Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (10): 1081-1090.doi: 10.17521/cjpe.2016.0393

• Research Articles • Previous Articles     Next Articles

Edge effects of forest gap in Pinus massoniana plantations on the ecological stoichiometry of Cinnamomum longepaniculatum

Si-Meng SONG1, Dan-Ju ZHANG1,2, Jian ZHANG1,2,*(), Wan-Qin YANG1,2, Yan ZHANG1, Yang ZHOU1, Xun LI1   

  1. 1Monitoring Station for Eco-environments in the Rainy Zone of Southwest China, Institute of Ecology & Forestry, Sichuan Agriculture University, Chengdu 611130, China;

    2Collaborative Innovation Center of Ecological Security in the Upper Reaches of Yangtze River, Chengdu 611130, China
  • Online:2017-12-24 Published:2017-10-10
  • Contact: Jian ZHANG E-mail:sicauzhangjian@163.ccom


Aims Pinus massoniana is one of the major plantation tree species in the low hilly lands along the upper reaches of the Yangtze River Valley in China’s “Grain for Green” project. The objective of this study was to explore the edge effects of forest gap on the ecological stoichiometry of dominant tree species in a P. massoniana plantation forest.Methods We collected Cinnamomum longepaniculatum leaves in a 39-year-old P. massoniana plantation forest with seven forest gap sizes (G1: 100 m2; G2: 225 m2; G3: 400 m2; G4: 625 m2; G5: 900 m2; G6: 1 225 m2; G7: 1 600 m2, and the control: closed canopy) located in Gao County, south Sichuan Province during different seasons. The contents of C, N and P in leaves were measured, and the effects of edges, seasons and their interaction on leaf C, N and P contents and C:N:P stoichiometry were evaluated.Important findings The leaf C content, C:N and C:P of C. longepaniculatum at the edge of forest gaps in different seasons were all significantly higher than those of understory plants in P. massoniana plantation. With increasing size of forest gaps, leaf C content and C:N ratio, C:P and N:P of C. longepaniculatum increased initially and then decreased with the maximum at medium size (400-900 m2). From spring to winter, leaf N and P contents of C. longepaniculatum increased after an obvious decrease; and the C:N and C:P increased first but then decreased. However, the inflection point all appeared in the summer. The nutrient utilization of C. longepaniculatum at the edge of forest gaps was more efficient in summer and autumn than in spring and winter, indicating significant edge effects. The results of principal component analysis (PCA) suggested that gap size, relative light intensity and monthly average air temperature were the main environmental factors affecting the stoichiometry of C. longepaniculatum at the different edge of forest gaps in the P. massoniana plantation. These results indicated that forest gap with size 625 m2 had the highest organic matter storage and nutrient utilization efficiency in the edge areas in all seasons, and therefore had the most significant edge effect on leaf element stoichiometry.

Key words: gap size, edge effect, stoichiometry, Cinnamomum longepaniculatum, Pinus massoniana plantation

Fig. 1

Precipitation during different observation periods in Pinus massoniana plantations."

Table 1

General characteristics of the sampling plots in forest gaps with different sizes in Pinus massoniana plantations"

林窗 Gap 面积 Size (m2) 经纬度 Longitude and latitude 海拔 Altitude (m) 坡度 Slope (°) 坡向 Aspect 坡位 Slope position
G1 100 28.60° N, 104.56° E 423 24.5 SW 中坡 Middle slope
G2 225 28.61° N, 104.56° E 438 26.1 SE 中坡 Middle slope
G3 400 28.60° N, 104.56° E 408 23.5 SE 中坡 Middle slope
G4 625 28.60° N, 104.57° E 424 24.2 SE 中坡 Middle slope
G5 900 28.61° N, 104.57° E 441 21.5 S 中坡 Middle slope
G6 1 225 28.61° N, 104.56° E 418 27.0 SE 中坡 Middle slope
G7 1 600 28.60° N, 104.56° E 430 26.5 SE 中坡 Middle slope
CK - 28.61° N, 104.57° E 427 23.9 SE 中坡 Middle slope

Table 2

Soil physical and chemical properties of the sampling plots in forest gaps with different sizes in Pinus massoniana plantations (mean ± SE)"

