植物生态学报 ›› 2005, Vol. 29 ›› Issue (2): 281-288.DOI: 10.17521/cjpe.2005.0036
所属专题: 稳定同位素生态学
收稿日期:
2003-06-12
接受日期:
2003-06-12
出版日期:
2005-06-12
发布日期:
2005-03-10
通讯作者:
周广胜
作者简介:
*E-mail:zhougs@public2.bta.net.cn基金资助:
XU Zhen-Zhu, ZHOU Guang-Sheng*(), XIAO Chun-Wang, WANG Yu-Hui
Received:
2003-06-12
Accepted:
2003-06-12
Online:
2005-06-12
Published:
2005-03-10
Contact:
ZHOU Guang-Sheng
摘要:
利用大型环境生长箱研究了两种幼龄沙地优势灌木柠条 (Caraganaintermedia) 和羊柴 (Hedysarummon golicum) 对CO2 浓度倍增和土壤干旱交互作用的响应。CO2 浓度倍增并没有改善两种沙生灌木叶片的水分状况, 而土壤干旱使叶片的相对含水量 (RWC) 显著降低。在土壤水分充足条件下, CO2 浓度倍增促进两种沙生灌木植株生长, 在干旱条件下则主要促进根的生长, 提高根冠比。土壤干旱显著减少了植株生物量, 但相对促进了根的生长, 特别是显著提高了羊柴的根冠比。CO2 倍增使稳定性碳同位素组分 (δ13 C) 降低, 但土壤干旱使之增加。两种沙生灌木叶片与根部的δ13 C值呈极显著线性关系, 羊柴的斜率大于柠条的, 表明前者叶片与根部在光合产物分配上具有较高的生态可塑性, 这和干旱条件下羊柴的根冠比增加相关联。羊柴的“源库”调节特性反映了对土壤水分胁迫具有较高的耐性。
许振柱, 周广胜, 肖春旺, 王玉辉. CO2浓度倍增和土壤干旱对两种幼龄沙生灌木碳分配的影响. 植物生态学报, 2005, 29(2): 281-288. DOI: 10.17521/cjpe.2005.0036
XU Zhen-Zhu, ZHOU Guang-Sheng, XIAO Chun-Wang, WANG Yu-Hui. INTERACIVE EFFECTS OF DOUBLED ATMOSPHERIC CO2 CONCENTRATIONS AND SOIL DROUGHT ON WHOLE PLANT CARBON ALLOCATION IN TWO DOMINANT DESERT SHRUBS. Chinese Journal of Plant Ecology, 2005, 29(2): 281-288. DOI: 10.17521/cjpe.2005.0036
图1 在CO2浓度倍增 (Doubled) 和正常 (Ambient) 条件下 土壤干旱对拧条 (A) 和羊柴 (B) 叶片相对 含水量 (RWC) 的影响 WW:土壤水分充足Well_watered SD:干旱处理Soil drought treatment垂直棒指平均值的标准误Vertical bars indicate±SE of the mean (n=6) **:代表在0.01水平上差异显著
Fig.1 Effects of soil drought on leaf relative water content (RWC) of Caragana intermedia (A) and Hedysarum mongolicum (B) under doubled CO2 and ambient conditions An double asterisk indicates the significant difference using LSD test compared with soil drought within the same CO2concentration at 0.01 level
图2 在CO2浓度倍增 (A、C) 和正常 (B、D) 条件下土壤干旱对拧条 (A、B) 和羊柴 (C、D) 生物量的影响 WW, SD, RM, SM, LM, TM和AM分别代表充足水分、干旱、根生物量、茎生物量、叶生物量、总生物量和地上部分生物量垂直棒指平均值的标准误 (n=6)
Fig.2 Effects of soil drought on biomass of Caragana intermedia (A, B) and Hedysarum mongolicum (C, D) under doubled CO2 (A, C) and (B, D) ambient conditions WW, SS, RM, SM, LM, TM and AM represent well_watered, soil drought, root biomass, stem biomass, total biomass and above_ground biomass, respectively Vertical bars indicate±SE of the mean
图3 在CO2浓度倍增 (Doubled) 和正常 (Ambient) 条件下土壤 干旱对拧条 (A) 和羊柴 (B) 根冠比的影响 WW, SD, **:同 图1
