Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (5): 585-594.doi: 10.17521/cjpe.2018.0016

• Research Articles • Previous Articles     Next Articles

Seasonal changes of photosynthetic characteristics of Alpinia oxyphylla growing under Hevea brasiliensis

CHENG Han-Ting,LI Qin-Fen,LIU Jing-Kun,YAN Ting-Liang,ZHANG Qiao-Yan,WANG Jin-Chuang()   

  1. Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences/Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture of the People’s Republic of China, Haikou 571101, China
  • Received:2018-01-12 Revised:2018-04-08 Online:2018-07-20 Published:2018-05-20
  • Contact: Jin-Chuang WANG E-mail:jinchuangwang@yahoo.com

Abstract:

Aims The development of ecological agriculture by agroforestry models could improve resource utilization. The Hevea brasiliensis-Alpinia oxyphylla agroforestry system is among the largest agroforestry models in rubber plantation. In this study, we aimed to investigate the physiological strategies that allow Alpinia oxyphylla, a perennial herb widespread under-growing the Hevea brasiliensis, to cope successfully with the environmental factors with the seasonal changes of the tropical monsoon climate.

Methods Gas exchange and light response curve measurements as well as pigment content determinations were performed periodically throughout different seasons on A. oxyphylla growing in the rubber plantation by a portable leaf gas exchange system (LI-6400).

Important findings (1) The diurnal change of the net photosynthetic rate had a V-shaped pattern in March, which decreased to be the lowest at 14:00. The diurnal changes of the Pn in June, September, and December increased to the peak at 10:00 and then began to decline slowly. The daily average and maximum of the net photosynthetic rate during the monsoon season (June and September) were much higher than those in the dry season (March and December), which suggested that A. oxyphylla had the physiological strategy to environmental changes in different seasons. The severe soil moisture deficit inhibits photosynthetic CO2 assimilation due to the decline of stomatal conductance in March. (2) The light compensation point and dark respiration rate of March generally were higher than those of other seasons (June, September and December), but the maximum net photosynthetic rate and light saturation point were on the contrary. The discrepancies that may be related to the photosynthetic enzymatic activity were restrained by the dry conditions, which caused the occurrence of photoinhibition, the increased respiration, and decreased photosynthetic capacity. (3) The net photosynthetic rate in March was negatively correlated with air temperature, but positively correlated with air humidity. Air temperature and air humidity in combination inhibited photosynthesis of A. oxyphylla in March. However, photosynthetic active radiation was a pivotal factor to photosynthesis of A. oxyphylla in September and December.

Key words: photosynthetic characteristics, environmental factor, Alpinia oxyphylla, seasonal change, diurnal change of photosynthesis

Fig. 1

Seasonal changes of air temperature (Ta), photosynthetic active radiation (PAR), precipitation and soil water content (SWC) under the Hevea brasiliensis forest."

Fig. 2

Daily variations of photosynthetic active radiation (PAR), air temperature (Ta), air humidity (RH) under the Hevea brasiliensis forest (mean ± SD)."

Fig. 3

Diurnal changes of photosynthetic characteristics of Alpinia oxyphylla in different months (mean ± SD). Ci, intercellular CO2 concentration; Gs, stomatal conductance; Ls, stomatal limitation; Pn, the net photosynthetic rate; Tr, transpiration rate; WUE, water use efficiency."

Table 1

The photosynthetic pigment content, leaf mass per area (LMA) and leaf water content of Alpinia oxyphylla"

叶绿素a
Chl a (mg·cm-2)
叶绿素b
Chl b (mg·cm-2)
类胡萝卜素
Car (mg·cm-2)
总叶绿素
Chl (mg·cm-2)
叶绿素a/b
Chl a/b
比叶质量
LMA (g·m-2)
叶片含水量
Leaf water content (%)
3月 Mar. 2.60a 1.64a 3.15a 7.39a 1.59a 51.26a 65.17c
6月 June 2.60a 1.28b 2.67c 6.55b 2.02b 43.06c 74.31a
9月 Sept. 2.62a 1.33b 2.60c 6.55b 1.97b 48.82ab 75.95a
12月 Dec. 2.52a 1.31b 2.76b 6.48b 1.93b 45.25bc 68.64b

Fig. 4

Light response curves of net photosynthetic rate (Pn) in Alpinia oxyphylla in different months (mean ± SD)."

