植物生态学报 ›› 2005, Vol. 29 ›› Issue (4): 680-691.DOI: 10.17521/cjpe.2005.0091
王文杰1(), 王慧梅1, 祖元刚1, 李雪莹1, 小池孝良2
收稿日期:
2004-04-13
接受日期:
2004-10-20
出版日期:
2005-07-31
发布日期:
2005-07-31
作者简介:
E-mail: wwj225@mail.hl.cn
基金资助:
WANG Wen-Jie1(), WANG Hui-Mei1, ZU Yuan-Gang1, LI Xue-Ying1, KOIKE Takayoshi2
Received:
2004-04-13
Accepted:
2004-10-20
Online:
2005-07-31
Published:
2005-07-31
摘要:
温度系数(Q10,温度每变化10 ℃,呼吸速率的相对变化)不仅可以用来描述不同森林非同化器官(根系和树干)和土壤对温度升高的敏感性,并由此断定它们在全球变暖进程中的不同表现,而且是其呼吸总量定量估计中必不可少的参数。虽然目前已经进行了大量的研究,但不同研究者结论并不一致,影响我们对问题的整体把握。因此,有必要综合以往文献进行统计分析。该文综合大量文献,评述了林木非同化器官和土壤的Q10值频率分布、不同研究方法对Q10值的可能影响并探讨了它们对温度升高的敏感性。结果表明,不同非同化器官和土壤的Q10值差异较大,但具有相对稳定的分布中心范围。其中,土壤呼吸Q10值中,频率分布最集中的区域是2.0~2.5,占23%,其中超过80%的测定结果在1.0~4.0之间,中位数为2.74。 根系呼吸的Q10值,频率分布最集中的区域2.5~3.0,占33%,而大部分(>80%)的研究结果在1.5~3.0之间,中位数为2.40。树干呼吸的Q10值中,频率分布最集中的区域是1.5~2.0,占42%,而90%以上的测定结果在1.0~3.0之间,中位数为1.91。通过对比,发现不同非同化器官Q10值不同(树干<根系<根系与土壤共同体<去除根系土壤)。其中树干和根系的Q10值显著低于去除根系土壤的Q10值(p<0.05),表明土壤微生物活动对于未来全球变暖的反应要比木质化器官更敏感。此外,常绿植物的根系和树干呼吸的Q10值与落叶树木对应值差异不显著,说明同化器官叶片的着生时间长短对非同化器官Q10的影响不大。不同的CO2分析方法(碱吸收法,红外线测定技术和气相色谱方法)对土壤呼吸Q10值测定结果的影响不显著(p>0.10),根系分离方法(断根测定和壕沟隔断测定)也对根系呼吸的Q10值影响也不显著(p>0.10)。但是,与活体测定相比,离体测定树干呼吸显著提高了其Q10值。总体来看,不同林分相同非同化器官以及不同非同化器官呼吸的Q10值相对稳定但仍具有较大的差异性,研究方法也对结果产生一定影响,在进行呼吸总量的定量估计中应该注意这一点。今后研究的重点是进一步把影响森林非同化器官呼吸的外在因素和内在因素综合考虑于Q10值相关模型中,以便准确定量估计其呼吸总量,而研究难点是深入研究Q10值具有较大变异性的原因(如温度适应性)和内在机理以便更好的表征不同器官和生态系统组分对全球变暖的敏感性。
王文杰, 王慧梅, 祖元刚, 李雪莹, 小池孝良. 林木非同化器官与土壤呼吸的温度系数Q10值的特征分析. 植物生态学报, 2005, 29(4): 680-691. DOI: 10.17521/cjpe.2005.0091
WANG Wen-Jie, WANG Hui-Mei, ZU Yuan-Gang, LI Xue-Ying, KOIKE Takayoshi. CHARACTERISTICS OF ROOT, STEM, AND SOIL RESPIRATION Q10 TEMPERATURE COEFFICIENTS IN FOREST ECOSYSTEMS. Chinese Journal of Plant Ecology, 2005, 29(4): 680-691. DOI: 10.17521/cjpe.2005.0091
树种 Species | 温度系数 Q10 value | 方法 Method | 参考文献 References | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
常绿树种 Evergreen trees | ||||||||||||||||||||||
辐射松Pinus radiate | 2.80 | 断根幼苗Excised roots, seedlings | Sprugel et al., | |||||||||||||||||||
1.50, 2.00 | 断根树Excised roots, tree | Ryan et al., | ||||||||||||||||||||
2.30 | 断根树Excised roots, tree | Benecke, | ||||||||||||||||||||
火炬松Pinus taeda | 1.60 | 断根幼苗Excised roots, seedlings | Ryan, | |||||||||||||||||||
1.30 | Ryan, | |||||||||||||||||||||
2.00 | 断根幼苗Excised roots, seedlings | Sprugel et al., | ||||||||||||||||||||
湿地松Pinus elliotti | 1.94 | 壕沟成林Trenching, mature forest | Cropper & Gholz, | |||||||||||||||||||
2.50+ | 断根成树Excised roots, tree | Burton et al., | ||||||||||||||||||||
加拿大香液松Pinus balsamifera | 2.35 | 断根幼苗Excised roots, seedlings | Lawrence & Oechel, | |||||||||||||||||||
脂松Pinus resinosa | 3.00+ | 断根成树Excised roots, tree | Burton et al., | |||||||||||||||||||
欧洲云杉和欧洲赤松Picea abies & Pinus sylvestris | 5.00 | 断根成树Excised roots, tree | Widén & Majdi, | |||||||||||||||||||
白云杉Picea glauca | 2.90+ | 断根成树Excised roots, tree | Burton et al., | |||||||||||||||||||
恩氏云杉Picea engelmannii | 2.00 | 1 cm根断小树Excised root segments, small tree | Sowell & Spomer, | |||||||||||||||||||
毛果冷杉Abies lasiocarpa | 1.90 | |||||||||||||||||||||
花旗松Pseudotsuga menziesii | 2.70 | 断根幼苗Excised roots, seedlings | Sprugel et al., | |||||||||||||||||||
3.00 | 土块,成熟林Excised soil blocks, mature forest | Sprugel et al., | ||||||||||||||||||||
落叶树种 Deciduous trees | ||||||||||||||||||||||
糖枫Acer saccharum | 2.70+ | 断根成树Excised roots, tree | Burton et al., | |||||||||||||||||||
圆柏Juniperus monosperma | 2.60+ | Burton et al., | ||||||||||||||||||||
北美鹅掌楸Liriodendron tulipifera | 2.70 | 断根Excised roots | Hanson et al., | |||||||||||||||||||
2.60+ | 断根成树Excised roots, tree | Burton et al., | ||||||||||||||||||||
栎树混交林Mixed oak hardwood | 2.40+ | Burton et al., | ||||||||||||||||||||
硬阔叶混交林Mixed hardwood forest | 4.60 | 壕沟成林Trenching, mature forest | Boone et al., | |||||||||||||||||||
土耳其橡树Quercus cerris | 2.20 | 壕沟成林Trenching, mature forest | Rey et al., | |||||||||||||||||||
脂杨Populus balsamifera | 2.40+ | 断根成树Excised roots, tree | Burton et al., | |||||||||||||||||||
栎树山核桃Quercus-Carya | 3.10+ | Burton et al., | ||||||||||||||||||||
不同灌木(草本)Shrubs (Herb) | 1.60+ | 断根Excised roots | Loveys et al., |
表1 根系呼吸的Q10值
Table 1 Reported Q10 values for root respiration
树种 Species | 温度系数 Q10 value | 方法 Method | 参考文献 References | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
常绿树种 Evergreen trees | ||||||||||||||||||||||
辐射松Pinus radiate | 2.80 | 断根幼苗Excised roots, seedlings | Sprugel et al., | |||||||||||||||||||
1.50, 2.00 | 断根树Excised roots, tree | Ryan et al., | ||||||||||||||||||||
2.30 | 断根树Excised roots, tree | Benecke, | ||||||||||||||||||||
火炬松Pinus taeda | 1.60 | 断根幼苗Excised roots, seedlings | Ryan, | |||||||||||||||||||
1.30 | Ryan, | |||||||||||||||||||||