Fig.3 Effects of soil drought on ratio between root and shoot of Caragana intermedia (A) and Hedysarum mongolicum (B) under doubled CO2 and ambient conditions See Fig.1
变异来源 Source | df | 地上生物量 Aboveground biomass | 根生物量 Root biomass | 总生物量 Total biomass | 根冠比 Ratio of root and shoot | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |||||
S | 1, 83 | 195.742 | 0.000 | 269.125 | 0.000 | 278.748 | 0.000 | 49.834 | 0.000 | |||
CO2 | 1, 83 | 12.014 | 0.001 | 35.215 | 0.000 | 23.023 | 0.000 | 1.264 | 0.264 | |||
W | 1, 83 | 44.497 | 0.000 | 43.096 | 0.000 | 56.490 | 0.000 | 21.203 | 0.000 | |||
S×CO2 | 1, 83 | 8.745 | 0.004 | 24.050 | 0.000 | 16.306 | 0.000 | 0.025 | 0.875 | |||
S×W | 1, 83 | 28.485 | 0.000 | 19.344 | 0.000 | 32.624 | 0.000 | 7.556 | 0.007 | |||
CO2×W | 1, 83 | 8.665 | 0.004 | 6.644 | 0.012 | 10.284 | 0.002 | 2.271 | 0.136 | |||
S×CO2×W | 1, 83 | 5.372 | 0.023 | 1.953 | 0.166 | 5.301 | 0.024 | 0.371 | 0.544 |
表1 柠条和羊柴地上生物量、根生物量、总生物量和根冠比的三维方差分析
Table 1 Three_way ANOVA in biomass and ratio of root and shoot using in Caragana intermedia and Hedysarum mongolicum
变异来源 Source | df | 地上生物量 Aboveground biomass | 根生物量 Root biomass | 总生物量 Total biomass | 根冠比 Ratio of root and shoot | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |||||
S | 1, 83 | 195.742 | 0.000 | 269.125 | 0.000 | 278.748 | 0.000 | 49.834 | 0.000 | |||
CO2 | 1, 83 | 12.014 | 0.001 | 35.215 | 0.000 | 23.023 | 0.000 | 1.264 | 0.264 | |||
W | 1, 83 | 44.497 | 0.000 | 43.096 | 0.000 | 56.490 | 0.000 | 21.203 | 0.000 | |||
S×CO2 | 1, 83 | 8.745 | 0.004 | 24.050 | 0.000 | 16.306 | 0.000 | 0.025 | 0.875 | |||
S×W | 1, 83 | 28.485 | 0.000 | 19.344 | 0.000 | 32.624 | 0.000 | 7.556 | 0.007 | |||
CO2×W | 1, 83 | 8.665 | 0.004 | 6.644 | 0.012 | 10.284 | 0.002 | 2.271 | 0.136 | |||
S×CO2×W | 1, 83 | 5.372 | 0.023 | 1.953 | 0.166 | 5.301 | 0.024 | 0.371 | 0.544 |
图4 在CO2浓度倍增 (Doubled) 和正常 (Ambient) 条件下土壤干旱对拧条 (A) 和羊柴 (B) δ 13C值的影响 WW, SD:同图1 See Fig.1垂直棒指平均值的标准误Vertical bars indicate±SE of the mean (n=6)
Fig.4 Effects of soil drought on the δ 13C values leaves and roots of Caragana intermedia (A) and Hedysarum mongolicum (B) under doubled CO2 and ambient conditions
[1] |
Araus JL, Casadesús J, Asbati A, Nachit MM (2001). Basis of the relationship between ash content in the flag leaf and carbon iso-tope discrimination in kernels of durum wheat. Photosynthetica, 39,591-596.