Bulk density
Soil water content
Maximum field capacity
pH value
Soil total carbon
Soil total nitrogen
Soil total phosphorus
G1 1.21 ± 0.09c 22.10 ± 3.09a 392.87 ± 6.44a 4.03 ± 0.11b 11.67 ± 2.99b 0.63 ± 0.15bc 0.45 ± 0.11c
G2 1.22 ± 0.11bc 21.67 ± 4.31a 364.43 ± 10.04ab 4.22 ± 0.17ab 11.15 ± 1.51b 0.57 ± 0.12d 0.44 ± 0.08d
G3 1.23 ± 0.08ab 21.39 ± 4.08ab 373.16 ± 8.57ab 4.24 ± 0.23ab 11.90 ± 1.45ab 0.56 ± 0.06d 0.49 ± 0.14a
G4 1.23 ± 0.11ab 22.15 ± 3.11a 379.47 ± 8.85ab 4.24 ± 0.10ab 12.67 ± 1.52a 0.64 ± 0.15b 0.49 ± 0.07a
G5 1.22 ± 0.12bc 21.40 ± 3.51ab 381.48 ± 11.54ab 4.34 ± 0.21ab 11.69 ± 1.21b 0.67 ± 0.12a 0.47 ± 0.15b
G6 1.23 ± 0.17a 21.99 ± 4.17a 381.24 ± 13.21ab 4.34 ± 0.27ab 11.90 ± 1.54ab 0.62 ± 0.23c 0.49 ± 0.12a
G7 1.23 ± 0.26a 21.33 ± 1.96ab 359.62 ± 6.14b 4.19 ± 0.11ab 11.14 ± 1.37b 0.54 ± 0.12e 0.46 ± 0.08bc
CK 1.24 ± 0.14a 20.16 ± 2.14b 358.19 ± 15.79b 4.46 ± 0.32a 9.48 ± 0.56c 0.47 ± 0.62f 0.43 ± 0.12d

Table 3

Environmental factors in the sampling plots in the edges of forest gaps with different sizes in different seasons"

月平均气温 Mean monthly air temperature (℃) 月平均空气湿度 Mean monthly air humidity (%) 相对光强 Relative light intensity (%)
春 Spring 夏 Summer 秋 Autumn 冬 Winter 春 Spring 夏 Summer 秋 Autumn 冬 Winter 春 Spring 夏 Summer 秋 Autumn 冬 Winter
G1 19.43 28.41 21.03 6.45 71.9 84.7 94.6 83.3 61.7 87.8 55.3 58.9
G2 19.23 28.51 22.05 6.21 72.4 87.2 94.5 86.1 63.6 90.5 57.4 59.2
G3 19.67 29.73 21.67 5.98 69.8 89.6 94.7 86.4 64.7 94.8 60.4 60.1
G4 19.76 29.88 22.22 9.03 72.2 90.0 96.3 89.1 67.9 95.4 65.2 66.3
G5 19.27 30.42 22.63 8.43 69.1 88.3 93.4 84.7 68.3 95.0 66.9 66.6
G6 19.92 30.63 21.91 7.11 71.3 86.1 92.6 85.2 71.0 96.4 69.4 68.8
G7 19.80 30.74 22.55 7.10 69.7 86.3 91.7 85.3 71.8 98.2 70.4 71.4
CK 18.32 27.66 20.09 3.12 72.5 90.3 93.6 87.3 18.6 16.4 16.2 17.2

Table 4

Two-way ANOVA on the effects of gap size, season, and their interaction on C, N, P and their stoichiometry of Cinnamomum longepaniculatum"

变异来源 Source of variation C N P C:N C:P N:P
林窗面积 Gap size (G) 198.314*** 2.072 5.789* 126.905*** 342.956*** 78.855***
季节 Season (S) 2.848 670.556*** 540.694*** 257.959*** 278.434*** 4.560
林窗面积×季节 Gap size × Season (G × S) 3.594 3.084 4.701 4.454 3.020 9.219**

Fig. 2

Carbon, nitrogen, phosphorus and their stoichiometry of Cinnamomum longepaniculatum in the edges of forest gaps with different sizes in different seasons in Pinus massoniana plantations (mean ± SE). Different capital letters indicate significant differences among seasons, and different lowercase letters indicate significant differences among forest gaps. G1, G2, G3, G4, G5, G6, and G7 represent gaps with the size of 100 m2, 225 m2, 400 m2, 625 m2, 900 m2, 1 225 m2, and 1 600 m2, respectively; CK, closed canopy as control."

