervals
共轴漂移检验
Shift C test
共同斜率
Common slope
F p
株高-节间距
H-P
CKI 60 0.600** 1.193a 1.011, 1.408 -1.064a -1.445, -0.684 bc 0.058 0.980
TDI 60 0.494** 1.158a 0.961, 1.395 -1.047b -1.473, -0.622 ab
TGI 58 0.539** 1.181a 0.985, 1.414 -1.108b -1.537, -0.679 a
CKII 60 0.607** 1.359bc 1.153, 1.601 -1.474 -1.918, -1.031 9.808 0.008
TDII 46 0.276** 1.586ab 1.229, 2.048 -1.963 -2.790, -1.135
TGII 45 0.286** 2.217a 1.715, 2.867 -3.535 -4.768, -2.302
株高-叶片长
H-L
CKI 60 0.206** 1.570a 1.244, 1.980 -1.547 -2.253, -0.842 6.209 0.044
TDI 60 0.234** 1.073b 0.854, 1.348 -0.593 -1.079, -0.108
TGI 58 0.057 1.112b 0.860, 1.439 -0.633 -1.212, -0.054
CKII 60 0.248** 0.990b 0.790, 1.241 -0.444 -0.891, 0.003 11.580 0.004
TDII 46 0.403** 0.892b 0.707, 1.126 -0.230 -0.653, 0.193
TGII 45 0.496** 1.499a 1.207, 1.861 -1.555 -2.255, -0.855
株高-叶鞘长
H-S
CKI 60 0.274** 1.100a 0.881, 1.373 -1.161a -1.634, -0.688 c 4.664 0.113
TDI 60 0.343** 0.844a 0.683, 1.042 -0.698a -1.051, -0.345 b
TGI 57 0.042 1.175a 0.904, 1.526 -1.352a -1.974, -0.73 a
CKII 60 0.145** 0.912b 0.717, 1.161 -0.773 -1.213, -0.334 10.950 0.004
TDII 46 0.171** 0.753b 0.573, 0.989 -0.508 -0.929, -0.088
TGII 45 0.715** 1.241a 1.054, 1.461 -1.549 -1.985, -1.113
株高-叶面积
H-A
CKI 60 0.265** 1.938a 1.550, 2.423 -2.236a -3.074, -1.398 c 2.986 0.231
TDI 60 0.184** 1.607a 1.271, 2.034 -1.621a -2.371, -0.871 b
TGI 58 0.040 1.449a 1.118, 1.878 -1.264a -2.025, -0.504 a
CKII 60 0.252** 2.102a 1.678, 2.634 -2.706a -3.653, -1.759 c 4.174 0.124
TDII 46 0.380** 1.507a 1.189, 1.910 -1.484a -2.212, -0.756 b
TGII 45 0.627** 1.885a 1.564, 2.272 -2.389b -3.147, -1.632 a

Fig. 3

Effects of simulated warming on the relationships between leaf area and leaf traits in Arundinella anomala and Miscanthus sinensis. CKI, control treatment of Arundinella anomala; CKII, control treatment of Miscanthus sinensis; TDI, low warming treatment of Arundinella anomala; TDII, low warming treatment of Miscanthus sinensis; TGI, high warming treatment of Arundinella anomala; TGII, high warming treatment of Miscanthus sinensis."