2.00 | 断根幼苗Excised roots, seedlings | Sprugel et al., | ||||||||||||||||||||
湿地松Pinus elliotti | 1.94 | 壕沟成林Trenching, mature forest | Cropper & Gholz, | |||||||||||||||||||
2.50+ | 断根成树Excised roots, tree | Burton et al., | ||||||||||||||||||||
加拿大香液松Pinus balsamifera | 2.35 | 断根幼苗Excised roots, seedlings | Lawrence & Oechel, | |||||||||||||||||||
脂松Pinus resinosa | 3.00+ | 断根成树Excised roots, tree | Burton et al., | |||||||||||||||||||
欧洲云杉和欧洲赤松Picea abies & Pinus sylvestris | 5.00 | 断根成树Excised roots, tree | Widén & Majdi, | |||||||||||||||||||
白云杉Picea glauca | 2.90+ | 断根成树Excised roots, tree | Burton et al., | |||||||||||||||||||
恩氏云杉Picea engelmannii | 2.00 | 1 cm根断小树Excised root segments, small tree | Sowell & Spomer, | |||||||||||||||||||
毛果冷杉Abies lasiocarpa | 1.90 | |||||||||||||||||||||
花旗松Pseudotsuga menziesii | 2.70 | 断根幼苗Excised roots, seedlings | Sprugel et al., | |||||||||||||||||||
3.00 | 土块,成熟林Excised soil blocks, mature forest | Sprugel et al., | ||||||||||||||||||||
落叶树种 Deciduous trees | ||||||||||||||||||||||
糖枫Acer saccharum | 2.70+ | 断根成树Excised roots, tree | Burton et al., | |||||||||||||||||||
圆柏Juniperus monosperma | 2.60+ | Burton et al., | ||||||||||||||||||||
北美鹅掌楸Liriodendron tulipifera | 2.70 | 断根Excised roots | Hanson et al., | |||||||||||||||||||
2.60+ | 断根成树Excised roots, tree | Burton et al., | ||||||||||||||||||||
栎树混交林Mixed oak hardwood | 2.40+ | Burton et al., | ||||||||||||||||||||
硬阔叶混交林Mixed hardwood forest | 4.60 | 壕沟成林Trenching, mature forest | Boone et al., | |||||||||||||||||||
土耳其橡树Quercus cerris | 2.20 | 壕沟成林Trenching, mature forest | Rey et al., | |||||||||||||||||||
脂杨Populus balsamifera | 2.40+ | 断根成树Excised roots, tree | Burton et al., | |||||||||||||||||||
栎树山核桃Quercus-Carya | 3.10+ | Burton et al., | ||||||||||||||||||||
不同灌木(草本)Shrubs (Herb) | 1.60+ | 断根Excised roots | Loveys et al., |
树种 Species | 温度系数 Q10 value | 方法 Method | 参考文献 References |
---|---|---|---|
土壤和根系总呼吸 Respiration of soil including root | |||
不同土壤中位值 Median value for different soil | 2.40 | 主要碱吸收法 Mainly soda lime absorption | Raich & Schlesinger, |
欧洲赤松Pinus sylvestris | 2.92~3.84 | 气体收集气相色谱分析Sampling gas and gas chromatograph analysis | Borken et al., |
3.30,6.29,2.94,3.72 | 气体收集红外线分析Sampling gas and IRGA method | Pumpanen et al., | |
欧洲云杉Picea abies | 2.50~3.48 | 气体收集气相色谱分析Sampling gas and gas chromatograph analysis | Borken et al., |
2.30~4.10 | 红外线分析 IRGA method | Buchmann, | |
3.90~5.70 | 气体收集气相色谱分析Sampling gas and gas chromatograph analysis | Borken et al., | |
冷杉Pinus abies | 2.41,2.34,2.34,3.22,4.11,4.11,2.87,3.27,3.27,2.39,2.82,2.82 | 红外线分析 IRGA method | Buchmann, |
美国黄松Pinus ponderosa | 1.40,1.80 | 红外线分析 IRGA method | Xu & Qi, |
1.80 | 红外线分析 IRGA method | Law et al., | |
欧洲水青冈Fagus sylvatica | 2.71~3.57 | 气体收集气相色谱分析Sampling gas and gas chromatograph analysis | Borken et al., |
硬阔叶混交林Mixed hardwood | 3.50,2.50 | 红外线分析 IRGA method | Boone et al., |
3.50,4.10,3.40,5.60,4.50,4.00,3.90 | 红外线分析 IRGA analysis | Davidson et al., | |
石楠Calluna vulgaris | 2.53,2.35,2.34,2.44,2.68,2.57,2.20,2.12,2.09,2.32,2.47,2.24 | 碱吸收法 Soda lime absorption | Chapman, |
香液枞树Abies balsamea | 2.15,1.66,2.22,2.76,1.68,3.45,3.49, 2.86,2.50,3.00,2.78 | 红外线分析 IRGA method | Lavigne et al., |
日本落叶松Larix kampferi | 1.40,1.60,1.80,4.20,7.00,3.00,2.98 | 红外线分析 IRGA method | Wang et al., |
农用土壤Agricultual soil | 2.31 | 红外线分析 IRGA method | Fang & Moncrieff, |
2.80 | 红外线分析 IRGA method | Wang et al., | |
1.70~2.30 | 红外线分析 IRGA method | Koizumi et al., | |
欧洲水青岗Fagus sylvatica | 4.00,4.59,4.07 | 红外线分析 IRGA method | Janssens & Pilegaard., |
白云杉Picea sitchensis | 3.09 | 红外线分析 IRGA method | Fang & Moncrieff, |
土耳其橡树Quercus cerris | 2.32 | 红外线分析 IRGA method | Rey et al., |
绒毛桦Betula pubescens | 39.4,7.6,0.7 | 红外线分析 IRGA method | Sj?gersten & Wookey, |
亚热带混交林 Mixed sub-tropical forests | 1.25, 1.37, 1.46 (空气温度 Based on air temperature) | 碱吸收法 Soda lime absorption | 易志刚等, |
辽东栎林 Quercus liaotungensis | 2.56 | 红外线分析 IRGA method | 刘绍辉等, |
1.40,1.50,1.70(空气温度 Based on air temperature) | 红外线分析 IRGA method | 蒋高明和黄银晓, | |
青冈林Quercus glauca | 2.55(空气温度 Based on air temperature) | 红外线分析 IRGA method | 黄承才等, |
毛竹林Phyllostachys pubescens | 2.11(空气温度 Based on air temperature) | 红外线分析 IRGA method | 黄承才等, |
茶园Camellia sinensis | 1.75(空气温度 Based on air temperature) | 红外线分析 IRGA method | 黄承才等, |
泰加林Taiga forests | 0.98, 1.30, 1.30, 1.90 | 气体收集气相色谱分析 Sampling gas and gas chromatograph | Gulledge & Schimel, |
去除根系土壤呼吸 Respiration of soil excluding root | |||
火炬松Pinus taeda | 1.70~1.90 | 碱吸收法 Soda lime absorption | Winkler et al., |
欧洲云杉和欧洲赤松Picea abies & Pinus sylvestris | 2.10 | 红外线分析 IRGA method | Widén & Majdi, |