Fig. 3

The principal component analysis (PCA) on carbon, nitrogen, phosphorus and their stoichiometry of Cinnamomum longepaniculatum and environmental variables in the edges of forest gaps with different sizes in Pinus massoniana plantations. TC, total C in leaf; TN, total N in leaf; TP, total P in leaf; C:N, C:N in leaf; C:P, C:P in leaf; N:P, N:P in leaf. BD, bulk density; GS, gap size; MAH, monthly average humidity; MAT, monthly average air temperature; MC, moisture content; MMC, maximum moisture capacity; RLI, relative light intensity; STC, total C in soil; STN, total N in soil; STP, total P in soil."

Table 5

Correlation coefficients of environmental variables with ordination axes"

Environmental variables
排序轴 Ordination axis
第1轴 Axis 1 第2轴 Axis 2
林窗面积 Gap size 0.506 4** -0.245 3
容重 Bulk density 0.134 5 0.333 5
含水量 Moisture content 0.038 0 -0.544 2**
最大持水量 Maximum moisture capacity 0.075 0 -0.381 7
pH值 pH value -0.027 0 0.381 1
土壤全碳 Total C in soil 0.251 1 -0.510 5**
土壤全氮 Total N in soil 0.210 3 -0.552 8**
土壤全磷 Total P in soil 0.425 4* -0.356 6
月平均气温 Monthly average air temperature 0.371 6 -0.659 5***
月平均湿度 Monthly average humidity 0.446 6* 0.210 0
相对光强 Relative light intensity 0.099 7 -0.811 4***
[1] Arunachalam A, Arunachalam K (2000). Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of north-east India.Plant and Soil, 223, 187-195.
doi: 10.1023/A:1004828221756
[2] Chen Y, Han W, Tang L, Tang Z, Fang J (2013). Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth from.Ecography, 36, 178-184.
doi: 10.1111/j.1600-0587.2011.06833.x
[3] Cui NJ, Zhang DJ, Liu Y, Zhang J, Yang WQ, Ou J, Zhang J, Song XY, Yin R (2014). Plant diversity and seasonal dynamics in forest gaps of varying sizes inPinus massoniana plantations. Chinese Journal of Plant Ecology, 38, 477-490. (in Chinese with English abstract)[崔宁洁, 张丹桔, 刘洋, 张健, 杨万勤, 欧江, 张捷, 宋小艳, 殷睿 (2014). 马尾松人工林不同大小林窗植物多样性及其季节动态. 植物生态学报, 38, 477-490.]
doi: 10.3724/sp.j.1258.2014.00044
[4] Daoliveira MVN, Ribas LA (2011). Forest regeneration in artificial gaps twelve years after canopy opening in Acre State Western Amazon.Forest Ecology and Management, 261, 1722-1731.
doi: 10.1016/j.foreco.2011.01.020
[5] Dee JR, Menges ES, Gilliam F (2014). Gap ecology in the Florida scrubby flatwoods: Effects of time-since-fire, gap area, gap aggregation and microhabitat on gap species diversity.Journal of Vegetation Science, 25, 1235-1246.
doi: 10.1111/jvs.12170
[6] Du MY, Fan SH, Liu GL, Feng HY, Guo BH, Tang XL (2016). Stoichiometric characteristics of carbon, nitrogen and phosphorus inPhyllostachys edulis forests of China. Chinese Journal of Plant Ecology, 40, 760-774. (in Chinese with English abstract)[杜满义, 范少辉, 刘广路, 封焕英, 郭宝华, 唐晓鹿 (2016). 中国毛竹林碳氮磷生态化学计量特征. 植物生态学报, 40, 760-774.]
doi: 10.17521/cjpe.2015.0464
[7] Dupuy JM, Chazdon RL (2008). Interacting effects of canopy gap, understory vegetation and leaf litter on tree seedling recruitment and composition in tropical secondary forests.Forest Ecology and Management, 255, 3716-3725.
doi: 10.1016/j.foreco.2008.03.021
[8] Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, Interlandi S, Kilham SS, Mccauley E, Schulz KL (2000). Nutritional constraints in terrestrial and freshwater food webs.Nature, 408, 578-580.
doi: 10.1038/35046058 pmid: 11117743
[9] Elser JJ, Fagan WF, kerkhoff AJ, Swenson NG, Enquist BJ (2010). Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change.New Phytology, 186, 593-608.
doi: 10.1111/j.1469-8137.2010.03214.x pmid: 20298486
[10] Fan HB, Wu JP, Liu WF, Yuan YH, Hu L, Cai QK (2015). Linkages of plant and soil C:N:P stoichiometry and their relationships to forest growth in subtropical plantations.Plant and Soil, 392, 127-138.
doi: 10.1007/s11104-015-2444-2