Table 2

Parameters of light response curves of Alpinia oxyphylla in different months"

月份 Month 表观量子效率 AQE 光补偿点
Ic (μmol·m-2·s-1)
暗呼吸速率
Rd (μmol·mol-1)
最大净光合速率
Pnmax (μmol·m-2·s-1)
光饱和点
Is (μmol·m-2·s-1)
3月 Mar. 0.068c 16.144a 0.865a 3.213d 522.968b
6月 June 0.100a 5.813b 0.550b 8.006c 1010.264a
9月 Sept. 0.095a 3.514c 0.324c 10.648a 1021.726a
12月 Dec. 0.086b 3.906c 0.326c 8.783b 964.900a

Table 3

The correlation analysis between net photosynthetic rate (Pn) of Alpinia oxyphylla and the main environmental factors in different months"

月份 Month 生理生态因子
Physio-ecological factors
Pn Ca PAR Ta RH Gs Ci
3月 Mar. Pn 1.000
Ca 0.883* 1.000
PAR -0.678 -0.664 1.000
Ta -0.947** -0.889* 0.735 1.000
RH 0.985** 0.847* -0.669 -0.902* 1.000
Gs 0.891* 0.946** -0.539 -0.852* 0.898* 1.000
Ci -0.464 -0.234 0.554 0.488 -0.372 -0.044 1.000
6月 June Pn 1.000
Ca 0.692 1.000
PAR -0.349 -0.868* 1.000
Ta -0.265 -0.793 0.937** 1.000
RH 0.449 0.909* -0.904* -0.950** 1.000
Gs 0.921** 0.507 -0.108 -0.099 0.279 1.000
Ci 0.283 0.576 -0.494 -0.702 0.729 0.403 1.000
9月 Sept. Pn 1.000
Ca -0.416 1.000
PAR 0.908* -0.472 1.000
Ta 0.821* -0.665 0.733 1.000
RH -0.716 0.837* -0.678 -0.960** 1.000
Gs 0.940** -0.310 0.941** 0.665 -0.549 1.000
Ci -0.009 -0.037 -0.055 -0.067 0.112 0.174 1.000
12月 Dec. Pn 1.000
Ca -0.536 1.000
PAR 0.969** -0.470 1.000
Ta 0.579 -0.878* 0.507 1.000
RH -0.561 0.928** -0.483 -0.989** 1.000
Gs 0.908* -0.737 0.902* 0.706 -0.693 1.000
Ci -0.232 0.350 -0.133 -0.389 0.459 -0.022 1.000
[1] Araus JL, Serret MD ( 1986). Relationships between photosynthetic capacity and leaf structure in several shade plants. American Journal of Botany, 73, 1760-1770.
doi: 10.1002/j.1537-2197.1986.tb09708.x
[2] Chen XM, Chen HL, Li WG, Liu SJ ( 2016). Remote sensing monitoring of spring phenophase of natural rubber forest in Hainan Province. Chinese Journal of Agrometeorology, 37, 111-116.
doi: 10.3969/j.issn.1000-6362.2016.01.014
[ 陈小敏, 陈汇林, 李伟光, 刘少军 ( 2016). 海南岛天然橡胶林春季物候期的遥感监测. 中国农业气象, 37, 111-116.]
doi: 10.3969/j.issn.1000-6362.2016.01.014
[3] Cheng HT, Liu JK, Yan TL, Zhang QY, Wang JC ( 2017). Effects of different picking on seed quality of medicinal plants Alpinia oxyphylla Miq. Chinese Journal of Tropical Crops, 38, 1840-1845.
[ 程汉亭, 刘景坤, 严廷良, 张俏燕, 王进闯 ( 2017). 不同采收期对药用植物——益智种子质量的影响研究. 热带作物学报, 38, 1840-1845.]
[4] Cheng HT, Wang JC, Hou XW, Li QF, Zou YK, Li GY, Wang DM ( 2015). Development status of the private rubber industry in Changjiang under a situation of rubber price downturn. Chinese Journal of Tropical Agriculture, 35(5), 78-81.
[ 程汉亭, 王进闯, 侯宪文, 李勤奋, 邹雨坤, 李光义, 王定美 ( 2015). 胶价低迷背景下昌江县民营橡胶产业的发展现状和对策. 热带农业科学, 35(5), 78-81.]
[5] Crafts-Brandner SJ, Salvucci ME ( 2000). Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proceedings of the National Academy of Sciences of the United States of America, 97, 13430-13435.
doi: 10.1073/pnas.230451497 pmid: 11069297
[6] Dossa EL, Fernandes ECM, Reid WS, Ezui K ( 2008). Above- and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agroforestry Systems, 72, 103-115.