绒毛桦Betula pubescens | 2.80,6.70,2.40,5.30,2.80,6.90,3.70,3.60,2.60,14.00,3.60,3.60,5.70,3.60,3.80 | 红外线分析 IRGA method | Sj?gersten & Wookey, |
热带森林土壤Tropical forest soil | 2.10 | 红外线分析 IRGA method | Bekku et al., |
废弃地Abandoned soil | 2.90 | 红外线分析 IRGA method | Bekku et al., |
极地森林土Arctic forest soil | 3.40 | 红外线分析 IRGA method | Bekku et al., |
欧洲水青冈Fagus sylvatica | 1.71 | 红外线分析 IRGA method | Granier et al., |
硬阔叶林Hardwood forests | 3.10 | 红外线分析 IRGA method | Boone et al., |
土耳其橡树Quercus cerris | 2.89 | 红外线分析 IRGA method | Rey et al., |
表2 土壤与去除根系土壤呼吸的Q10值
Table 2 Reported Q10 values of respiration of intact soil and soil excluding root
树种 Species | 温度系数 Q10 value | 方法 Method | 参考文献 References |
---|---|---|---|
土壤和根系总呼吸 Respiration of soil including root | |||
不同土壤中位值 Median value for different soil | 2.40 | 主要碱吸收法 Mainly soda lime absorption | Raich & Schlesinger, |
欧洲赤松Pinus sylvestris | 2.92~3.84 | 气体收集气相色谱分析Sampling gas and gas chromatograph analysis | Borken et al., |
3.30,6.29,2.94,3.72 | 气体收集红外线分析Sampling gas and IRGA method | Pumpanen et al., | |
欧洲云杉Picea abies | 2.50~3.48 | 气体收集气相色谱分析Sampling gas and gas chromatograph analysis | Borken et al., |
2.30~4.10 | 红外线分析 IRGA method | Buchmann, | |
3.90~5.70 | 气体收集气相色谱分析Sampling gas and gas chromatograph analysis | Borken et al., | |
冷杉Pinus abies | 2.41,2.34,2.34,3.22,4.11,4.11,2.87,3.27,3.27,2.39,2.82,2.82 | 红外线分析 IRGA method | Buchmann, |
美国黄松Pinus ponderosa | 1.40,1.80 | 红外线分析 IRGA method | Xu & Qi, |
1.80 | 红外线分析 IRGA method | Law et al., | |
欧洲水青冈Fagus sylvatica | 2.71~3.57 | 气体收集气相色谱分析Sampling gas and gas chromatograph analysis | Borken et al., |
硬阔叶混交林Mixed hardwood | 3.50,2.50 | 红外线分析 IRGA method | Boone et al., |
3.50,4.10,3.40,5.60,4.50,4.00,3.90 | 红外线分析 IRGA analysis | Davidson et al., | |
石楠Calluna vulgaris | 2.53,2.35,2.34,2.44,2.68,2.57,2.20,2.12,2.09,2.32,2.47,2.24 | 碱吸收法 Soda lime absorption | Chapman, |
香液枞树Abies balsamea | 2.15,1.66,2.22,2.76,1.68,3.45,3.49, 2.86,2.50,3.00,2.78 | 红外线分析 IRGA method | Lavigne et al., |
日本落叶松Larix kampferi | 1.40,1.60,1.80,4.20,7.00,3.00,2.98 | 红外线分析 IRGA method | Wang et al., |
农用土壤Agricultual soil | 2.31 | 红外线分析 IRGA method | Fang & Moncrieff, |
2.80 | 红外线分析 IRGA method | Wang et al., | |
1.70~2.30 | 红外线分析 IRGA method | Koizumi et al., | |
欧洲水青岗Fagus sylvatica | 4.00,4.59,4.07 | 红外线分析 IRGA method | Janssens & Pilegaard., |
白云杉Picea sitchensis | 3.09 | 红外线分析 IRGA method | Fang & Moncrieff, |
土耳其橡树Quercus cerris | 2.32 | 红外线分析 IRGA method | Rey et al., |
绒毛桦Betula pubescens | 39.4,7.6,0.7 | 红外线分析 IRGA method | Sj?gersten & Wookey, |
亚热带混交林 Mixed sub-tropical forests | 1.25, 1.37, 1.46 (空气温度 Based on air temperature) | 碱吸收法 Soda lime absorption | 易志刚等, |
辽东栎林 Quercus liaotungensis | 2.56 | 红外线分析 IRGA method | 刘绍辉等, |
1.40,1.50,1.70(空气温度 Based on air temperature) | 红外线分析 IRGA method | 蒋高明和黄银晓, | |
青冈林Quercus glauca | 2.55(空气温度 Based on air temperature) | 红外线分析 IRGA method | 黄承才等, |
毛竹林Phyllostachys pubescens | 2.11(空气温度 Based on air temperature) | 红外线分析 IRGA method | 黄承才等, |
茶园Camellia sinensis | 1.75(空气温度 Based on air temperature) | 红外线分析 IRGA method | 黄承才等, |
泰加林Taiga forests | 0.98, 1.30, 1.30, 1.90 | 气体收集气相色谱分析 Sampling gas and gas chromatograph | Gulledge & Schimel, |
去除根系土壤呼吸 Respiration of soil excluding root | |||
火炬松Pinus taeda | 1.70~1.90 | 碱吸收法 Soda lime absorption | Winkler et al., |
欧洲云杉和欧洲赤松Picea abies & Pinus sylvestris | 2.10 | 红外线分析 IRGA method | Widén & Majdi, |
绒毛桦Betula pubescens | 2.80,6.70,2.40,5.30,2.80,6.90,3.70,3.60,2.60,14.00,3.60,3.60,5.70,3.60,3.80 | 红外线分析 IRGA method | Sj?gersten & Wookey, |
热带森林土壤Tropical forest soil | 2.10 | 红外线分析 IRGA method | Bekku et al., |
废弃地Abandoned soil | 2.90 | 红外线分析 IRGA method | Bekku et al., |
极地森林土Arctic forest soil | 3.40 | 红外线分析 IRGA method | Bekku et al., |
欧洲水青冈Fagus sylvatica | 1.71 | 红外线分析 IRGA method | Granier et al., |
硬阔叶林Hardwood forests | 3.10 | 红外线分析 IRGA method | Boone et al., |
土耳其橡树Quercus cerris | 2.89 | 红外线分析 IRGA method | Rey et al., |
图4 常绿树种与落叶树种根系与树干呼吸Q10值的差异 误差标示为平均值的标准误,ns表示差异不显著
Fig.4 Difference in Q10 values for the stem respiration of evergreen trees and deciduous trees The vertical bar on columns indicates the standard error of the mean. ns means the difference is insignificant
树种 Species | 温度系数 Q10 values | 方法 Method | 参考文献 References |
---|---|---|---|
常绿树种Evergreen trees | |||
美国黄松Pinus ponderosa | 1.90~2.90 | 活体;红外线测定 in vivo; IRGA | Xu et al., |
1.40 | 活体;红外线测定;维持呼吸 in vivo; IRGA; maintenance respiration | Ryan et al., | |
2.20,2.60,1.50,5.80,1.40,1.40,6.30,1.20,1.50,5.60,1.40,1.50 | 离体;茎段;气相色谱in vitro; stem segments; gas chromatograph | Pruyn et al., | |
2.40, 2.30,1.60, 1.90 | 活体; 红外线测定in vivo ; IRGA | Carey et al., | |
