植物生态学报 ›› 2007, Vol. 31 ›› Issue (2): 283-290.DOI: 10.17521/cjpe.2007.0032
接受日期:
2006-02-22
发布日期:
2007-03-30
通讯作者:
陶建平
作者简介:
* E-mail: taojianping@163.com.基金资助:
LI Yuan(), TAO Jian-Ping(
), WANG Yong-Jian, YU Xiao-Hong, XI Yi
Accepted:
2006-02-22
Published:
2007-03-30
Contact:
TAO Jian-Ping
About author:
First author contact:E-mail of the first author: xly1126@swu.edu.cn
摘要:
大量研究表明在箭竹-冷云杉林下,竹类对冷杉的影响大于其它树种。在卧龙自然保护区岷江冷杉(Abies faxoniana)林下,华西箭竹(Fargesia nitida)为灌木层优势种。为了进一步了解箭竹对岷江冷杉幼苗更新的影响,该文采用样带法在四川省卧龙自然保护区亚高山岷江冷杉林林缘,针对华西箭竹和岷江冷杉幼苗展开调查研究。以竹丛覆盖区域为边界,分别向竹丛外2 m (带1)、1 m (带2),向竹丛内1 m (带3)、2 m (带4)、3 m (带5)做5条长30 m的相邻样带,每条样带划分为30个连续的1 m×1 m小样方。对岷江冷杉幼苗数量动态、种群结构、生长与生物量的研究表明: 1)离竹丛越远,大年龄岷江冷杉幼苗数量越多;岷江冷杉幼苗转化率(下一径级苗木数量与前一径级苗木数量之比)随年龄增加而减小,随离竹丛距离增大而增大。2)苗木高度与径级结构相似,随深入竹丛,幼苗数量峰值的径级和高度级分布从较大径级(Ⅲ)向小径级(Ⅰ)变化。3)华西箭竹的存在抑制了岷江冷杉小径级幼苗(Ⅰ)的高生长,基径与高度的回归也表明离竹丛越远,高生长相对更大;但一定密度华西箭竹(带4)增大了大径级(Ⅲ)岷江冷杉幼苗冠幅的扩展。4)岷江冷杉幼苗总生物量随华西箭竹密度的增高而减小,华西箭竹的大量存在抑制岷江冷杉幼苗对地下生物量的分配。总的看来,一定密度华西箭竹环境下岷江冷杉幼苗的生长和更新较好,华西箭竹大量分布的区域,岷江冷杉幼苗的更新和生长受到抑制,可能会影响岷江冷杉种群的扩散以及群落的发展。
李媛, 陶建平, 王永健, 余小红, 席一. 亚高山暗针叶林林缘华西箭竹对岷江冷杉幼苗更新的影响. 植物生态学报, 2007, 31(2): 283-290. DOI: 10.17521/cjpe.2007.0032
LI Yuan, TAO Jian-Ping, WANG Yong-Jian, YU Xiao-Hong, XI Yi. EFFECTS OF FARGESIA NITIDA ON REGENERATION OF ABIES FAXONIANA SEEDLINGS NEAR THE EDGE OF SUBALPINE DARK CONIFEROUS FOREST. Chinese Journal of Plant Ecology, 2007, 31(2): 283-290. DOI: 10.17521/cjpe.2007.0032
图1 样带设置示意图 在林缘,以竹丛覆盖的区域为边界,分别向竹丛外2、1 m和向竹丛内1、2、3 m,设置5条样带(带1至带5),每条样带由30个1 m×1 m的连续小样方构成 Five belt transects with 30 continuous 1 m×1 m plots were arranged at the edge of the forest. From the boundary of bamboo cluster, 2 m outside the cluster (Zone 1), 1 m outside the cluster (Zone 2),1 m inside the cluster (Zone 3), 2 m inside the cluster (Zone 4) and 3 m inside the cluster (Zone 5)
Fig.1 Design of transect sampling
线性回归方程 Liner regression | 相关系数 Correlation coefficient (R2) | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
根干重与基径 Root dry mass and basal diameter | y=10.674x-2.603 | 0.582** | |||||||||||||||||||||||||||||||
茎干重与基径 Stem dry mass and basal diameter | y=13.754x-4.146 | 0.530** | |||||||||||||||||||||||||||||||
叶干重与基径 Leave dry mass and basal diameter | y=1.173x-0.268 | 0.598** | |||||||||||||||||||||||||||||||
枝干重与基径 Branch dry mass and basal diameter | y=7.266x-2.092 | 0.618** |
表1 生物量回归模型
Table 1 Regression models of biomass
线性回归方程 Liner regression | 相关系数 Correlation coefficient (R2) | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