Table 3

Analysis of of the effects of simulated warming on the relationships between leaf area and leaf characteristics in Arundinella anomala and Miscanthus sinensis"

参数
Item
处理物种
Species
n R2 斜率检验
Shift A test
95%置信区间
95% confidence intervals
截距检验
Shift B test
95%置信区间
95% confidence intervals
共轴漂移检验Shift C test 共同斜率
Common slope
F p
叶面积-叶片长
A-L
CKI 60 0.687** 0.810a 0.700, 0.938 0.263a 0.086, 0.441 b 4.106 0.131
TDI 60 0.736** 0.668a 0.584, 0.764 0.489a 0.350, 0.628 a
TGI 58 0.805** 0.768a 0.682, 0.864 0.338a 0.189, 0.486 a
CKII 60 0.819** 0.471c 0.421, 0.526 0.830 0.753, 0.907 30.610 0.001
TLII 46 0.729** 0.592b 0.506, 0.693 0.649 0.503, 0.796
TGII 44 0.907** 0.728a 0.662, 0.800 0.460 0.346, 0.575
叶面积-叶片宽
A-W
CKI 60 0.345** 0.560a 0.453, 0.691 -0.810a -0.988, -0.633 b 2.378 0.306
TDI 60 0.608** 0.548a 0.465, 0.645 -0.819b -0.959, -0.680 b
TGI 58 0.457** 0.460a 0.378, 0.560 -0.710c -0.859, -0.561 a
CKII 60 0.892** 0.608a 0.557, 0.663 -0.944 -1.021, -0.867 19.410 0.001
TLII 46 0.720** 0.583a 0.497, 0.684 -0.921 -1.067, -0.775
TGII 44 0.657** 0.379b 0.316, 0.454 -0.636 -0.750, -0.521
叶面积-叶鞘长
A-S
CKI 60 0.214** 0.567b 0.450, 0.715 0.108 -0.090, 0.305 14.790 0.001
TDI 60 0.163** 0.525b 0.414, 0.666 0.153 -0.043, 0.348
TGI 58 0.267** 0.949a 0.756, 1.191 -0.545 -0.901, -0.189
CKII 60 0.027 0.434bc 0.336, 0.561 0.401 0.236, 0.567 6.745 0.032
TLII 46 0.316** 0.500ab 0.390, 0.641 0.233 0.037, 0.429
TGII 45 0.545** 0.658a 0.536, 0.809 0.024 -0.201, 0.249
1 Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013). Potential for evolutionary responses to climate change-evidence from tree populations.Global Change Biology, 19, 1645-1661.
2 Allen A, Pockman W, Restrepo C, Milne B (2008). Allometry, growth and population regulation of the desert shrub Larrea tridentata.Functional Ecology, 22, 197-204.
3 Bellard C, Bertelsmeier B, Leadley P, Thuiller W, Courchamp F (2012). Impacts of climate change on the future of biodiversity.Ecology Letters, 15, 365-377.
4 Chen JQ, Zhang R, Hou YC, Ma LN, Ding LM, Long RJ, Shang ZH (2013). Relationships between species diversity and C, N and P ecological stoichiometry in plant communities of sub-alpine meadow.Chinese Journal of Plant Ecology, 37, 979-987. (in Chinese with English abstract)[陈军强, 张蕊, 侯尧宸, 马丽娜, 丁路明, 龙瑞军, 尚占环 (2013). 亚高山草甸植物群落物种多样性与群落C、N、P生态化学计量的关系. 植物生态学报, 37, 979-987.]
5 Chen LM, Qiao LF, Zhang YC (2004). Ecological construction of National Forest Park of Wugong Mountain.Journal of Jiangsu Forestry Science & Technology, 31(5), 18-21. (in Chinese with English abstract)[陈亮明, 乔丽芳, 张毅川 (2004). 武功山国家森林公园的自然生态化规划设计实践. 江苏林业科技, 31(5), 18-21.]
6 Cook BI, Wolkovich EM, Parmesan C (2012). Divergent responses to spring and winter warming drive community level flowering trends.Proceedings of the National Academy of Sciences of the United States of America, 109, 9000-9005.
7 Coomes DA (2006). Challenges to the generality of WBE theory.Trends in Ecology & Evolution, 21, 593-596.
8 Dorji T, Totland Ø, Moe SR, Hopping KA, Pan J, Klein JA (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19, 459-472.