1.70 | Carey et al., | ||
火炬松Pinus taeda | 2.90* | 离体;碱吸收法in vitro; soda lime absorption | Kinerson, |
1.68,1.62,2.34,2.48,1.57,1.57,1.58,1.58,1.84,1.80,1.77,1.92,1.40,1.49,1.21,1.24,1.25,1.34,1.55,1.67,1.77,1.90,1.67,1.80,1.92, 2.05 | 活体;红外线测定; 维持呼吸in vivo; IRGA; maintenance respiration | Maier, | |
1.88,1.79 | Maier et al., | ||
瑞士石松Pinus cembra | 1.80,2.20 | 活体;红外线测定 in vivo ; IRGA | Ryan et al., |
脂松Pinus resinosa | 1.30 | 活体;红外线测定; 维持呼吸in vivo; IRGA; maintenance respiration | Ryan et al., |
湿地松Pinus elliottii | 1.90 | Ryan et al., | |
辐射松Pinus radiata | 1.40 (树枝 Branches) | 活体;红外线测定 in vivo; IRGA | Ryan et al., |
美国宽叶松Pinus engelmannii | 3.30,2.30,2.80 | 活体;红外线测定in vivo, IRGA | Ryan, |
黑松Pinus contorta | 1.80,2.00,2.30 | 活体;红外线测定in vivo; IRGA | Ryan, |
短叶松Pinus banksiana | 1.20~3.00 | 活体;红外线测定;维持呼吸in vivo;IRGA; maintenance respiration | Lavigne et al., |
欧洲赤松Pinus sylvestris | 2.00* | 活体;碱吸收法in vivo; soda lime absorption | Linder & Troeng, |
海松Pinus pinaster | 1.83,2.13,2.38 | 活体;红外线测定in vivo; IRGA | Bosc et al., |
香液枞树Abies balsamea | 1.56,2.01,2.14,2.68,2.00,2.10, 2.30, 2.50 | 活体;红外线测定in vivo; IRGA | Lavigne |
温哥华冷杉Abies amabilis | 2.00* | 活体;红外线测定in vivo; IRGA | Sprugel, |
欧洲云杉Picea abies | 2.60,2.30,2.00,1.90,1.90,2.20,2.10,2.00 | 活体;红外线测定in vivo; IRGA | Stockfors & Linder, |
黑云杉Picea mariana | 1.50,1.80,2.20 | 活体;红外线测定in vivo; IRGA | Lavigne & Ryan, |
日本扁柏Chamaecyparis obtuse | 1.50,2.00, 2.20,2.80,3.20* | 活体;红外线测定in vivo; IRGA | Paembonan et al., |
美国异叶铁杉Tsuga heterophylla | 1.80 | 活体;红外线测定;维持呼吸in vivo; IRGA; maintenance respiration | Ryan et al., |
北美黄杉Pseudotsuga menziesii | 2.20,4.50,2.40,4.50,5.30,2.00,4.80,1.90,7.60,1.90 | 离体; 茎段;气相色谱in vitro; stem segment; gas chromatograph | Pruyn et al., |
落叶树种Deciduous trees | |||
兴安落叶松Larix gmelini | 2.22~3.53 | 活体;红外线测定in vivo; IRGA | Wang et al., |
日本落叶松Larix kaempferi | 2.60~3.80* | 活体;红外线测定in vivo; IRGA | Wang et al., |
欧洲水青岗Fagus sylvatica | 1.70,1.70,1.80,1.60,2.40,2.70 | 活体;红外线测定in vivo; IRGA | Damesin et al., Damesin, |
1.60,1.70,1.80 | 活体;红外线测定in vivo; IRGA | Granier et al., | |
2.00~3.00(树枝 Branches) | 活体;红外线测定in vivo; IRGA | Granier et al., | |
巴西白木和铁青树科植物 Simarouba amara & Minquartia guianensis | 2.20,2.10* | 活体;红外线测定 in vivo; IRGA | Ryan et al., |
热带雨林(23种)Tropical rain forest(23 sp.) | 1.60,1.80 | 活体;红外线测定in vivo;IRGA | Meir & Grace, |
使君子科植物Guiera senegalensis | 2.17 | 活体;红外线测定in vivo; IRGA | Levy & Jarvis, |
使君子科风车子属植物Combretum nigricans | 1.64 | 活体;红外线测定 in vivo; IRGA | Levy & Jarvis, |
响杨Populus tremuloides | 1.00, 1.20~1.30 | 活体;红外线测定 in vivo; IRGA | Lavigne & Ryan, |
碧桃Prunus persica | 1.50, 2.00* | 活体;红外线测定 in vivo; IRGA | Grossman & Dejong, |
栗子栎树Quercus prinus | 2.40* | 活体;红外线测定 in vivo; IRGA | Edwards & Hanson, |
白栎树Quercus alba | 2.40* | 活体; 红外线测定 in vivo; IRGA | Edwards & Hanson, |
北美红枫Acer rubrum | 1.70* | ||
1.70* | |||
北美枫香Liquidambar styraciflua | 1.90,2.20,2.10,1.70 | Edwards et al., |
表3 树干(树枝)呼吸的Q10值
Table 3 Reported Q10 values for stem and branches
树种 Species | 温度系数 Q10 values | 方法 Method | 参考文献 References |
---|---|---|---|
常绿树种Evergreen trees | |||
美国黄松Pinus ponderosa | 1.90~2.90 | 活体;红外线测定 in vivo; IRGA | Xu et al., |
1.40 | 活体;红外线测定;维持呼吸 in vivo; IRGA; maintenance respiration | Ryan et al., | |
2.20,2.60,1.50,5.80,1.40,1.40,6.30,1.20,1.50,5.60,1.40,1.50 | 离体;茎段;气相色谱in vitro; stem segments; gas chromatograph | Pruyn et al., | |
2.40, 2.30,1.60, 1.90 | 活体; 红外线测定in vivo ; IRGA | Carey et al., | |
1.70 | Carey et al., | ||
火炬松Pinus taeda | 2.90* | 离体;碱吸收法in vitro; soda lime absorption | Kinerson, |
1.68,1.62,2.34,2.48,1.57,1.57,1.58,1.58,1.84,1.80,1.77,1.92,1.40,1.49,1.21,1.24,1.25,1.34,1.55,1.67,1.77,1.90,1.67,1.80,1.92, 2.05 | 活体;红外线测定; 维持呼吸in vivo; IRGA; maintenance respiration | Maier, | |
1.88,1.79 | Maier et al., | ||
瑞士石松Pinus cembra | 1.80,2.20 | 活体;红外线测定 in vivo ; IRGA | Ryan et al., |
脂松Pinus resinosa | 1.30 | 活体;红外线测定; 维持呼吸in vivo; IRGA; maintenance respiration | Ryan et al., |
湿地松Pinus elliottii | 1.90 | Ryan et al., | |
辐射松Pinus radiata | 1.40 (树枝 Branches) | 活体;红外线测定 in vivo; IRGA | Ryan et al., |
美国宽叶松Pinus engelmannii | 3.30,2.30,2.80 | 活体;红外线测定in vivo, IRGA | Ryan, |
黑松Pinus contorta | 1.80,2.00,2.30 | 活体;红外线测定in vivo; IRGA | Ryan, |
短叶松Pinus banksiana | 1.20~3.00 | 活体;红外线测定;维持呼吸in vivo;IRGA; maintenance respiration | Lavigne et al., |
欧洲赤松Pinus sylvestris | 2.00* | 活体;碱吸收法in vivo; soda lime absorption | Linder & Troeng, |
海松Pinus pinaster | 1.83,2.13,2.38 | 活体;红外线测定in vivo; IRGA | Bosc et al., |
香液枞树Abies balsamea | 1.56,2.01,2.14,2.68,2.00,2.10, 2.30, 2.50 | 活体;红外线测定in vivo; IRGA | Lavigne |
温哥华冷杉Abies amabilis | 2.00* | 活体;红外线测定in vivo; IRGA | Sprugel, |