doi: 10.1007/s10457-007-9075-4
[7] Lewis JD, Lucash M, Olszyk D, Tingey DT ( 2002). Seasonal patterns of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated CO2 and temperature. Plant, Cell & Environment, 25, 1411-1421.
doi: 10.1046/j.1365-3040.2001.00700.x
[8] Lewis JD, Olszyk D, Tingey DT ( 1999). Seasonal patterns of photosynthetic light response in Douglas-fir seedlings subjected to elevated atmospheric CO2 and temperature. Tree Physiology, 19, 243-252.
doi: 10.1093/treephys/19.4-5.243 pmid: 12651567
[9] Lichtenthaler HK, Wellburn AR ( 1983). Determination of total carotenoids and chlorophylls a and b of leaf in different solvents. Biochemical Society Transactions, 11, 591-592.
doi: 10.1042/bst0110591
[10] Lin M, Wang Z, He L, Xu K, Cheng D, Wang G ( 2015). Plant photosynthesis-irradiance curve responses to pollution show non-competitive inhibited Michaelis kinetics. PLOS ONE, 10, e142712. DOI: 10.1371/journal.pone.0142712.
doi: 10.1371/journal.pone.0142712 pmid: 4642952
[11] Mcneely JA, Schroth G ( 2006). Agroforestry and biodiversity conservation-traditional practices, present dynamics, and lessons for the future. Biodiversity & Conservation, 15, 549-554.
doi: 10.1007/s10531-005-2087-3
[12] Muthuri CW, Ong CK, Craigon J, Mati BM, Ngumi VW, Black CR ( 2009). Gas exchange and water use efficiency of trees and maize in agroforestry systems in semi-arid Kenya. Agriculture Ecosystems & Environment, 129, 497-507.
doi: 10.1016/j.agee.2008.11.001
[13] Nair VD, Graetz DA ( 2004). Agroforestry as an approach to minimizing nutrient loss from heavily fertilized soils: The Florida experience. Agroforestry Systems, 61, 269-279.
doi: 10.1023/B:AGFO.0000029004.03475.1d
[14] Ogren E ( 1993). Convexity of the photosynthetic light-response curve in relation to intensity and direction of light during growth. Plant Physiology, 101, 1013-1019.
doi: 10.1104/pp.101.3.1005 pmid: 12231754
[15] Ogwuche P, Umar HY, Esekhade TU, Francis SY ( 2012). Economies of intercropping natural rubber with arable crops: A panacea for poverty alleviation of rubber farmers. Journal of Agriculture & Social Sciences, 8(3), 100-102.
doi: 10.1055/s-0028-1110963
[16] Pang JP, Chen MY, Tang JW, Guo XM, Zeng R ( 2009). The dynamics of plant growth and soil moisture and nutrient in the rubber plantation and rubber- Flemingia macrophylla agroforestry. Journal of Mountain Science, 27, 433-441.
[ 庞家平, 陈明勇, 唐建维, 郭贤明, 曾荣 ( 2009). 橡胶-大叶千斤拔复合生态系统中的植物生长与土壤水分养分动态. 山地学报, 27, 433-441.]
[17] Qi DL, Sun R, Xie GS, Yang C, Chen BQ, Lan GY, Tao ZL, Yang XB, Wu ZX ( 2017). A preliminary study on seasonal changes of soil moisture in rubber plantation of low tapping years and its responses to meteorological factors in Western Hainan Island, China. Ecological Science, 36(6), 44-48.
[ 祁栋灵, 孙瑞, 谢贵水, 杨川, 陈帮乾, 兰国玉, 陶忠良, 杨小波, 吴志祥 ( 2017). 海南西部低割龄橡胶林土壤水分季节变化特征及其对气象因子响应研究初报. 生态科学, 36(6), 44-48.]
[18] Richardson AD, Duigan SP, Berlyn GP ( 2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153, 185-194.