9 Eklöf JS, Alsterberg C, Havenhand JN, Sundbäck K, Wood HL, Gamfeldt L (2012). Experimental climate change weakens the insurance effect of biodiversity.Ecology Letters, 15, 864-872.
10 Fan Y, Tian M, Jing Q, Tian Z, Han H, Jiang D, Cao W, Dai T (2015). Winter night warming improves pre-anthesis crop growth and post-anthesis photosynthesis involved in grain yield of winter wheat (Triticum aestivum L.).Field Crops Research, 178, 100-108.
11 Farrior CE, Bohlman SA, Hubbell S, Pacala SW (2016). Dominance of the suppressed, power-law size structure in tropical forests.Science, 351, 155-157.
12 Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Penuelas J, Song Y, Vitasse Y, Zeng Z, Janssens IA (2015). Declining global warming effects on the phenology of spring leaf unfolding.Nature, 526, 104-107.
13 Gao BQ, Yuan ZQ, Wang BX, Gao H, Zhang R (2014). Effects of fertilization and clipping on species diversity, productivity and their relationship in subalpine meadow.Chinese Journal of Plant Ecology, 38, 417-424. (in Chinese with English abstract)[高本强, 袁自强, 王斌先, 高慧, 张荣 (2014). 施肥和刈割对亚高山草甸物种多样性与生产力及其关系的影响. 植物生态学报, 38, 417-424.]
14 Gao XM, Ma KP, Chen LZ, Li DQ (2002). The effects of tourism on species diversity of subalpine meadow in Dongling mountainous area, Beijing.Biodiversity Science, 10, 189-195. (in Chinese with English abstract)[高贤明, 马克平, 陈灵芝, 李迪强 (2002). 旅游对北京东灵山亚高山草甸物种多样性影响的初步研究. 生物多样性, 10, 189-195.]
15 Givnish TJ, Wong SC, Stuart-Williams H, Holloway-Phillips M, Farquhar GD (2014). Determinants of maximum tree height in Eucalyptus species along a rainfall gradient in Victoria, Australia.Ecology, 95, 2991-3007.
16 Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (2001). Climate Change 2001, The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
17 Huang XX, Jiang Y, Liu QR, Huang QR (2007). Relationship between habitats and communities of subalpine meadow on Mt. Xiaowutai, North China. Journal of Plant Ecology (Chinese Version), 31, 437-444. (in Chinese with English abstract)[黄晓霞, 江源, 刘全儒, 黄秋如 (2007). 小五台亚高山草甸与生境关系分析. 植物生态学报, 31, 437-444.]
18 Huang XX, Jiang Y, Liu QR, Huang QR, Dai QY (2003). The spatial pattern of biodiversity in subalpine meadow on Mt. Xiaowutai.Acta Geographica Sinica, 58, 186-192. (in Chinese with English abstract)[黄晓霞, 江源, 刘全儒, 黄秋如, 戴泉玉 (2003). 小五台山亚高山草甸生物多样性的空间格局. 地理学报, 58, 186-192.]
19 IPCC> (Intergovernmental Panel on Climate Change) (2007). Climate Change 2007, The Physical Science Basis. Cambridge University Press, Cambridge, UK.
20 Ji L, Gan YM, Luo YJ, Cheng P, Feng GY, Ma C (2011). Comparison between the vegetation characteristics of alpine and subalpine meadow with different degradation degrees in North-west of Sichuan Province. Pratacultural Science, 28, 1101-1105. (in Chinese with English abstract)[纪磊, 干友民, 罗元佳, 成平, 冯国英, 马超 (2011). 川西北不同退化程度高山草甸和亚高山草甸的植被特征. 草业科学, 28, 1101-1105.]
21 Li T (2010). Response Mechanism of Desert Plant Allomertic Exponents and Spatial Patterns to a Precipitation Gradient. PhD dissertation, Lanzhou University, Lanzhou. 60-61. (in Chinese with English abstract)[李涛 (2010). 荒漠植物异速生长指数及其空间格局适应降雨梯度变化的规律与机制研究. 博士论文, 兰州大学, 兰州. 60-61.]