DOI URL |
[2] | Arndt SK, Wanek W (2002). Use of decreasing foliar carbon iso-tope discrimination during water limitation as a carbon tracer to study whole plant carbon allocation. Plant, Celland Environ-ment, 25,609-616. |
[3] |
Bonal DT, Barigah S, Granier A, Guehl JM (2000). Late-stage canopy tree species with extremely low δ 13 C and high stomatal sensitivity to seasonal soil drought in the tropical rainforest of French Guiana . Plant, Cell and Environment, 23,445-459.
DOI URL |
[4] |
Carol SG, Winner WE (1988). Increased in δ 13 C values of radish and soybean plants caused by ozone . New Phytologist, 108,489-494.
DOI URL |
[5] |
DaMatta FM, Chaves ARM, Pinheiro HA, Ducatti C, Loureiro ME (2003). Drought tolerance of two field-grown clones of Coffea canephora. Plant Science, 164,111-117.
DOI URL |
[6] | Delgado E, Mitchell RAC, Parry MAJ, Driscoll SP, Mitchell VJ, Lawlor DW (1994). Interacting effects ofCO 2 concentration, temperature and nitrogen supply on photosynthesis and composi-tion of winter leaves . Plant, Celland Environ ment, 17,1205-1213. |
[7] | Drennan PM, Nobel P (2000). Responses of CAM species to in-creasing atmospheric CO 2 concentrations . Plant, Celland Environment, 23,761-781. |
[8] | Farquhar GD, O'leary MH, Berry JA (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology, 9,121-137. |
[9] | Farquhar GD, Ehleringer JR, Hubik KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physi-ology and Plant Molecular Biology, 40,503-537. |
[10] |
Feng HY, An LZ, Chen T, Qiang WY, Xu SJ, Zhang MX, Wang XL, Cheng GD (2003). The effect of enhanced ultraviolet-B radi-ation on growth, photosynthesis and stable carbon isotope composi-tion (δ13C) of two soybean cultivars ( Glycine max) under field conditions . Environmental and Experimental Botany, 49,1-8.
DOI URL |
[11] |
Garten CT, Cooperf JLW, Post WM, Hanson PJ (2000). Climate controls on forest soil C isotope ratios in the southern Applachan mountains. Ecology, 81,1108-1119.
DOI URL |
[12] | Grill RA, Burke IC (1999). Ecosystem consequences of plant life form changes at three sites in the semiarid United States. Oecolo-gia, 121,551-563. |
[13] |
Groissen A, Kuikman PJ, van de Beek H (1995). Carbon alloca-tion and water-use in juvenile Douglas fir under elevated CO 2 . New Phytologist, 129,275-282.
DOI URL |
[14] | Gutiérrez MV, Meinzer FC (1994). Carbon discrimination and pho-tosynthetic gas exchange in coffee hedgerows during canopy devel-opment. Australian Journal of Plant Physiology, 21,207-219. |
[15] | Hamerlynck EP, Huxman TE, Loik ME, Smith SD (2000). Effects of extreme high temperature, drought and elevated CO2 on photo-synthesis of Mojave Desert evergreen shrub, Larrea dridentata. Plant Ecology, 148,183-193. |
[16] | Hansen J, Vogg G, Beck E (1996). Assimilation, allocation and utilization of carbon by 3-year-old Scots pine (Pinus sylvestris L.) trees during winter and early spring. Trees, 11,83-90. |
[17] | He WM (何维明), Zhang XS (张新时) (2001). Water sharing in the roots of four shrubs of the Mu Us sandy desert. Acta Phy-toecologica Sinica (植物生态学报), 25,630-633. (in Chinese with English abstract) |
[18] |
Hui D, Luo Y, Cheng W, Coleman JS, Johnson D, Sims DA (2001). Canopy radiation-and water-use efficiencies as affected by elevated [CO 2]. Global Change Biology, 7,75-91.
DOI URL |
[19] |
Hunt HW, Elliot ET, Detling JK, Morgan JA, Chen DX (1996). Responses of a C 3 and C 4 perennial grass to elevated CO 2 and cli-mate change . Global Change Biology, 2,35-47.