根干重与基径 Root dry mass and basal diameter | y=10.674x-2.603 | 0.582** | |||||||||||||||||||||||||||||||
茎干重与基径 Stem dry mass and basal diameter | y=13.754x-4.146 | 0.530** | |||||||||||||||||||||||||||||||
叶干重与基径 Leave dry mass and basal diameter | y=1.173x-0.268 | 0.598** | |||||||||||||||||||||||||||||||
枝干重与基径 Branch dry mass and basal diameter | y=7.266x-2.092 | 0.618** |
径级 BD class | 带1 Zone 1 | 带2 Zone 2 | 带3 Zone 3 | 带4 Zone 4 | 带5 Zone 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
株数 Number | 密度(ind.·m-2) Density | 株数 Number | 密度(ind.·m-2) Density | 株数 Number | 密度(ind.·m-2) Density | 株数 Number | 密度(ind.·m-2) Density | 株数 Number | 密度(ind.·m-2) Density | |
Ⅰ级 | 7 | 2±0.42b | 28 | 9±0.08b | 66 | 22±0.04a | 73 | 24±0.01a | 15 | 5±0.02b |
Ⅱ级 | 21 | 7±0.50b | 42 | 14±1.84b | 81 | 27±1.90a | 24 | 8±1.35b | 9 | 3±0.11b |
Ⅲ级 | 27 | 9±0.19ab | 34 | 11±0.59a | 28 | 9±0.68ab | 15 | 5±0.69bc | 4 | 1±0.22c |
Ⅳ级 | 20 | 7±0.73ns | 12 | 4±0.33ns | 5 | 2±0.22ns | 1 | 0 | 0 | 0 |
Ⅴ级 | 8 | 3±0.22ns | 3 | 1±0.22ns | 3 | 1±0.33ns | 0 | 0 | 0 | 0 |
总合Total | 83 | 28 | 119 | 40 | 183 | 61 | 113 | 38 | 28 | 9 |
表2 5条样带中不同径级岷江冷杉幼苗的密度
Table 2 Density of different BD class of seedling in five different transects
径级 BD class | 带1 Zone 1 | 带2 Zone 2 | 带3 Zone 3 | 带4 Zone 4 | 带5 Zone 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
株数 Number | 密度(ind.·m-2) Density | 株数 Number | 密度(ind.·m-2) Density | 株数 Number | 密度(ind.·m-2) Density | 株数 Number | 密度(ind.·m-2) Density | 株数 Number | 密度(ind.·m-2) Density | |
Ⅰ级 | 7 | 2±0.42b | 28 | 9±0.08b | 66 | 22±0.04a | 73 | 24±0.01a | 15 | 5±0.02b |
Ⅱ级 | 21 | 7±0.50b | 42 | 14±1.84b | 81 | 27±1.90a | 24 | 8±1.35b | 9 | 3±0.11b |
Ⅲ级 | 27 | 9±0.19ab | 34 | 11±0.59a | 28 | 9±0.68ab | 15 | 5±0.69bc | 4 | 1±0.22c |
Ⅳ级 | 20 | 7±0.73ns | 12 | 4±0.33ns | 5 | 2±0.22ns | 1 | 0 | 0 | 0 |
Ⅴ级 | 8 | 3±0.22ns | 3 | 1±0.22ns | 3 | 1±0.33ns | 0 | 0 | 0 | 0 |
总合Total | 83 | 28 | 119 | 40 | 183 | 61 | 113 | 38 | 28 | 9 |
转化率 Efficiency of transformation | 带1 Zone 1 | 带2 Zone 2 | 带3 Zone 3 | 带4 Zone 4 | 带5 Zone 5 |
---|---|---|---|---|---|
A (Ⅱ/Ⅰ) | / | / | / | 0.33 | 0.60 |
B (Ⅲ/Ⅱ) | / | 0.81 | 0.35 | 0.63 | 0.44 |
C (Ⅳ/Ⅲ) | 0.74 | 0.35 | 0.18 | 0.07 | 0.00 |
D (Ⅴ/Ⅳ) | 0.40 | 0.25 | 0.60 | 0.00 | 0.00 |
表3 5条样带幼苗向幼树的转化率
Table 3 Efficiency of transformation from seedlings to saplings in five different transects
转化率 Efficiency of transformation | 带1 Zone 1 | 带2 Zone 2 | 带3 Zone 3 | 带4 Zone 4 | 带5 Zone 5 |