22 Lines ER, Zavala MA, Purves DW, Coomes DA (2012). Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Global Ecology and Biogeography, 21, 1017-1028.
23 Liu ZG, Cai YL, Li K (2008). Studies on the leaf size-twig size spectrum of subtropical evergreen board-leaved woody species. Journal of Plant Ecology (Chinese Version), 32, 363-369. (in Chinese with English abstract)[刘志国, 蔡永立, 李恺 (2008). 亚热带常绿阔叶林植物叶-小枝的异速生长. 植物生态学报, 32, 363-369.]
24 Lü XM, Zheng D (2006). Impacts of global change on the alpine meadow ecosystem in the source region of the Yangtze River.Resources and Environment in the Yangtze Basin, 15, 603-607. (in Chinese with English abstract)[吕新苗, 郑度 (2006). 气候变化对长江源地区高寒草甸生态系统的影响. 长江流域与环境, 15, 603-607.]
25 Morin X, Roy J, Sonie L, Chuine I (2010). Changes in leaf phenology of three European oak species in response to experimental climate change.New Phytologist, 186, 900-910.
26 Niklas KJ (1993a). The scaling of plant height: A comparison among major plant clades and anatomical grades. Annals of Botany, 72, 165-172.
27 Niklas KJ (1993b). Influence of tissue density-specific mechanical properties on the scaling of plant height. Annals of Botany, 72, 173-179.
28 Niklas KJ, Enquist BJ (2001). Invariant scaling relationships for interspecific plant biomass production rates and body size.Proceedings of the National Academy of Sciences of the United States of America, 98, 2922-2927.
29 Niklas KJ, Enquist BJ (2002). Canonical rules for plant organ biomass partitioning and growth allocation.American Journal of Botany, 89, 812-819.
30 Norberg RA (1988). Theory of growth geometry of plants and self-thinning of plant populations: Geometric similarity, elastic similarity, and different growth modes of plant parts.The American Naturalist, 131, 220-256.
31 Oreskes N (2004). The scientific consensus on climate change.Science, 306, 1686.
32 Osunkoya OO, Omarali K, Amit N, Dayan J, Daud DS, Sheng TK (2007). Comparative height crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo.American Journal of Botany, 94, 1951-1962.
33 Piper FI, Fajardo A, Cavieres LA (2013). Simulated warming does not impair seedling survival and growth of Nothofagus pumilio in the southern Andes.Perspectives in Plant Ecology Evolution & Systematics, 15, 97-105.
34 Price CA, Enquist BJ, Savage VM (2007). A general model for allometric covariation in botanical form and function.Proceedings of the National Academy of Sciences of the United States of America, 104, 13204-13209.
35 Rammig A, Jonas T, Zimmermann NE, Rixen C (2010). Changes in alpine plant growth under future climate conditions.Biogeosciences, 7, 2013-2024.
36 Shi FS, Wu N, Luo P (2008). Effect of temperature enhancement on community structure and biomass of subalpine meadow in North western Sichuan.Acta Ecologica Sinica, 28, 5286-5293. (in Chinese with English abstract)[石福孙, 吴宁, 罗鹏 (2008). 川西北亚高山草甸植物群落结构及生物量对温度升高的响应. 生态学报, 28, 5286-5293.]
37 Subedi N, Sharma M (2013). Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada.Global Change Biology, 19, 505-516.
38 Sun SC, Jin DM, Shi PL (2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient, an invariant allometric scaling relationship.Annals of Botany, 97, 97-107.
39 Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291.
40 Watson MA, Casper BB (1984). Morphogenetic constraints on patterns of carbon distribution in plants.Annual Review of Ecology and Systematics, 15, 233-258.