欧洲云杉Picea abies | 2.60,2.30,2.00,1.90,1.90,2.20,2.10,2.00 | 活体;红外线测定in vivo; IRGA | Stockfors & Linder, |
黑云杉Picea mariana | 1.50,1.80,2.20 | 活体;红外线测定in vivo; IRGA | Lavigne & Ryan, |
日本扁柏Chamaecyparis obtuse | 1.50,2.00, 2.20,2.80,3.20* | 活体;红外线测定in vivo; IRGA | Paembonan et al., |
美国异叶铁杉Tsuga heterophylla | 1.80 | 活体;红外线测定;维持呼吸in vivo; IRGA; maintenance respiration | Ryan et al., |
北美黄杉Pseudotsuga menziesii | 2.20,4.50,2.40,4.50,5.30,2.00,4.80,1.90,7.60,1.90 | 离体; 茎段;气相色谱in vitro; stem segment; gas chromatograph | Pruyn et al., |
落叶树种Deciduous trees | |||
兴安落叶松Larix gmelini | 2.22~3.53 | 活体;红外线测定in vivo; IRGA | Wang et al., |
日本落叶松Larix kaempferi | 2.60~3.80* | 活体;红外线测定in vivo; IRGA | Wang et al., |
欧洲水青岗Fagus sylvatica | 1.70,1.70,1.80,1.60,2.40,2.70 | 活体;红外线测定in vivo; IRGA | Damesin et al., Damesin, |
1.60,1.70,1.80 | 活体;红外线测定in vivo; IRGA | Granier et al., | |
2.00~3.00(树枝 Branches) | 活体;红外线测定in vivo; IRGA | Granier et al., | |
巴西白木和铁青树科植物 Simarouba amara & Minquartia guianensis | 2.20,2.10* | 活体;红外线测定 in vivo; IRGA | Ryan et al., |
热带雨林(23种)Tropical rain forest(23 sp.) | 1.60,1.80 | 活体;红外线测定in vivo;IRGA | Meir & Grace, |
使君子科植物Guiera senegalensis | 2.17 | 活体;红外线测定in vivo; IRGA | Levy & Jarvis, |
使君子科风车子属植物Combretum nigricans | 1.64 | 活体;红外线测定 in vivo; IRGA | Levy & Jarvis, |
响杨Populus tremuloides | 1.00, 1.20~1.30 | 活体;红外线测定 in vivo; IRGA | Lavigne & Ryan, |
碧桃Prunus persica | 1.50, 2.00* | 活体;红外线测定 in vivo; IRGA | Grossman & Dejong, |
栗子栎树Quercus prinus | 2.40* | 活体;红外线测定 in vivo; IRGA | Edwards & Hanson, |
白栎树Quercus alba | 2.40* | 活体; 红外线测定 in vivo; IRGA | Edwards & Hanson, |
北美红枫Acer rubrum | 1.70* | ||
1.70* | |||
北美枫香Liquidambar styraciflua | 1.90,2.20,2.10,1.70 | Edwards et al., |
Q10值 Q10 value | 算数平均数 Arithmetic mean | 调和平均数 Harmonic mean | 几何平均数 Geometric mean | 中位数 Median |
---|---|---|---|---|
树干呼吸 Stem respiration | 2.18 | 1.93 | 2.03 | 1.91 |
根系呼吸 Root respiration | 2.50 | 2.30 | 2.40 | 2.40 |
根系+土壤呼吸 Root+soil respiration | 3.24 | 2.42 | 2.70 | 2.57 |
土壤呼吸 Soil respiration | 3.74 | 2.97 | 3.27 | 3.00 |
表4 土壤与树干呼吸Q10值的不同平均数比较
Table 4 Different mean Q10 values for soil and stem respiration
Q10值 Q10 value | 算数平均数 Arithmetic mean | 调和平均数 Harmonic mean | 几何平均数 Geometric mean | 中位数 Median |
---|---|---|---|---|
树干呼吸 Stem respiration | 2.18 | 1.93 | 2.03 | 1.91 |
根系呼吸 Root respiration | 2.50 | 2.30 | 2.40 | 2.40 |
根系+土壤呼吸 Root+soil respiration | 3.24 | 2.42 | 2.70 | 2.57 |
土壤呼吸 Soil respiration | 3.74 | 2.97 | 3.27 | 3.00 |
图5 树干、根系、根和土壤共同体、去除根系土壤呼吸的Q10值差异分析 误差柱表示平均数的标准误。不同项目上的不同的字母表示差异显著,相同字表示二者差异不显著。n表示了样本个数
Fig.5 Difference in Q10 values for respiration of stem, root, intact soil of root and soil, and soil excluding root The vertical bars on each column indicate the standard error of the mean value. Duncan Post Hoc Tests were used in the analysis. Different alphabet on the columns indicates the difference was significant. The number n on each column indicates the number of dataset
项目与方法 Item & method | 土壤呼吸 Soil respiration | 根系呼吸 Root respiration | 树干呼吸 Stem respiration | ||||
---|---|---|---|---|---|---|---|
碱吸收 Soda lime absorption | 红外线 IRGA | 气相色谱 Gas chromatograph analysis | 壕沟 Trenched box | 断根 Excised root | 活体测定 in vivo | 离体测定 in vitro | |
Q10值Q10 values | 2.14(0.43)a | 3.69(4.26)a | 2.84(1.36)a | 2.94(1.20)a | 2.43(0.75)a | 1.98(0.49)a | 3.15(1.93)b |
样本数Sample number | 18 | 89 | 12 | 4 | 23 | 113 | 23 |
表5 不同研究方法对土壤呼吸、根系呼吸和树干呼吸Q10值的影响
Table 5 The influences of methods on the estimation of Q10 values of soil respiration, root respiration and stem respiration
项目与方法 Item & method | 土壤呼吸 Soil respiration | 根系呼吸 Root respiration | 树干呼吸 Stem respiration | ||||
---|---|---|---|---|---|---|---|
碱吸收 Soda lime absorption | 红外线 IRGA | 气相色谱 Gas chromatograph analysis | 壕沟 Trenched box | 断根 Excised root | 活体测定 in vivo | 离体测定 in vitro | |
Q10值Q10 values | 2.14(0.43)a | 3.69(4.26)a | 2.84(1.36)a | 2.94(1.20)a | 2.43(0.75)a | 1.98(0.49)a | 3.15(1.93)b |
样本数Sample number | 18 | 89 | 12 | 4 | 23 | 113 | 23 |
[1] | Amthor JS (2000). The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Annals of Botany, 86,1-20. |
[2] | Atkin OK, Edwards EJ, Loveys BR (2000). Response of root respiration to changes in temperature and its relevance to global warming. New Phytologist, 147,141-154. |
[3] | Bekku YS, Nakatsubo T, Kumec A, Adachi M, Koizumi H (2003). Effect of warming on the temperature dependence of soil respiration rate in arctic, temperate and tropical soils. Applied Soil Ecology, 22,205-210. |
[4] | Benecke U (1985). Tree respiration in steepland stands of Nothofagus truncata and Pinus radiata, Nelson, New Zealand. In: Turner H, Tranquillini W eds. Establishment and Tending of Subalpine Forests, Research and Management. Swiss Federal Institute of Forestry Research, Report. 270,61-70. |