[11] Foereid B, Bellarby J, Meier-Augenstein W, Kemp H (2010). Does light exposure make plant litter more degradable?Plant and Soil, 333, 275-285.
doi: 10.1007/s11104-010-0342-1
[12] Gálhidy L, Mihók B, Hagyó A, Rajkai K, Standovár T (2006). Effects of gap size and associated changes in light and soil moisture on the understory vegetation of a Hungarian beech forest.Plant Ecology, 183, 133-145.
[13] Gallo ME, Porras-Alfaro A, Odenbach KJ, Sinsabaugh RL (2009). Photoacceleration of plant litter decomposition in an arid environment.Soil Biology & Biochemistry, 41, 1433-1441.
doi: 10.1016/j.soilbio.2009.03.025
[14] Goldblum D, Beatty SW (1999). Influence of an old field/forest edge on a northeastern United States deciduous forest understory community.Journal of the Torrey Botanical Society, 126, 335-343.
doi: 10.2307/2997317
[15] Güsewell S (2004). N:P ratios in terrestrial plants: Variation and functional significance.New Phytologist, 164, 243-266.
[16] Haghverdi K, Kiadaliri H, Sagheb-Talebi K, Kooch Y (2012). Variability of plant diversity and soil features following gap creation in Caspian Beech Forests of Iran.Annals of Biological Research, 3, 4622-4635.
[17] Han W, Fang J, Guo D, Yan Z (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China.New Phytology, 168, 377-385.
doi: 10.1111/j.1469-8137.2005.01530.x pmid: 16219077
[18] He ZS, Liu JF, Su SJ, Zheng SQ, Xu DW, Wu ZY, Hong W, Wang JL (2015). Effects of forest gaps on soil properties inCastanopsis kawakamii nature forest. PLOS ONE, 10, e0141203. doi:10.137/journal.pone.0141203.
[19] Kern CC, Montgomery RA, Reich PB, Strong TF (2013). Canopy gap size influences niche partitioning of the ground- layer plant community in a northern temperate forest.Journal of Plant Ecology, 6, 101-112.
doi: 10.1093/jpe/rts016
[20] Kneeshaw DD, Bergeron Y (1998). Canopy gap characteristics and tree replacement in the southeastern boreal forest.Ecology, 79, 783-794.
doi: 10.1890/0012-9658(1998)079[0783:CGCATR]2.0.CO;2
[21] Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation.Journal of Applied Ecology, 33, 1441-1450.
doi: 10.2307/2404783
[22] Li H, Wang BT, Liu T (2016). The nutrient content variations of different forest species and the forest soil in Loess Region of Western Shanxi.Forest Research, 29, 587-595. (in Chinese with English abstract)[李慧, 王百田, 刘涛 (2016). 晋西黄土区不同森林树种及其林地土壤养分含量的变化. 林业科学研究, 29, 587-595.]
[23] Li JX, Xu WT, Xiong GM, Wang Y, Zhao CM, Lu ZJ, Li YL, Xie ZQ (2017). Leaf nitrogen and phosphorus concentration and the empirical regulations in dominant woody plants of shrublands across southern China.Chinese Journal of Plant Ecology, 41, 31-42. (in Chinese with English abstract)[李家湘, 徐文婷, 熊高明, 王杨, 赵常明, 卢志军, 李跃林, 谢宗强 (2017). 中国南方灌丛优势木本植物叶的氮、磷含量及其影响因素. 植物生态学报, 41, 31-32.]
doi: 10.17521/cjpe.2016.0251
[24] Lian ZM, Yu GZ (2000). Edge effect and biodiversity.Chinese Biodiversity, 8, 120-125. (in Chinese with English abstract)[廉振民, 于广志 (2000). 边缘效应与生物多样性. 生物多样性, 8, 120-125.]
[25] Liu H, Song HX, Yang WQ, Zhang J (2015). Responses of photosynthetic traits inCinnamomum longepaniculatum seedlings to forest gap size in a masson pine plantation. Acta Ecologica Sinica, 35, 4089-4096. (in Chinese with English abstract)[刘辉, 宋会兴, 杨万勤, 张健 (2015). 油樟幼苗对马尾松林窗面积的光合响应特征. 生态学报, 35, 4089-4096.]
doi: 10.5846/stxb201309222326
[26] Liu WD, Su JR, Li SF, Lang XD, Zhang ZJ, Huang XB (2015). Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province, China. Chinese Journal of Plant Ecology, 39, 52-62. (in Chinese with English abstract)[刘万德, 苏建荣, 李帅锋, 郎学东, 张志钧, 黄小波 (2015). 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征. 植物生态学报, 39, 52-62.]
doi: 10.17521/cjpe.2015.0006