41 West GB, Brown JH, Enquist BJ (1999). A general model for the structure and allometry of plant vascular systems.Nature, 400, 664-667.
42 Wheeler HC, Høye TT, Schmidt NM, Svenning JC, Forch- hammer MC (2015). Phenological mismatch with abiotic conditions-implications for flowering in Arctic plants.Ecology, 96, 775-787.
43 Williams CM, Henry HAL, Sinclair BJ (2015). Cold truths, how winter drives responses of terrestrial organisms to climate change. Biological Reviews, 90, 214-235.
44 Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G (2008). Towards an integrated framework for assessing the vulnerability of species to climate change.PLoS Biology, 6, 2621-2626.
45 Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra- Manriquez G, Martinez-Ramos M, Mazer SJ, Muller- Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ. (2007). Relationships among ecologically-important dimensions of plant trait variation in 7 neotropical forests.Annals of Botany, 99, 1003-1015.
46 Xie R, Tao Y, Chang SL (2015). Allometric relationship between modular morphology and biomass of four annuals in the Gurbantunggut Desert, China.Chinese Journal of Ecology, 34, 648-655. (in Chinese with English abstract)[谢然, 陶冶, 常顺利 (2015). 四种一年生荒漠植物构件形态与生物量间的异速生长关系. 生态学杂志, 34, 648-655.]
47 Yu H, Luedeling E, Xu J (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau.Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156.
48 Zhang GP, Zhang F, Ru WM (2008). Effects of disturbance by tourism on plant diversity in Lishan subalpine meadow, Shanxi Province.Acta Ecologica Sinica, 28, 407-415. (in Chinese with English abstract)[张桂萍, 张峰, 茹文明 (2008). 旅游干扰对历山亚高山草甸植物多样性的影响. 生态学报, 28, 407-415.]
49 Zhang WI, Xiao YA, Yan XH, Zhang SS, Huang HQ, Liu BB (2013). Effects of simulated warming on the growth and reproduction investment of invasive plantPlantago virginica. Chinese Journal of Ecology, 32, 2959-2965. (in Chinese with English abstract)[张万灵, 肖宜安, 闫小红, 张斯斯, 黄海裙, 刘保兵 (2013). 模拟增温对入侵植物北美车前生长及繁殖投资的影响. 生态学杂志, 32, 2959-2965.]
50 Zhao JZ, Liu W, Xu QM, Yang XL, Achun (2007a). Effects of simulated greenhouse on clonal growth of Kobresia humilis.Qinghai Prataculture, 16(4), 1-8. (in Chinese with English abstract)[赵建中, 刘伟, 许庆民, 杨秀丽, 阿春 (2007a). 模拟增温效应对矮嵩草草甸莎草科植物无性繁殖的影响. 青海草业, 16(4), 1-8.]
51 Zhao JZ, Liu W, Zhou HK, Liu HW, Xu QM (2007b). Influence of simulated warming effect on growth characteristic of Carex alrofusca.Journal of Gansu Agricultural university, 42(2), 84-90. (in Chinese with English abstract)[赵建中, 刘伟, 周华坤, 刘汉武, 许庆民 (2007b). 模拟增温效应对黑褐苔草(Carex alrofusca)生长特征的影响. 甘肃农业大学学报, 42(2), 84-90.]
52 Zwiers FW (2002). The 20-year forecast.Nature, 416, 690-691.
[1] Yang Bai,Shengwen Chen,Haiyuan Qian,Shunhai Yu,Yiming Xu,Zhixin Zhang,Chao Shen,Yuqi Chen,Meiqi Zhang,Jianping Yu,Ruiliang Zhu. Species diversity of epiphyllous liverworts in Qianjiangyuan National Park, Zhejiang [J]. Biodiv Sci, 2020, 28(2): 231-237.