DOI URL |
[20] |
Leonardos ED, Grodzins kiB (2000). Photosynthesis, immediateexport and carbon partitioning in source leaves of C 3, C 3-C 4 inter-mediate and elevated CO 2 levels . Plant, Cell and Environment, 23,839-851.
DOI URL |
[21] |
Li YG (李永庚), Jiang GM (蒋高明), Yang JC (杨景成) (2003). Effects of temperature on carbon and nitrogen metabolism, yield and quality of wheat. Acta Phytoecologica Sinica (植物生态学报), 27,164-169. (in Chinese with English abstract)
DOI |
[22] |
Livingston NJ, Guy RD, Sun ZJ, Ethier GJ (1999). The effects of nitrogen stress on the stable carbon isotope composition and water use efficiency of irrigated and dry land white spruce (Picea glau-ca (Moench) Voss) seedlings. Plant, Cell and Environment, 22,281-289.
DOI URL |
[23] |
Luxmore RJ (1991). Asource-sink framework for coupling, car-bon, nutrient dynamics of vegetation. Tree Physiology, 9,267-280.
DOI URL |
[24] | Martre P, North GB, Bobich EG, Nobel PS (2002). Root develop-ment and shoot growth for two desert species in response to soil rockiness. American Journal of Botany, 89,1933~1939. |
[25] |
Medina E, Francisco M (1997). Osmolality and δ 13C of leaf tissues of mangrove species from environments of contrasting rainfall and salinity . Estuarine, Coastal and Shelf Science, 45,337-344.
DOI URL |
[26] | Meinzer FC, Saliendra NZ, Crisosto CH (1992). Carbon isotope discrimination and gas exchange in Coffea arabica during adjust-ment to different soil moisture regimes. Australian Journal of Plant Physiology, 19,171-184. |
[27] |
Morgan JA, LeCain DR, Read JJ, Hunt HW, Knight WG (1998). Photosynthetic pathway and ontogeny affect water relations and the impact of CO 2 on Bouteloua gracilis (C4) and Pascopyrum smithii (C3). Oecologia, 114,483-493.
DOI PMID |
[28] |
Ntanos DA, Koutroubas SD (2002). Dry matter and N accumula-tion and translocation for Indica and Japonica rice Mediterranean conditions. Field Crops Research, 74,93-101.
DOI URL |
[29] | O'Leary MH (1988). Carbon isotope in photosynthesis. Bio-Science, 38,325-336. |
[30] |
Polley HW, Johson HB, Marino BD, Mayeux HS (1993). In crease in C 3 plant water-use efficiency and glacial to present CO 2 con-centration . Nature, 361,61-64.
DOI URL |
[31] | Qu CM, Han XG, Su B, Huang JH, Jiang GM (2001). The char-acteristics of foliar δ 13C values of plant water use efficiency indi-cated by δ 13C values in two fragmented rainforests in Xishuang-banna, Yunnan. Acta Botanica Sinica (植物学报), 43,186-192. |
[32] |
Saurer M, Fuhrer J, Siegenthaler U (1991). Influence of ozone on the state carbon isotope composition, δ 13C of leaves and grain of spring wheat (Triticum aestivum L.) . Plant Physiology, 97,313-316.
DOI URL |
[33] | Stewart GR, Turnbull MH, Schmidt S, Erskine PD (1995). δ13C natural abundance in plant communities along a rainfall gradient:a biological integrator of water availability . Australian Journal of Plant Physiology, 22,51-55. |
[34] |
Svejcar TJ, Boutton TW, Trent JD (1990). Assessment of carbon allocation with stable carbon isotope labeling. Agronomy Journal, 82,18-21.
DOI URL |
[35] |
Vozenesenskaya EV, Franceschi VR, Kiirars O, Freitag H, Edwards GE (2001). Kranz anatomy is not essential for terrestrial C 4 plant photosynthesis . Nature, 414,543-546.