[27] Pan F, Zhang W, Liu S, Li D, Wang K (2015). Leaf N:P stoichiometry across plant functional groups in the karst region of southwestern China. Trees, 29, 883-892.
doi: 10.1007/s00468-015-1170-y
[28] Reich PB, Oleksyn J (2004). Global patterns of plant leaf N and P in relation to temperature and latitude.Proceedings of the National Academy of Sciences of the United States of America, 101, 11001-11006.
doi: 10.1073/pnas.0403588101 pmid: 15213326
[29] Restrepo C, Gomez N, Heredia S (1999). Anthropogenic edges, treefall gaps, and fruit-frugivore interactions in a neotropical montane forest.Ecology, 80, 668-685.
doi: 10.1890/0012-9658(1999)080[0668:AETGAF]2.0.CO;2
[30] Schliemann S (2011). Effects of treefall gap size and age on carbon and nitrogen biogeochemical cycling in Northern hardwood-hemlock forests.Dissertation Abstracts International, 73, 141-147.
[31] Song XY, Zhang DJ, Zhang J, Li JP, Deng CC, Deng C (2014). Effects of gaps on distribution of soil aggregates and organic carbon inPinus massoniana plantation. Chinese Journal of Applied Ecology, 25, 3083-3090. (in Chinese with English abstract)[宋小艳, 张丹桔, 张健, 李建平, 邓长春, 邓超 (2014). 马尾松人工林林窗对土壤团聚体及有机碳分布的影响. 应用生态学报, 25, 3083-3090.]
[32] Sylvain ZA, Wall DH (2011). Linking soil biodiversity and vegetation: Implications for a changing planet.American Journal of Botany, 98, 517-527.
doi: 10.3732/ajb.1000305 pmid: 21613143
[33] Tian C, Yang XB, Liu Y (2011). Edge effect and its impacts on forest ecosystem: A review.Chinese Journal of Applied Ecology, 22, 2184-2192. (in Chinese with English abstract)[田超, 杨新兵, 刘阳 (2011). 边缘效应及其对森林生态系统影响的研究进展. 应用生态学报, 22, 2184-2192.]
[34] Wang JH, Li JD (2006). Advances in study on forest gaps.World Forestry Research, 19, 27-30. (in Chinese with English abstract)[王家华, 李建东 (2006). 林窗研究进展. 世界林业研究, 19, 27-30.]
[35] Wang JY, Wang SQ, Li RL, Yan JH, Sha LQ, Han SJ (2011). C:N:P stoichiometric characteristics of four forest types’ dominant tree species in China.Chinese Journal of Plant Ecology, 35, 587-595. (in Chinese with English abstract)[王晶苑, 王绍强, 李纫兰, 闫俊华, 沙丽清, 韩士杰 (2011). 中国四种森林类型主要优势植物的C:N:P化学计量学特征. 植物生态学报, 35, 587-595.]
[36] Wang LX, Duan WB, Chen LX, Du S, Wei QS, Zhao JH, Zhang C (2013). Effects of gap size on the spatial heterogeneity of soil water inPinus koraiensis-dominated broad-leaved mixed forest. Chinese Journal of Applied Ecology, 24, 17-24. (in Chinese with English abstract)[王丽霞, 段文标, 陈立新, 杜珊, 魏全帅, 赵健慧, 赵琛 (2013). 红松阔叶混交林林隙大小对土壤水分空间异质性的影响. 应用生态学报, 24, 17-24.]
[37] Wang ZN, Yang HM (2013). Response of ecological stoichiometry of carbon, nitrogen and phosphorus in plants to abiotic environmental factors.Pratacultural Science, 30, 927-934. (in Chinese with English abstract)[王振南, 杨惠敏 (2013). 植物碳氮磷生态化学计量对非生物因子的响应. 草业科学, 30, 927-934.]
[38] Wassen MJ, Olde Venterink HGM, Swart EOAM (1995). Nutrient concentrations in mire vegetation as a measure of nutrient limitation in mire ecosystems.Journal of Vegetation Science, 6, 5-16.
doi: 10.2307/3236250
[39] Yamamoto S (2000). Forest gap dynamics and tree regeneration.Journal of Forest Research, 5, 223-229.
[40] Yan ER, Wang XH, Guo M, Zhong Q, Zhou W (2010). C:N:P stoichiometry across evergreen broad-leaved forests, evergreen coniferous forests and deciduous broad-leaved forests in the Tiantong Region, Zhejiang Province, eastern China.Chinese Journal of Plant Ecology, 34, 48-57. (in Chinese with English abstract)[阎恩荣, 王希华, 郭明, 仲强, 周武 (2010). 浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的C:N:P化学计量特征. 植物生态学报, 34, 48-57.]
doi: 10.3773/j.issn.1005-264x.2010.01.008
[41] Yang HM, Wang DM (2011). Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors.Acta Prataculturae Sinica, 5, 247-264.
doi: 10.1631/jzus.B1000275