[2] SHEN Jia-Yan, LI Shuai-Feng, HUANG Xiao-Bo, LEI Zhi-Quan, SHI Xing-Quan, SU Jian-Rong. Radial growth responses to climate warming and drying in Pinus yunnanensis in Nanpan River Basin [J]. Chin J Plant Ecol, 2019, 43(11): 946-958.
[3] Zhonghua Zhang,Huakun Zhou,Xinquan Zhao,Buqing Yao,Zhen Ma,Quanmin Dong,Zhenhua Zhang,Wenying Wang,Yuanwu Yang. Relationship between biodiversity and ecosystem functioning in alpine meadows of the Qinghai-Tibet Plateau [J]. Biodiv Sci, 2018, 26(2): 111-129.
[4] WANG Guan-Qin, LI Fei, PENG Yun-Feng, CHEN Yong-Liang, HAN Tian-Feng, YANG Gui-Biao, LIU Li, ZHOU Guo-Ying, YANG Yuan-He. Responses of soil N2O emissions to experimental warming regulated by soil moisture in an alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 105-115.
[5] WANG Jun, WANG Guan-Qin, LI Fei, PENG Yun-Feng, YANG Gui-Biao, YU Jian-Chun, ZHOU Guo-Ying, YANG Yuan-He. Effects of short-term experimental warming on soil microbes in a typical alpine steppe [J]. Chin J Plan Ecolo, 2018, 42(1): 116-125.
[6] Ling HAN, Cheng-Zhang ZHAO, Ting XU, Wei FENG, Bei-Bei DUAN. Relationships between leaf thickness and vein traits of Achnatherum splendens under different soil moisture conditions in a flood plain wetland, Heihe River, China [J]. Chin J Plan Ecolo, 2017, 41(5): 529-538.
[7] Yong-Xing CHANG, Zhen-Ju CHEN, Xian-Liang ZHANG, Xue-Ping BAI, Xue-Peng ZHAO, Jun-Xia LI, Xu LU. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming [J]. Chin J Plan Ecolo, 2017, 41(3): 279-289.
[8] Ying-Di CHE, Min-Xia LIU, Li-Rong LI, Jiao JIAO, Wei XIAO. Exploring the community assembly of subalpine meadow communities based on functional traits and community phylogeny [J]. Chin J Plan Ecolo, 2017, 41(11): 1157-1167.
[9] Yang WANG, Wen-Ting XU, Gao-Ming XIONG, Jia-Xiang LI, Chang-Ming ZHAO, Zhi-Jun LU, Yue-Lin LI, Zong-Qiang XIE. Biomass allocation patterns of Loropetalum chinense [J]. Chin J Plan Ecolo, 2017, 41(1): 105-114.
[10] Guang-Shuai CUI, Lin ZHANG, Wei SHEN, Xin-Sheng LIU, Yuan-Tao WANG. Biomass allocation and carbon density of Sophora moorcroftiana shrublands in the middle reaches of Yarlung Zangbo River, Xizang, China [J]. Chin J Plan Ecolo, 2017, 41(1): 53-61.
[11] Ming ZHOU, Zhi-Li LIU, Guang-Ze JIN. Improving the accuracy of indirect methods in estimating leaf area index using three correction schemes in a Larix gmelinii plantation [J]. Chin J Plan Ecolo, 2016, 40(6): 574-584.
[12] Yunxia Huang,Xuan Xu,Lixiang Zhang,Yue Song,Zhengrong Luo. Ten-years period of grass and small woody plant dynamics in a 5-ha evergreen forest plot in Baishanzu, Zhejiang Province [J]. Biodiv Sci, 2016, 24(12): 1353-1363.
[13] DANG Jing-Jing,ZHAO Cheng-Zhang,LI Yu,HOU Zhao-Jiang,DONG Xiao-Gang. Relationship between leaf traits of Melica przewalskyi and slope aspects in alpine grassland of Qilian Mountains, China [J]. Chin J Plan Ecolo, 2015, 39(1): 23-31.