doi: 10.1046/j.0028-646X.2001.00289.x
[19] Righi CA, Bernardes MS, Lunz AMP, Pereira CR, Neto DD, Favarin JL ( 2007). Measurement and simulation of solar radiation availability in relation to the growth of coffee plants in an agroforestry system with rubber trees. Revista Árvore, 31, 195-207.
doi: 10.1590/S0100-67622007000200002
[20] Righi CA, Lunz AMP, Bernardes MS, Pereira CR, Teramoto ER, Favarin JL ( 2008). Coffee water use in agroforestry system with rubber trees. Revista Árvore, 32, 781-792.
doi: 10.1590/S0100-67622008000500001
[21] Satoh S, Ikeuchi M, Mimuro M, Tanaka A ( 2001). Chlorophyll b expressed in cyanobacteria functions as a light-harvesting antenna in photosystem I through flexibility of the proteins. Journal of Biological Chemistry, 276, 4293-4297.
doi: 10.1074/jbc.M008238200 pmid: 11073958
[22] Shen SG, Zheng Z ( 2008). Photosynthesis characteristics and impact factors of Camellia sinensis leaves in rubber-tea community in Xishuangbanna, China.Chinese Journal of Applied and Environmental Biology, 14, 32-37.
doi: 10.3321/j.issn:1006-687X.2008.01.006
[ 沈守艮, 郑征 ( 2008). 西双版纳胶-茶群落中茶树的光合特性及其影响因子. 应用与环境生物学报, 14, 32-37.]
doi: 10.3321/j.issn:1006-687X.2008.01.006
[23] Tuittila ES, Vasander H, Laine J ( 2004). Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a cutaway peatland. Restoration Ecology, 12, 483-493.
[24] Wang JH, Ren SF, Shi BS, Liu BX, Zhou YL ( 2011). Effects of shades on the photosynthetic characteristics and chlorophyll fluorescence parameters of Forsythia suspensa. Acta Ecologica Sinica, 31, 1811-1817.
[ 王建华, 任士福, 史宝胜, 刘炳响, 周玉丽 ( 2011). 遮荫对连翘光合特性和叶绿素荧光参数的影响. 生态学报, 31, 1811-1817.]
[25] Wright IJ, Westoby M, Reich PB ( 2002). Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span. Journal of Ecology, 90, 534-543.
doi: 10.1046/j.1365-2745.2002.00689.x
[26] Wu ZX, Du LY, Xie GS, Lan GY, Chen BQ, Zhou ZD ( 2013). Spatiotemporal distribution of photosynthetically active radiation in rubber plantations in Hainan Island. Journal of Northwest Forestry University, 28(3), 13-21.
doi: 10.3969/j.issn.1001-7461.2013.03.03
[ 吴志祥, 杜莲英, 谢贵水, 兰国玉, 陈帮乾, 周兆德 ( 2013). 海南岛橡胶林光合有效辐射的时空分布. 西北林学院学报, 28(3), 13-21.]
doi: 10.3969/j.issn.1001-7461.2013.03.03
[27] Xia JB, Zhang SY, Zhang GC, Xie WJ, Lu ZH ( 2011). Critical responses of photosynthetic efficiency in Campsis radicans( L.) Seem to soil water and light intensities. African Journal of Biotechnology, 10, 17748-17754.
doi: 10.5897/AJB11.2208
[28] Xu DQ ( 1997). Some problems in stomatal limitation analysis of photosynthesis. Plant Physiology Communications, 33, 241-244.
[ 许大全 ( 1997). 光合作用气孔限制分析中的一些问题. 植物生理学通讯, 33, 241-244.]
[29] Xu F, Guo WH, Xu WH, Wang RQ ( 2010). Effects of light intensity on growth and photosynthesis of seedlings of Quercus acutissima and Robinia pseudoacacia. Acta Ecologica Sinica, 30, 3098-3107.
doi: 10.3969/j.issn.1001-0408.2007.06.007
[ 徐飞, 郭卫华, 徐伟红, 王仁卿 ( 2010). 不同光环境对麻栎和刺槐幼苗生长和光合特征的影响. 生态学报, 30, 3098-3107.]
doi: 10.3969/j.issn.1001-0408.2007.06.007