[42] Zhang MJ, Chen LH, Zhang J, Yang WQ, Li X, Zhang Y, Liu H (2016). Effects of soil fauna on microbial biomass in decomposing litter under artificial masson pine (Pinus massoniana) forest gap. Chinese Journal of Applied and Environmental Biology, 22, 35-42. (in Chinese with English abstract)[张明锦, 陈良华, 张健, 杨万勤, 李勋, 张艳, 刘华 (2016). 马尾松人工林林窗内土壤动物对凋落物微生物生物量的影响. 应用与环境生物学报, 22, 35-42.]
[43] Zhang Y, Zhang DJ, Zhang J, Yang WQ, Deng CC, Li JP, Li X, Tang SS, Zhang MJ (2015). Effects of forest gap size on litter recalcitrant components of two tree species inPinus massoniana plantations. Chinese Journal of Plant Ecology, 29, 785-796. (in Chinese with English abstract)[张艳, 张丹桔, 张健, 杨万勤, 邓长春, 李建平, 李勋, 唐仕姗, 张明锦 (2015). 马尾松人工林林窗大小对两种凋落叶难降解物质含量的影响. 植物生态学报, 29, 785-796.]
doi: 10.17521/cjpe.2015.0075
[1] Shitong Wang Yaozhan Xu Teng Yang Xinzeng Wei Mingxi Jiang. Impacts of microhabitats on leaf functional traits characteristics of Sinojackia huangmeiensis [J]. Biodiv Sci, 2020, 28(3): 0-0.
[2] JIA Bing-Rui. Litter decomposition and its underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(8): 648-657.
[3] CHEN Chan,ZHANG Shi-Ji,LI Lei-Da,LIU Zhao-Dan,CHEN Jin-Lei,GU Xiang,WANG Liu-Fang,FANG Xi. Carbon, nitrogen and phosphorus stoichiometry in leaf, litter and soil at different vegetation restoration stages in the mid-subtropical region of China [J]. Chin J Plant Ecol, 2019, 43(8): 658-671.
[4] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China [J]. Chin J Plant Ecol, 2019, 43(5): 427-436.
[5] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China [J]. Chin J Plant Ecol, 2019, 43(4): 352-364.
[6] TANG Dan-Dan, WU Yi, LIU Wen-Yao, HU Tao, HUANG Jun-Biao, ZHANG Ting-Ting. Ecological stoichiometry of two common hemiparasite plants and their relationship with host trees in Ailao Mountain, Yunnan, China [J]. Chin J Plant Ecol, 2019, 43(3): 245-257.
[7] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations [J]. Chin J Plant Ecol, 2019, 43(3): 258-272.
[8] FENG Chan-Ying, ZHENG Cheng-Yang, TIAN Di. Impacts of nitrogen addition on plant phosphorus content in forest ecosystems and the underlying mechanisms [J]. Chin J Plant Ecol, 2019, 43(3): 185-196.
[9] CAI Qin, DING Jun-Xiang, ZHANG Zi-Liang, HU Jun, WANG Qi-Tong, YIN Ming-Zhen, LIU Qing, YIN Hua-Jun. Distribution patterns and driving factors of leaf C, N and P stoichiometry of coniferous species on the eastern Qinghai-Xizang Plateau, China [J]. Chin J Plant Ecol, 2019, 43(12): 1048-1060.
[10] YIN Shuang, WANG Chuan-Kuan, JIN Ying, ZHOU Zheng-Hu. Changes in soil-microbe-exoenzyme C:N:P stoichiometry along an altitudinal gradient in Mt. Datudingzi, Northeast China [J]. Chin J Plant Ecol, 2019, 43(11): 999-1009.
[11] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation [J]. Chin J Plan Ecolo, 2018, 42(9): 926-937.
[12] LI Rui, HU Chao-Chen, XU Shi-Qi, WU Di, DONG Yu-Ping, SUN Xin-Chao, MAO Rong, WANG Xian-Wei, LIU Xue-Yan. Leaf C, N, and P concentrations and their stoichiometry in peatland plants of Da Hinggan Ling, China [J]. Chin J Plant Ecol, 2018, 42(12): 1154-1167.
[13] WU Xiu-Zhi, YAN Xin, WANG Bo, LIU Ren-Tao, AN Hui. Effects of desertification on the C:N:P stoichiometry of soil, microbes, and extracellular enzymes in a desert grassland [J]. Chin J Plant Ecol, 2018, 42(10): 1022-1032.
[14] Hong-Yan ZHOU, Qin WU, Ming-Yue CHEN, Wei KUANG, Ling-Ling CHANG, Qi-Wu HU. C, N and P stoichiometry in different organs of Vitex rotundifolia in a Poyang Lake desertification hill [J]. Chin J Plan Ecolo, 2017, 41(4): 461-470.
[15] Ju-Ying HUANG, Hai-Long YU, Li-Li WANG, Kai-Bo MA, Yang-Mei KANG, Ya-Xian DU. Effects of different nitrogen:phosphorus levels on the growth and ecological stoichiometry of Glycyrrhiza uralensis [J]. Chin J Plan Ecolo, 2017, 41(3): 325-336.
Full text