---|---|---|---|---|---|
A (Ⅱ/Ⅰ) | / | / | / | 0.33 | 0.60 |
B (Ⅲ/Ⅱ) | / | 0.81 | 0.35 | 0.63 | 0.44 |
C (Ⅳ/Ⅲ) | 0.74 | 0.35 | 0.18 | 0.07 | 0.00 |
D (Ⅴ/Ⅳ) | 0.40 | 0.25 | 0.60 | 0.00 | 0.00 |
径级(cm) BD class | 平均冠幅 Average crown (cm-2) | ||||
---|---|---|---|---|---|
带1 Zone 1 | 带2 Zone 2 | 带3 Zone 3 | 带4 Zone 4 | 带5 Zone 5 | |
0.0~0.3 | 32.00±4.62ns | 34.00±9.92ns | 46.00±9.10ns | 47.00±8.58ns | 39.00±0.00ns |
0.3~0.6 | 254.00±74.78ns | 176.00±24.50ns | 227.00±47.44ns | 251.00±73.17ns | 132.00±27.44ns |
0.6~0.9 | 543.00±95.66ab | 460.00±65.09b | 431.00±50.96b | 737.00±151.22a | 140.00±59.20b |
0.9~1.2 | 1 194.00±126.42ns | 1 096.00±157.52ns | 891.00±532.80ns | / | / |
≥1.2 | 1 578.00±405.54ns | 2 988.00±556.57ns | 4 150.00±1299.52ns | / | / |
表4 5条样带不同径级岷江冷杉幼苗平均冠幅(平均值±标准误)
Table 4 Average crown of different BD classes in five different transects (Mean±SE)
径级(cm) BD class | 平均冠幅 Average crown (cm-2) | ||||
---|---|---|---|---|---|
带1 Zone 1 | 带2 Zone 2 | 带3 Zone 3 | 带4 Zone 4 | 带5 Zone 5 | |
0.0~0.3 | 32.00±4.62ns | 34.00±9.92ns | 46.00±9.10ns | 47.00±8.58ns | 39.00±0.00ns |
0.3~0.6 | 254.00±74.78ns | 176.00±24.50ns | 227.00±47.44ns | 251.00±73.17ns | 132.00±27.44ns |
0.6~0.9 | 543.00±95.66ab | 460.00±65.09b | 431.00±50.96b | 737.00±151.22a | 140.00±59.20b |
0.9~1.2 | 1 194.00±126.42ns | 1 096.00±157.52ns | 891.00±532.80ns | / | / |
≥1.2 | 1 578.00±405.54ns | 2 988.00±556.57ns | 4 150.00±1299.52ns | / | / |
径级(cm) BD class | 平均高度 Average height (cm) | ||||
---|---|---|---|---|---|
带1 Zone 1 | 带2 Zone 2 | 带3 Zone 3 | 带4 Zone 4 | 带5 Zone 5 | |
0.0~0.3 | 8.79±1.30a | 6.39±0.60b | 7.72±0.38b | 5.48±0.35bc | 4.27±0.47c |
0.3~0.6 | 16.45±1.50ns | 18.66±1.03ns | 18.02±0.73ns | 15.88±2.05ns | 19.33±1.70ns |
0.6~0.9 | 32.22±1.78ns | 30.24±1.64ns | 29.14±2.07ns | 29.87±2.87ns | 30.25±6.05ns |
0.9~1.2 | 43.78±2.69ns | 40.42±3.08ns | 41.40±10.27ns | / | / |
≥1.2 | 49.13±5.66ns | 62.00±9.24ns | 53.67±10.90ns | / | / |
表5 5条样带不同径级岷江冷杉幼苗的平均高度(平均值±标准误)
Table 5 Average height of different BD classes in five different transects (Mean±SE)
径级(cm) BD class | 平均高度 Average height (cm) | ||||
---|---|---|---|---|---|
带1 Zone 1 | 带2 Zone 2 | 带3 Zone 3 | 带4 Zone 4 | 带5 Zone 5 | |
0.0~0.3 | 8.79±1.30a | 6.39±0.60b | 7.72±0.38b | 5.48±0.35bc | 4.27±0.47c |
0.3~0.6 | 16.45±1.50ns | 18.66±1.03ns | 18.02±0.73ns | 15.88±2.05ns | 19.33±1.70ns |
0.6~0.9 | 32.22±1.78ns | 30.24±1.64ns | 29.14±2.07ns | 29.87±2.87ns | 30.25±6.05ns |