[30] Ye ZP ( 2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45, 637-640.
doi: 10.1007/s11099-007-0110-5
[31] Zhang B, Zhang TL ( 1997). Hydraulic ecological characteristics of alley cropping systems and its productivity in low hilly red soil region. Chinese Journal of Ecology, 16(4), 1-5.
[ 张斌, 张桃林 ( 1997). 低丘红壤区农林间作系统的水分生态特征及生产力. 生态学杂志, 16(4), 1-5.]
[32] Zheng YX, Zang JY, Lin Y ( 1995). The photosynthetic stomatal and nonstomatal limitation of plant leaves under water stress. Plant Physiology Communications, 31, 293-297.
[ 郑义新, 藏俊英, 林艳 ( 1995). 水分胁迫下植物叶片光合的气孔和非气孔限制. 植物生理学通讯, 31, 293-297.]
[33] Zhu YS, Fan JJ, Feng H ( 2010). Effects of low light on photosynthetic characteristics of tomato at different growth stages. Chinese Journal of Applied Ecology, 21, 3141-3146.
[ 朱延姝, 樊金娟, 冯辉 ( 2010). 弱光胁迫对不同生育期番茄光合特性的影响. 应用生态学报, 21, 3141-3146.]
[34] Zuo DY, Kuang SB, Zhang GH, Long GQ, Meng ZG, Chen ZJ, Wei FG, Yang SC, Chen JW ( 2014). Eco-physiological adaptation of Panax notoginseng to different light intensity. Journal of Yunnan Agricultural University, 29, 521-527.
[ 左端阳, 匡双便, 张广辉, 龙光强, 孟珍贵, 陈中坚, 魏富刚, 杨生超, 陈军文 ( 2014). 三七(Panax notoginseng)对不同光照强度的生理生态适应性研究. 云南农业大学学报(自然科学), 29, 521-527.]
[1] Xinghui Lu Runguo Zang Yi Ding Jihong Huang Yue Xu. Habitat characteristics and its effects on seedling abundance of Hopea hainanensis, an endangered plant with small populations [J]. Biodiv Sci, 2020, 28(3): 0-0.
[2] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364.
[3] Rijin Jiang,Linlin Zhang,Kaida Xu,Pengfei Li,Yi Xiao,Ziwei Fan. Characteristics and diversity of nekton functional groups in the coastal waters of south-central Zhejiang Province [J]. Biodiv Sci, 2019, 27(12): 1330-1338.
[4] TANG Li-Tao, LIU Dan, LUO Xue-Ping, HU Lei, WANG Chang-Ting. Forest soil phosphorus stocks and distribution patterns in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(12): 1091-1103.
[5] YANG Ji-Hong, LI Ya-Nan, BU Hai-Yan, ZHANG Shi-Ting, QI Wei. Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau [J]. Chin J Plant Ecol, 2019, 43(10): 863-876.
[6] CEN Yu, WANG Cheng-Dong, ZHANG Zhen, REN Xia, LIU Mei-Zhen, YANG Fan. Spatial distributions of biomass and carbon density in natural grasslands of Hebei, China [J]. Chin J Plan Ecolo, 2018, 42(3): 265-276.
[7] Hongliang Wang, Siyi Guo, Pengtao Wang, Chunpeng Song. Research Progress in Stomatal Development Mechanism [J]. Chin Bull Bot, 2018, 53(2): 164-174.
[8] ZHANG Zhen-Zhen, ZHAO Ping, ZHAO Xiu-Hua, ZHANG Jin-Xiu, ZHU Li-Wei, OUYANG Lei, ZHANG Xiao-Yan. Impact of environmental factors on the decoupling coefficient and the estimation of canopy stomatal conductance for ever-green broad-leaved tree species [J]. Chin J Plant Ecol, 2018, 42(12): 1179-1191.
[9] Guodong Yang, Xinyue Ji, Lin Chen, Yuqian Zhong, Feifei Zhai, Xiangui Yi, Xianrong Wang. Spatial distribution and environmental interpretation of wild Sinojackia xylocarpa communities based on self-organizing map (SOM) [J]. Biodiv Sci, 2018, 26(12): 1268-1276.