[14] MA Yu-Zhu, CHENG Dong-Liang, ZHONG Quan-Lin, JIN Bing-Jie, LIN Jiang-Ming, LU Hong-Dian, and GUO. Branching and metabolic exponents in seven woody plants [J]. Chin J Plan Ecolo, 2014, 38(6): 599-607.
[15] GAO Ben-Qiang, YUAN Zi-Qiang, WANG Bin-Xian, GAO Hui, and ZHANG Rong. Effects of fertilization and clipping on species diversity, productivity and their relationship in subalpine meadow [J]. Chin J Plan Ecolo, 2014, 38(5): 417-424.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Xue-Hao YU Jie LI Ling-Li T. Advances in Study on Polyamines During Flowering and Fruit Setting and Development in Higher Plants[J]. Chin Bull Bot, 2003, 20(01): 36 -42 .
[2] Li Jing-shu. [J]. Chin Bull Bot, 1988, 5(03): 187 -191 .
[3] Suxia Yuan;Yumei Liu*;Zhiyuan Fang;Limei Yang;Mu Zhuang;Yangyong Zhang;Peitian Sun. Plant Regeneration from Microspore-derived Embryos in Cabbage (Brassica oleracea var. capitata) and Broccoli (Brassica oleracea var. italica)[J]. Chin Bull Bot, 2010, 45(02): 226 -232 .
[4] Zhu Zhu;Xianghong Meng;Shiping Tian*. Effect of Preharvest Oxalic Acid Sprays on Calcium Content and Distribution in Mango Fruit Cells[J]. Chin Bull Bot, 2010, 45(01): 23 -28 .
[5] Gao Zhi-hui, Jiang Guo-hong, Xing Ai-jin, Yu Ming-rong. A Study on the Biomass of Metasequoia glyptostroboides plantation in Zhebei Plain[J]. Chin J Plan Ecolo, 1992, 16(1): 64 -71 .
[6] SHEN Qi, LIU Ke, LI Shi-Yu, ZHANG Jun, JIANG Yue-Ping, GE Ying, CHANG Jie. RELATIONSHIPS OF PLANT COMPOSITION,WATER LEVEL AND SOLAR RADIATION IN XIXI WETLAND, HANGZHOU, CHINA[J]. Chin J Plan Ecolo, 2008, 32(1): 114 -122 .
[7] Khajeddin SJ, Akbari M, Karimzadeh HR, Eghbal MK. DETECTING DESERTIFICATION PROCESSES USING TM AND ETM+ DATA, NORTH OF ISFAHAN, IRAN[J]. Chin J Plan Ecolo, 2008, 32(2): 328 -335 .
[8] ZHU Yan, YAO Xia, TIAN Yong-Chao, ZHOU Dong-Qin, LI Ying-Xue, CAO Wei-Xing. QUANTITATIVE RELATIONSHIP BETWEEN LEAF NITROGEN ACCUMULATION AND CANOPY REFLECTANCE SPECTRA IN RICE AND WHEAT[J]. Chin J Plan Ecolo, 2006, 30(6): 983 -990 .
[9] LI Zhi-Yong, CHEN Jian-Jun, WANG Yan-Hui, YU Peng-Tao, DU Shi-Cai, HE Ping, DUAN Jian. EFFECTS OF SCHIMA SUPERBA PLANTATIONS ON SOIL CHEMICAL PROPERTIES IN THE ACID RAIN REGION OF CHONGQING, SOUTHWESTERN CHINA[J]. Chin J Plan Ecolo, 2008, 32(3): 632 -638 .
[10] GENG Yun-Xia, LI Yi-Ling, ZHU Sha, ZHU Jing-Jing, JIANG Jun-Cheng, NIU Hong-Hao, and JIE Dong-Mei. Morphological changes of phytoliths in Leymus chinensis under saline-alkali stress[J]. Chin J Plan Ecolo, 2011, 35(11): 1148 -1155 .