0.9~1.2 | 43.78±2.69ns | 40.42±3.08ns | 41.40±10.27ns | / | / |
≥1.2 | 49.13±5.66ns | 62.00±9.24ns | 53.67±10.90ns | / | / |
图2 5条样带幼苗径级结构图 1、2、3、4、5分别代表带1、带2、带3、带4、带5 1, 2, 3, 4, and 5 represent Zone 1, Zone 2, Zone 3, Zone 4 and Zone 5, respectively
Fig.2 Different BD classes of seedlings in five different transects
图3 5条样带幼苗高度结构图 1、2、3、4、5分别代表带1、带2、带3、带4、带5 1, 2, 3, 4, and 5 represent Zone 1, Zone 2, Zone 3, Zone 4 and Zone 5, respectively
Fig.3 Different size classes of seedling in five different transects
带1 Zone 1 | 带2 Zone 2 | 带3 Zone 3 | 带4 Zone 4 | 带5 Zone 5 | |
---|---|---|---|---|---|
线性回归Liner regression | y=42.78x-1.43 | y=42.32x-0.62 | y=40.84x-0.39 | y=37.83x-0.64 | y=36.58x+0.99 |
相关系数Correlation coefficient (R2) | 0.61 | 0.67 | 0.53 | 0.49 | 0.52 |
相关系数的F值 F-value of R2 | 116.82** | 195.43** | 114.88** | 41.69** | 10.36** |
表6 5条样带高度与基径回归方程及相关系数
Table 6 Regression equation and correlation coefficient in five different transects
带1 Zone 1 | 带2 Zone 2 | 带3 Zone 3 | 带4 Zone 4 | 带5 Zone 5 | |
---|---|---|---|---|---|
线性回归Liner regression | y=42.78x-1.43 | y=42.32x-0.62 | y=40.84x-0.39 | y=37.83x-0.64 | y=36.58x+0.99 |
相关系数Correlation coefficient (R2) | 0.61 | 0.67 | 0.53 | 0.49 | 0.52 |
相关系数的F值 F-value of R2 | 116.82** | 195.43** | 114.88** | 41.69** | 10.36** |
各部分总生物量 Total biomass of each part (g·30 m-2) | 带1 Zone 1 | 带2 Zone 2 | 带3 Zone 3 | 带4 Zone 4 | 带5 Zone 5 | |
---|---|---|---|---|---|---|
小幼苗 Younger seedling H<0.2 m | 根总生物量Total biomass of roots | 2.04±0.09ab | 2.25±0.11ab | 5.17±0.01a | 1.97±0.06ab | 0.43±0.18b |
茎总生物量Total biomass of stems | 2.10±0.43ab | 2.13±0.42ab | 4.95±0.05a | 1.90±0.24ab | 0.43±0.72b | |
叶总生物量Total biomass of leaves | 0.24±0.45ab | 0.26±0.42ab | 0.61±0.05a | 0.23±0.24ab | 0.05±0.74b | |
枝总生物量Total biomass of branches | 1.18±0.42ab | 1.22±0.41ab | 2.83±0.05a | 1.08±0.24ab | 0.24±0.71b | |
地上总生物量Total biomass of aboveground | 3.56±0.04ab | 3.71±0.03ab | 8.59±0.01a | 3.29±0.02ab | 0.73±0.06b | |
根冠比Root mass/aboveground mass | 0.44±0.13ab | 0.69±0.73ab | 1.50±0.59a | 0.64±0.79ab | 0.12±0.28b | |
小幼苗总生物量Total biomass | 5.56±0.56ab | 5.86±2.28ab | 13.56±1.67a | 5.18±2.32ab | 1.16±0.43b | |
大幼苗 Older seedling H≥0.2 m | 根总生物量Total biomass of roots | 12.99±0.67a | 10.83±0.80a | 8.45±0.07a | 2.58±0.43b | 0.97±1.30b |
茎总生物量Total biomass of stems | 15.26±0.63a | 12.34±0.71a | 9.51±0.07a | 2.90±0.39b | 1.04±1.17b | |