DOI URL |
[36] |
Wallace JS (2000). Increasing agricultural water use efficiency to meet future food production. Agriculture, Ecosystems and Environment, 82,105-119.
DOI URL |
[37] | Wang MB (王孟本), Li HJ (李洪建), Chai BF (柴宝峰) (1996). Water ecophysiological characteristics of Caragana kor-shinskii. Acta Phytoecologica Sinica (植物生态学报), 20,494~501. (in Chinese with English abstract) |
[38] |
Wullschleger SD, Tschaplinski TJ, Norby RJ (2002). Plant water relations at elevated CO 2———implications for water-limited envi-ronments . Plant, Cell and Environment, 25,319-331.
DOI URL |
[39] | Xiao CW, Jia FP, Zhou GS, Jiang Yl (2001). Response of photo-synthesis, morphology and growth of Hedysarum mongolicum seedlings to simulated precipitation change in Maowusu sandland. Journal of Environmental Sciences, 14,277-283. |
[40] | Xiao CW (肖春旺), Zhou GS (周广胜), Ma FY (马风云) (2002). Effect of water supply changes on morphology and growth of dominant plant in Maowusu sandland. Acta Phytoeco-logica Sinica (植物生态学报), 26,69-76. (in Chinese with English abstract) |
[41] | Xiao CW (肖春旺), Zhang XS (张新时), Zhao JZ (赵景柱), Wu G (吴刚) (2001). Response of seedlings of three dominant shrubs to climate warming in Ordos planteau. Acta Botanica Sinica (植物学报), 43,736-741. (in Chinese with English abstract) |
[42] | Xu ZZ (许振柱), Zhou GS (周广胜) (2003). The study progress on the responses of terrestrial plant to global change. Progress in Natural Science (自然科学进展), 13,113~120. (in Chinese) |
[43] |
Xu ZZ (许振柱), Zhou GS (周广胜), Li H (李晖) (2004). Responses o gas exchange characteristics in leaves of Laymus chi-nensis to changes in temperature and soil moisture. Acta Phytoe-cologica Sinica (植物生态学报), 28,300-304. (in Chinese with English abstract)
DOI |
[44] |
Yang JC, Zhang JH, Wang ZQ, Zhu QG, Wang W (2002). Hor-monal changes in the grains of rice subjected to water stress dur-ing grain filling. Plant Physiology, 127,315-323.
DOI URL |
[45] | Zhang CY (张称意), Yang C (杨持), Dong M (董鸣) (2001). The clonal integration of photosynthates in the rhizomatous half-shrub Hedysarum laeve. Acta Ecologica Sinica (生态学报), 21,1986-1993. (in Chinese with English abstract) |
[46] | Zhao WZ (赵文智), Cheng GD (程国栋) (2001). Review on ecological hydrological processes in arid area. Chinese Science Bulletin (科学通报), 46,1851-1857. (in Chinese) |
[47] | Zheng YR (郑元润), Zhang XS (张新时) (1998). The diagnosis and optimal design of high efficient ecological economy system in Maowusu sandy land. Acta Phytoecologica Sinica (植物生态学报), 22,262-268. (in Chinese with English abstract) |
[48] | Zhou GS (周广胜), Zhang XS (张新时) (1996). Study on climate-vegetation classification for global change in China. Acta Botanica Sinica (植物学报), 38,8-17. (in Chinese with English abstract) |
[49] | ZhouG S (周广胜), Wang YH (王玉辉), Gao SH (高素华), Guo JP (郭建平) (2002). The adaptive mechanism to doubled CO2 and water stress. Earth Science Frontiers (地学前缘), 9 (1),93-94. (in Chinese with English abstract) |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[3] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[4] | 高敏, 缑倩倩, 王国华, 郭文婷, 张宇, 张妍. 低温胁迫对不同母树年龄柠条锦鸡儿种子萌发幼苗生理和生长的影响[J]. 植物生态学报, 2024, 48(2): 201-214. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[9] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[10] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[11] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[12] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[13] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[14] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[15] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19