[5] | Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998). Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature, 396,570-572. |
[6] | Borken W, Xu YJ, Davidson E, Beese F (2002). Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests. Global Change Biology, 8,1205-1216. |
[7] | Borken W, Xu YJ, Brumme R, Lamersdorf N (1999). A climate change scenario for carbon dioxide and dissolved organic carbon fluxes from a temperate forest soil: drought and rewetting effects. Soil Science Society of America Journal, 63,1848-1855. |
[8] | Bosc A, Grandcourt AD, Loustau D (2003). Variability of stem and branch maintenance respiration in a Pinus pinaster tree. Tree Physiology, 23,227-236. |
[9] | Bostad PV, Reich P, Lee T (2003). Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. Tree Physiology, 23,969-976. |
[10] | Buchmann N (2000). Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biology & Biochemistry, 32,1625-1635. |
[11] | Burton AJ, Pregitzer KS, Ruess RW, Hendrick RL, Allen MF (2002). Root respiration in North American forests, effects of nitrogen concentration and temperature across biomes. Oecologia, 131,559-568. |
[12] |
Burton AJ, Pregitzer KS (2003). Field measurements of root respiration indicate little to no seasonal temperature acclimation for sugar maple and red pine. Tree Physiology, 23,273-280.
URL PMID |
[13] | Cannell MGR, Thornley JHM (2000). Modelling the components of plant respiration, some guiding principles. Annals of Botany, 85,45-54. |
[14] |
Carey EV, DeLucia EH, Ball JT (1996). Stem maintenance and construction respiration in Pinus ponderosa grown in different concentrations of atmospheric CO2. Tree Physiology, 16,125-130.
URL PMID |
[15] |
Carey EV, Callaway RM, DeLucia EH (1997). Stem respiration of ponderosa pines grown in contrasting climates, implications for global climate change. Oecologia, 111,19-25.
DOI URL PMID |
[16] | Chapman SB (1979). Some interrelationships between soil and root respiration in lowland calluna heathland in southern England. Journal of Ecology, 67,1-20. |
[17] | Chen HH(陈华豪), Ding ST(丁思统), Cai XR(蔡贤如), Hong W(洪伟), Zhang ZY(张忠义) (1992). Applied Statistics in Forestry (林业应用数理统计). Publishing House of Dalian Maritime University, Dalian. (in Chinese) |
[18] |
Clinton BD, Vose JM (1999). Fine root respiration in mature eastern white pine (Pinus strobus) in situ, the importance of CO2 in controlled environments. Tree Physiology, 19,475-479.
URL PMID |
[19] | Covey-Crump EM, Attwood RG, Atkin OK (2002). Regulation of root respiration in two species of Plantago that differ in relative growth rate, the effect of short- and long-term changes in temperature. Plant, Cell & Environment, 25,1501-1513. |
[20] | Cropper Jr. WP, Gholz HL (1991). In situ needle and fine root respiration in mature slash pine (Pinus elliottii) trees. Canadian Journal of Forest Research, 21,1589-1595. |
[21] | Damesin C, Ceschia E, Le Goff N, Ottorini JM, Dufrêne E (2002). Stem and branch respiration of beech, from tree measurements to estimations at the stand level. New Phytologist, 153,159-172. |
[22] | Damesin C (2003). Respiration and photosynthesis characteristics of current-year stems of Fagus sylvatica, from the seasonal pattern to an annual balance. New Phytologist, 158,465-475. |
[23] | Davidson EA, Belk E, Boone RD (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4,217-227. |
[24] | Edwards NT, Tschaplinski TJ, Norby RJ (2002). Stem respiration increases in CO2-enriched sweetgum trees. New Phytologist, 155,239-248. |
[25] |
Edwards NT, Hanson PJ (1996). Stem respiration in a closed-canopy upland. Tree Physiology, 16,433-439.
URL PMID |
[26] |
Ekblad A, Høgberg P (2001). Natural abundance of 13C in CO2 respired from forest soils reveals speed of link between tree photosynthesis and root respiration. Oecologia, 127,305-308.
DOI URL PMID |
[27] |
Fang C, Moncrieff JB (2001). The dependence of soil CO2 efflux on temperature. Soil Biology & Biochemistry, 33,155-165.
DOI URL |
[28] |
Gifford RM (1992). Implications of the globally increasing atmospheric CO2 concentration and temperature for the Australian terrestrial carbon budget, integration using a simple model. Australian Journal of Botany, 40,527-543.
DOI URL |
[29] | Granier A, Ceschia E, Damesin C, Dufrêne E, Epron D, Gross P, Lebaube S, Le Dantec V, Le Goff N, Lemoine D, Lucot E, Ottorini JM, Pontailler JY, Saugier B (2000). The carbon balance of a young beech forest. Functional Ecology, 14,312-325. |
[30] |
Grossman YL, Dejong TM (1994). Carbohydrate requirements for dark respiration by peach vegetative organs. Tree Physiology, 14,37-48.