叶总生物量Total biomass of leaves | 1.46±0.56a | 1.23±0.68a | 0.96±0.06a | 0.29±0.37b | 0.11±1.10b | |
枝总生物量Total biomass of branches | 8.24±0.34a | 6.72±0.38a | 5.20±0.04a | 1.58±0.21b | 0.58±0.63b | |
地上总生物量Total biomass of aboveground | 24.89±0.09a | 20.30±0.10a | 15.70±0.01a | 4.79±0.05b | 1.74±0.16b | |
根冠比Root mass/aboveground mass | 0.99±0.17a | 1.12±0.33a | 0.97±0.13a | 0.29±0.33b | 0.15±0.22b | |
大幼苗总生物量Total biomass | 37.95±1.46a | 31.11±1.58a | 24.11±1.69a | 7.35±1.83b | 2.70±1.21b | |
幼苗总生物量 Total biomass of seedlings | 43.51±0.85a | 36.97±1.57a | 37.67±1.68a | 12.53±2.05b | 3.86±0.84b |
表7 5条样带两种幼苗各部分生物量(平均值±标准误)
Table 7 Biomass of different organs of two size seedlings in five different transects (Mean±SE)
各部分总生物量 Total biomass of each part (g·30 m-2) | 带1 Zone 1 | 带2 Zone 2 | 带3 Zone 3 | 带4 Zone 4 | 带5 Zone 5 | |
---|---|---|---|---|---|---|
小幼苗 Younger seedling H<0.2 m | 根总生物量Total biomass of roots | 2.04±0.09ab | 2.25±0.11ab | 5.17±0.01a | 1.97±0.06ab | 0.43±0.18b |
茎总生物量Total biomass of stems | 2.10±0.43ab | 2.13±0.42ab | 4.95±0.05a | 1.90±0.24ab | 0.43±0.72b | |
叶总生物量Total biomass of leaves | 0.24±0.45ab | 0.26±0.42ab | 0.61±0.05a | 0.23±0.24ab | 0.05±0.74b | |
枝总生物量Total biomass of branches | 1.18±0.42ab | 1.22±0.41ab | 2.83±0.05a | 1.08±0.24ab | 0.24±0.71b | |
地上总生物量Total biomass of aboveground | 3.56±0.04ab | 3.71±0.03ab | 8.59±0.01a | 3.29±0.02ab | 0.73±0.06b | |
根冠比Root mass/aboveground mass | 0.44±0.13ab | 0.69±0.73ab | 1.50±0.59a | 0.64±0.79ab | 0.12±0.28b | |
小幼苗总生物量Total biomass | 5.56±0.56ab | 5.86±2.28ab | 13.56±1.67a | 5.18±2.32ab | 1.16±0.43b | |
大幼苗 Older seedling H≥0.2 m | 根总生物量Total biomass of roots | 12.99±0.67a | 10.83±0.80a | 8.45±0.07a | 2.58±0.43b | 0.97±1.30b |
茎总生物量Total biomass of stems | 15.26±0.63a | 12.34±0.71a | 9.51±0.07a | 2.90±0.39b | 1.04±1.17b | |
叶总生物量Total biomass of leaves | 1.46±0.56a | 1.23±0.68a | 0.96±0.06a | 0.29±0.37b | 0.11±1.10b | |
枝总生物量Total biomass of branches | 8.24±0.34a | 6.72±0.38a | 5.20±0.04a | 1.58±0.21b | 0.58±0.63b | |
地上总生物量Total biomass of aboveground | 24.89±0.09a | 20.30±0.10a | 15.70±0.01a | 4.79±0.05b | 1.74±0.16b | |
根冠比Root mass/aboveground mass | 0.99±0.17a | 1.12±0.33a | 0.97±0.13a | 0.29±0.33b | 0.15±0.22b | |
大幼苗总生物量Total biomass | 37.95±1.46a | 31.11±1.58a | 24.11±1.69a | 7.35±1.83b | 2.70±1.21b | |
幼苗总生物量 Total biomass of seedlings | 43.51±0.85a | 36.97±1.57a | 37.67±1.68a | 12.53±2.05b | 3.86±0.84b |