[10] Xiuqin Yin, Yan Tao, Haixia Wang, Chen Ma, Xinchang Kou, Huan Xu, Dong Cui. Forest soil fauna ecology in Northeast China: Review and prospect [J]. Biodiv Sci, 2018, 26(10): 1083-1090.
[11] Danxiao Peng,Limin Lu,Zhiduan Chen. Regional tree of life and its application in floristic studies [J]. Biodiv Sci, 2017, 25(2): 156-162.
[12] Zhan-Wei ZHAI, Ji-Rui GONG, Qin-Pu LUO, Yan PAN, Taogetao BAOYIN, Sha XU, Min LIU, Li-Li YANG. Effects of nitrogen addition on photosynthetic characteristics of Leymus chinensis in the temperate grassland of Nei Mongol, China [J]. Chin J Plan Ecolo, 2017, 41(2): 196-208.
[13] Yumei Pan, Saichun Tang, Chunqiang Wei, Xiangqin Li. Comparison of growth, photosynthesis and phenotypic plasticity between invasive and native Bidens species under different light and water conditions [J]. Biodiv Sci, 2017, 25(12): 1257-1266.
[14] Kai YUE, Wan-Qin YANG, Yan PENG, Chun-Ping HUANG, Chuan ZHANG, Fu-Zhong WU. Effects of streams on lignin degradation during foliar litter decomposition in an alpine forest [J]. Chin J Plan Ecolo, 2016, 40(9): 893-901.
[15] Junhui Lin,Xuebao He,Jianjun Wang,Heshan Lin,Yaqin Huang,Kun Liu,Jianfeng Mou,Shuyi Zhang,Jinxiang Jiang. Macrobenthic diversity and seasonal changes in the mangrove swamp of Luoyangjiang Estuary, Fujian Province [J]. Biodiv Sci, 2016, 24(7): 791-801.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 2000, 17(06): 572 .
[2] Zhao yu-jin;Wang Tai and Tong Zhe. A Simplified Method for Extraction of Endogenous IAA ABA and GAs from Rice Leave[J]. Chin Bull Bot, 1994, 11(04): 52 -55 .
[3] Ni Jian and Wu Ji-you. Prospection of Hidden Deposit Using Spectral Reflectance of Plant Leaves Surface[J]. Chin Bull Bot, 1997, 14(01): 36 -40 .
[4] . Analysis of Wild Lotus with RAPD Markers[J]. Chin Bull Bot, 2005, 22(增刊): 64 -67 .
[5] Lin Peng, Lu Chang-yi, Wang Gong-li, Chen Huan-Xiong. Study on Dynamics of Litter Fall of Bruguiera sexangula Mangrove in Hainan Island,China[J]. Chin J Plan Ecolo, 1990, 14(1): 69 -74 .
[6] MA Yang, WANG Xue-Qin, ZHANG Bo, LIU Jin-Hui, HAN Zhang-Yong, and TANG Gang-Liang. Effects of wind erosion and sand burial on water relations and photosynthesis in Alhagi sparsifolia in the southern edge of the Taklimakan Desert[J]. Chin J Plan Ecolo, 2014, 38(5): 491 -498 .
[7] Jie Ming. Biosphere Project at the International Institute for Applied Systems Analysis[J]. Chin J Plan Ecolo, 1990, 14(1): 93 -94 .
[8] Zhi-Cheng CHEN, Xian-Chong WAN. The relationship between the reduction of nonstructural carbohydrate induced by defoliator and the growth and mortality of trees[J]. Chin J Plan Ecolo, 2016, 40(9): 958 -968 .
[9] Fan Li,Huanjun Zhang,Zhenbo Lü,Bingqing Xu,Liang Zheng. Species composition and community diversity of nekton in Laizhou Bay, China[J]. Biodiv Sci, 2013, 21(5): 537 -546 .
[10] Chunfa Zhou, Daqing Zhou, Xiangkun Kong, Wenhong Deng. Differentiating nest sites characteristics of four sympatric cavity-nesting birds[J]. Biodiv Sci, 2012, 20(6): 716 -724 .