DOI URL PMID |
[31] | Gulledge J, Schimel JP (2000). Controls on soil carbon dioxide and methane fluxes in a variety of Taiga forest stands in interior Alaska. Ecosystems, 3,269-282. |
[32] | Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration, a review of methods and observations. Biogeochemistry, 48,115-146. |
[33] | Høgberg MN, Høgberg P (2002). Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytologist, 154,791-795. |
[34] | Huang CC(黄承才), Ge Y(葛滢), Chang J(常杰), Lu R(卢蓉), Xu QS(徐青山) (1999). Studies on the soil respiration of three woody plant communities in the east mid-subtropical zone, China. Acta Ecologica Sincia (生态学报), 19,324-328. (in Chinese with English abstract) |
[35] | Janssens IA, Pilegaard K (2003). Large seasonal changes in Q10 of soil respiration in a beech forest. Global Change Biology, 9,911-918. |
[36] | Jiang GM (蒋高明), Huang YX(黄银晓) (1997). A study on the measurement of CO2 emission from the soil of the simulated Quercus liaotungensis forest sampled from Beijing mountain areas. Acta Ecologica Sincia (生态学报), 17,477-482. (in Chinese with English abstract) |
[37] |
Kinerson RS (1975). Relationships between plant surface area and respiration in loblolly pine. Journal of Applied Ecology, 12,965-971.
DOI URL |
[38] | Kirschbaum MUF (1995). The temperature dependency of soil organic matter decomposition and the effect of global warming on soil organic C storage. Soil Biology, Biochemistry, 27,753-760. |
[39] | Koizumi H, Kontturi M, Mariko S, Nakadai T, Bekku Y, Mela T (1999). Soil respiration in three soil types in agricultural ecosystems in Finland. Acta Agriculturae Scandinavica, 49,65-74. |
[40] | Lavigne MB, Boutin R, Foster RJ, Goodine G, Bernier PY, Robitaille G (2003). Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. Canadian Journal of Forest Research, 33,1744-1753. |
[41] |
Lavigne MB (1987). Differences in stem respiration responses to temperature between balsam fir trees in thinned and unthinned stands. Tree Physiology, 3,225-233.
URL PMID |
[42] |
Lavigne MB, Ryan MG (1997). Growth and maintenance respiration rates of aspen, black spruce and jack pine stems at northern and southern BOREAS sites. Tree Physiology, 17,543-551.
DOI URL PMID |
[43] |
Lavigne MB, Franklin SE, Hunt Jr. ER (1996). Estimating stem maintenance respiration rates of dissimilar balsam fir stands. Tree Physiology, 16,687-695.
DOI URL PMID |
[44] |
Law BE, Ryan MG, Anthoni PM (1999). Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biology, 5,169-182.
DOI URL |
[45] | Lawrence WT, Oechel WC (1983). Effects of soil temperature on the carbon exchange of taiga seedlings. I. Root respiration. Canadian Journal of Forest Research, 13,840-849. |
[46] | Levy PE, Jarvis PG (1998). Stem CO2 flux in two sahelian shrub species (Guiera senegalensis and Combretum micranthum). Functional Ecology, 12,107-116. |
[47] | Linder S, Troeng E (1981). The seasonal variation in stem and coarse root respiration of a 20-year-old Scots pine (Pinus sylvestris L.). Mitteilungen der Forstlichen Bundesversuchsanstalt Wien, 142,125-139. |
[48] | Liu SH(刘绍辉), Fang JY(方精云), Makoto K (1998). Soil respiration of mountainous temperate forests in Beijing, China. Acta Phytecologica Sinica (植物生态学报), 22,119-126. (in Chinese with English abstract) |
[49] | Lloyd J, Taylor JA (1994). On the temperature dependence of soil respiration. Functional Ecology, 8,315-323. |
[50] | Loveys BR, Atkinson LJ, Sherlock DJ, Roberts RL, Fitter AH, Atkin OK (2003). Thermal acclimation of leaf and root respiration, an investigation comparing inherently fast- and slow-growing plant species. Global Change Biology, 9,895-910. |
[51] | Maier CA, Zarnoch SJ, Dougherty PM (1998). Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation. Tree Physiology, 18,11-20. |
[52] |
Maier CA (2001). Stem growth and respiration in loblolly pine plantations differing in soil resource availability. Tree Physiology, 21,1183-1193.
DOI URL PMID |
[53] | Matyssek R, Günthardt-Goerg MS, Maurer S, Christ R (2002). Tissue structure and respiration of stems of Betula pendula under contrasting ozone exposure and nutrition. Trees, 16,375-385. |
[54] |
McDowell NG, Marshall JD, Qi J, Mattson K (1999). Direct inhibition of maintenance respiration in western helock roots exposed to ambient soil carbon dioxide concentrations. Tree Physiology, 19,599-605.
DOI URL PMID |
[55] | Meir P, Grace J (2002). Scaling relationships for woody tissue respiration in two tropical rain forests. Plant, Cell & Environment, 25,963-973. |
[56] |
Paembonan SA, Hagihara A, Hozumi K (1992). Long-term respiration in relation to growth and maintenance processes of the aboveground parts of a hinoki forest tree. Tree Physiology, 10,101-110.
DOI URL PMID |
[57] | Paembonan SA, Hagihari A, Hozumi K (1991). Long-term measurement of CO2 release from aboveground parts of a hinoki forest tree in relation to air temperature. Tree Physiology, 8,399-405. |
[58] |
Pregitzer KS, Laskowski MJ, Burton AJ, Lessard C, Zak DR (1998). Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiology, 18,665-670.
DOI URL PMID |
[59] |
Pruyn ML, Gartner BL, Harmon ME (2002a). Within-stem variation of respiration in Pseudotsuga menziesii (Douglas-fir) trees. New Phytologist, 154,359-372.
DOI URL |
[60] |
Pruyn ML, Gartner BL, Harmon ME (2002b). Respiratory potential in sapwood of old versus young ponderosa pine trees in the Pacific Northwest. Tree Physiology, 22,105-116.
DOI URL PMID |
[61] | Pumpanen J, Ilvesniemi H, Peramaki M, Hari P (2003). Seasonal patterns of soil CO2 efflux and soil air CO2 concentration in a Scots pine forest, comparison of two chamber techniques. Global Change Biology, 9,371-382. |
[62] | Raich JW, Schlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44 B ,81-99. |
[63] | Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis PG, Valentini R (2002). Annual variation in soil respiration and its components in a coppice oak forest in central Italy. Global Change Biology, 8,851-866. |
[64] |
Ryan MG (1990). Growth and maintenance respiration in stems of Pinus contorta and Picea engelmannii. Canadian Journal of Forest Research, 20,48-57.
DOI URL |
[65] |
Ryan MG, Hubbard RM, Clark DL, Sanford Jr RL (1994a). Woody tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits. Oecologia, 100,213-220.
DOI URL PMID |
[66] | Ryan MG, Linder S, Vose JM, Hubbard RM (1994b). Dark respiration of pine. Ecological Bulletins, 43,50-63. |
[67] |
Ryan MG, Gower ST, Hubbard RM, Waring RH, Gholz HL, Cropper WP, Running SW (1995). Stem maintenance respiration of four conifers in contrasting climates. Oecologia, 101,133-140.
DOI URL PMID |
[68] |
Ryan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE (1996). Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiology, 16,333-343.
URL PMID |
[69] | Singh B, Nordgren A, Ottosson-Løfvenius M, Høgberg MN, Mellander PE, Høgberg P (2003). Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest, extending observations beyond the first year. Plant, Cell & Environment, 26,1287-1296. |
[70] | Sjøgersten S, Wookey PA (2002). Climatic and resource quality controls on soil respiration across a forest-tundra ecotone in Swedish Lapland. Soil Biology & Biochemistry, 34,1633-1646. |
[71] |
Sowell JB, Spomer GG (1986). Ecotypic variation in root respiration rate among elevational populations of Abies lasiocarpa and Picea engelmannii. Oecologia, 68,375-379.