[1] | Antos JA, Parish R, Conley K (2000). Age structure and growth of the tree-seedling bank in subalpine spruce-fir forest of south-central British Columbia. The American Midland Naturalist, 143,342-354. |
[2] | Chen SB (陈圣宾), Song AQ (宋爱琴), Li ZJ (李振基) (2005). Research advance in response of forest seedling regeneration to light environmental heterogeneity. Chinese Journal of Applied Ecology (应用生态学报), 16,360-370. (in Chinese with English abstract) |
[3] | González ME, Veblen TT, Donoso C, Ealeria L (2002). Tree regeneration responses in a lowland Nothofagus-dominated forest after bamboo dieback in South-Central Chile. Plant Ecology, 161,59-73. |
[4] | Guilherme FAG, Oliveira-Filho AT, Appolinário V, Bearzoti E (2004). Effects of flooding regime and woody bamboos on tree community dynamics in a section of tropical semideciduous forest in South-Eastern Brazil. Plant Ecology, 174,19-36. |
[5] | Guo ZH (郭再华), He LY (贺立源), Xu CG (徐才国) (2005). Morphological variety of plants tolerance to low-P stress. Chinese Journal of Soil Science (土壤通报), 36,760-764. (in Chinese with English abstract) |
[6] | Huang ZL (黄忠良), Peng SL (彭少麟), Yi S (易俗) (2001). Factors affecting seedling establishment in monsoon evergreen broad-leaved forest. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 9,123-128. (in Chinese with English abstract) |
[7] | Liu Q (刘庆) (2002). Ecological Research on Subalpine Coniferous Forests in China (亚高山针叶林生态学研究). Sichuan University Publishing House, Chengdu, 33-98,217-233. (in Chinese) |
[8] | Lu YJ (鲁叶江), Wang KY (王开运), Yang WQ (杨万勤), Wu FZ (吴福忠) (2005). Effects of Fargesia denudata density on soil nutrient pool. Chinese Journal of Applied Ecology (应用生态学报), 16,996-1001. (in Chinese with English abstract) |
[9] | Mckinley DC, van Auken OW (2005). Influence of interacting factors on the growth and mortality of Juniperus seedlings. The American Midland Naturalist, 154,320-330. |
[10] | Nakashizuka T (1989). Role of uprooting in composition and dynamics of an old-growth forest in Japan. Ecology, 70,1273-1278. |
[11] | Narukawa Y, Yamamoto S (2002). Effects of dwarf bamboo ( Sasa sp.) and forest floor microsites on conifer seedling recruitment in a subalpine forest, Japan. Forest Ecology and Management, 163,61-70. |
[12] | Noguchi M, Yoshida T (2004). Tree regeneration in partially cut conifer-hardwood mixed forests in northern Japan, roles of establishment substrate and dwarf bamboo. Forest Ecology and Management, 190,335-344. |