[1] Wenxia Wang;Shuguang Li;Xiaoming Zhao;Bingcheng Lin;Yuguang Du. Effects of Oligochitosan on Transcription of Genes Involved in Jasmonic Acid Biosynthesis in Tobacco Suspension Cells[J]. Chin Bull Bot, 2008, 25(05): 526 -532 .
[2] Yuan Gao;Li Tian;Song Qin* . Positive Selection in Plant Evolution[J]. Chin Bull Bot, 2008, 25(04): 401 -406 .
[3] Lei Zhang Baoshi Zhang. Mapping and Cloning of Quantitative Trait Genes in Plants[J]. Chin Bull Bot, 2007, 24(04): 553 -560 .
[4] Cai Ji-jing. Scanning Electron Microscopy Method for the Direct Observation of Fresh Plant Specimen[J]. Chin Bull Bot, 1983, 1(02): 55 -56 .
[5] LI AI-Fen;CHEN Min and ZHOU Bai-Cheng. Studies on Characterization of Fluorescence Emission Spectra of Brown Algae at 77K[J]. Chin Bull Bot, 1999, 16(03): 274 -279 .
[6] Huan Feng, Shuli Yi, Jiaheng Xie, Mengqi Lei, Xuan Huang. Callus Induction and Plant Regeneration of Rosa hybrida[J]. Chin Bull Bot, 2014, 49(5): 595 -602 .
[7] Meishan Zhang, Bao Liu. Epigenetic Regulation in Plant Endosperm Development[J]. Chin Bull Bot, 2012, 47(2): 101 -110 .
[8] Zhangxiong Han, Li Li, Xinwen Xu, Xiangfang Lü, Hongxia Yue, Zhen Bian, Lizheng Li. Effect of NaCl on Physiological Features of 4 Legume Seedlings in Desert Areas of Xinjiang, China[J]. Chin Bull Bot, 2012, 47(5): 491 -499 .
[9] Jin Guo, Xiaoyan Yang, Hongping Deng, Qin Huang, Yunting Li, Huayu Zhang. Sex Expression and Reproduction Allocation in Eurya loquaiana[J]. Chin Bull Bot, 2017, 52(2): 202 -209 .
[10] Chen Guoliang, Liu Duhui. A Preliminary Study on the Rational Eco-Economic Structure Model of Agriculture, Forestry and Animal Husbandry in the Loess Hilly Regions[J]. Chin J Plan Ecolo, 1983, 7(3): 215 -221 .