DOI URL PMID |
[72] | Sprugel DG, Ryan MG, Brooks JR, Vogt KA, Martin TA (1995). Respiration from the organ level to the stand. In: Smith WK, Hinckley TM eds. Resource Physiology of Conifers, Acquisition, Allocation, and Utilization. Academic Press, San Dieg.255-299. |
[73] | Sprugel DG (1990). Components of woody-tissue respiration in young Abies amabilis (Dougl.) Forbes trees. Trees, 4,88-98. |
[74] |
Stockfors J, Linder S (1998). Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees. Tree Physiology, 18,155-166.
DOI URL PMID |
[75] |
Stockfors J (2000). Temperature variations and distribution of living cells within tree stems, implications for stem respiration modeling and scale-up. Tree Physiology, 20,1057-1062.
DOI URL PMID |
[76] | Sundberg B, Uglla C, Tuominen H (2000). Cambial growth and auxin gradients. In: Savidge R, Barnett J, Napier R eds. Cell and Molecular Biology of Wood Formation. BIOS Scientific Publishers, Oxford,169-182. |
[77] | Teskey RO, Mcguire MA (2002). Carbon dioxide transport in xylem causes errors in estimation of rates of respiration in stems and braches of trees. Plant, Cell & Environment, 25,1571-1577. |
[78] | Tingey DT, Phillips DL, Johnson MG (2000). Elevated CO2 and conifer roots, effects on growth, life span and turnover. New Phytologist, 147,87-103. |
[79] | Tjoelker MG, Oleksyn J, Reich PB (2001). Modelling respiration of vegetation, evidence for a general temperature-dependent Q10. Global Change Biology, 7,223-230. |
[80] | Wang WJ, Kitaoka S, Shi FC, Sasa K, Koike T (2001a). Respiration rate of stems and roots of a larch plantation with special reference to the seasonal changes in their cambium activity. Proceeding of Joint Siberian Permasfrost Studies Between Japan & Russia, 9,42-49. |
[81] | Wang WJ, Kitaoka S, Koike T, Quoreshi AM, Takagi K, Kayama M, Ishida N, Mamiya H, Shi F, Sasa K (2001b). Respiration of non-photosynthetic organs and forest soil of Japanese larch plantation and its contribution to CO2 flux estimation. Proceeding of Asia Flux Network, 1,119-123. |
[82] | Wang WJ(王文杰), Yu JH(于景华), Mao ZJ(毛子军), Zu YG (祖元刚) (2003). Techniques to estimate the CO2 flux from terrestrial vegetation ecosystem. Chinese Journal of Ecology (生态学杂志), 22 (5),102-107. (in Chinese with English abstract) |
[83] | Wang WJ, Yang FJ, Zu YG, Wang HM, Takagi K, Sasa K, Koike T (2003). Stem respiration of a Larch (Larix gmelini) plantation in Northeast China. Acta Botanica Sinica (植物学报), 45,1387-1397. |
[84] | Wang WJ(王文杰) (2005). Physiological Ecology of Respiratory Consamption of a Larch (Larix gmelinii) Forest in Northeast China. Ph.D. dissertation of Hokkaido University, Sapporo, Japan,157-174. |
[85] | Wang WJ(王文杰) (2004). Methods for the determination of CO2 flux from non-photosynthetic organs of trees and their influences on the results. Acta Ecolgica Sinica (生态学报), 24,2056-2067. |
[86] | Waring RH, Running SW (1998). Forest Ecosystems, Analysis at Multiple Scales. Academic Press, San Diego,1-10. |
[87] | Widén B, Majdi H (2001). Soil CO2 flux and root respiration at three sites in a mixed pine and spruce forest, seasonal and diurnal variation. Canadian Journal of Forest Research, 31,786-796. |
[88] | Winkler JP, Cherry RS, Schlesinger WH (1996). The Q10 relationship of microbial respiration in a temperate forest soil. Soil Biology & Biochemistry, 28,1067-1072. |
[89] | Xu M, DeBiase TA, Qi Y (2000). A simple technique to measure stem respiration using a horizontally oriented soil chamber. Canadian Journal of Forest Research, 30,1555-1560. |
[90] |
Xu M, Debiase TA, Qi Y, Goldstein A, Liu Z (2001). Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains, California. Tree Physiology, 21,309-318.
DOI URL PMID |
[91] | Xu M, Qi Y (2001). Soil surface CO2 efflux and its spatial temporal variations in a young ponderosa pine plantation in northern California. Global Change Biology, 7,667-677. |
[92] | Yi ZG(易志刚), Yi WM(蚁伟民), Zhou GY(周国逸), Zhou LX(周丽霞), Zhang DQ(张德强), Ding MM(丁明懋) (2003). Soil carbon effluxes of three major vegetation types in Dinghushan Biosphere Reserve. Acta Ecologica Sincia (生态学报), 23,1673-1678. (in Chinese with English abstract) |
[1] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[2] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[3] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[4] | 郑甲佳, 黄松宇, 贾昕, 田赟, 牟钰, 刘鹏, 查天山. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698. |
[5] | 杨泽, 嘎玛达尔基, 谭星儒, 游翠海, 王彦兵, 杨俊杰, 韩兴国, 陈世苹. 氮添加量和施氮频率对温带半干旱草原土壤呼吸及组分的影响[J]. 植物生态学报, 2020, 44(10): 1059-1072. |
[6] | 胡姝娅,刁华杰,王惠玲,薄元超,申颜,孙伟,董宽虎,黄建辉,王常慧. 北方农牧交错带温性盐碱化草地土壤呼吸对不同形态氮添加和刈割的响应[J]. 植物生态学报, 2020, 44(1): 70-79. |
[7] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[8] | 王祥, 朱亚琼, 郑伟, 关正翾, 盛建东. 昭苏山地草甸4种典型土地利用方式下的土壤呼吸特征[J]. 植物生态学报, 2018, 42(3): 382-396. |
[9] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
[10] | 杨青霄, 田大栓, 曾辉, 牛书丽. 降水格局改变背景下土壤呼吸变化的主要影响因素及其调控过程[J]. 植物生态学报, 2017, 41(12): 1239-1250. |
[11] | 葛晓改, 周本智, 肖文发, 王小明, 曹永慧, 叶明. 生物质炭添加对毛竹林土壤呼吸动态和温度敏感性的影响[J]. 植物生态学报, 2017, 41(11): 1177-1189. |
[12] | 张建华, 唐志尧, 沈海花, 方精云. 氮添加对北京东灵山地区灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 81-94. |
[13] | 张蔷, 李家湘, 谢宗强. 氮添加对亚热带山地杜鹃灌丛土壤呼吸的影响[J]. 植物生态学报, 2017, 41(1): 95-104. |
[14] | 李晓杰, 刘小飞, 熊德成, 林伟盛, 林廷武, 施友文, 谢锦升, 杨玉盛. 中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响[J]. 植物生态学报, 2016, 40(5): 447-457. |
[15] | 孙宝玉, 韩广轩, 陈亮, 初小静, 邢庆会, 吴立新, 朱书玉. 模拟增温对黄河三角洲滨海湿地非生长季土壤呼吸的影响[J]. 植物生态学报, 2016, 40(11): 1111-1123. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19