[13] | Qin ZS (秦自生), Taylor AH, Cai XS (蔡绪慎) (1993). Bamboo and Forest Dynamic Succession in the Ecological Environment of Giant Panda in Wolong (卧龙大熊猫生态环境的竹子与森林动态演替). China Forestry Publishing House, Beijing, 1-23,211-319. (in Chinese) |
[14] | Takahashi K, Uemura S, Suzuku J, Hara T (2003). Effects of understory dwarf bamboo on soil water and the growth of overstory trees in a dense secondary Betula ermanii forest, northern Japan. Ecological Research, 18,767-774. |
[15] | Taylor AH, Qin ZS, Liu J (1996). Structure and dynamics of subalpine forest in the Wanglang Natural Reserve, China. Vegetatio, 134,125-138. |
[16] | Taylor AH, Qin ZS (1988). Regeneration patterns in old-growth Abies-Betula forests in the Wolong Natural Reserve, Sichuan, China. Journal of Ecology, 76,1204-1218. |
[17] | Taylor AH, Huang JY, Zhou SQ (2004). Canopy tree development and undergrowth bamboo dynamics in old-growth Abies-Betula forests in southwestern China, a 12-year study. Forest Ecology and Management, 200,347-360. |
[18] | Taylor JP, Wilson B, Mills RG, Burns RG (2002). Comparison of microbial numbers and enzymatic activities in surface and subsoils using various techniques. Soil Biology & Biochemistry, 34,387-401. |
[19] | Widmer Y (1998). Pattern and performance of understory bamboos ( Chusquea spp.) under different canopy closures in old-growth oak forests in Costa Rica. Biotropica, 30,400-415. |
[1] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[2] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[3] | 王雨婷, 刘旭婧, 唐驰飞, 陈玮钰, 王美娟, 向松竹, 刘梅, 杨林森, 傅强, 晏召贵, 孟红杰. 神农架极小种群植物庙台槭群落特征及种群动态[J]. 植物生态学报, 2024, 48(1): 80-91. |
[4] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[5] | 林春惠, 顾惠怡, 叶钦良, 张志坚, 钟智明, 易绮斐. 珍稀濒危植物大苞山茶种群结构与动态特征[J]. 植物生态学报, 2023, 47(12): 1684-1692. |
[6] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[7] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[8] | 罗林, 黄艳, 梁进, 汪恩涛, 胡君, 贺合亮, 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 875-884. |
[9] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[10] | 赵阳, 刘锦乾, 陈学龙, 杨萌萌, 曹家豪, 齐瑞, 曹秀文. 洮河上游紫果云杉种群结构特征[J]. 植物生态学报, 2020, 44(3): 266-276. |
[11] | 魏雪莹, 叶育石, 林喜珀, 崔煜文, 曾飞燕, 王发国. 极小种群植物猪血木的种群现状及保护对策[J]. 植物生态学报, 2020, 44(12): 1236-1246. |
[12] | 陈怡超, 赵莹, 宋希强, 任明迅. 海南杜鹃在河岸带弯道两侧的空间分布格局和年龄结构差异[J]. 植物生态学报, 2018, 42(8): 841-849. |
[13] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
[14] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
[15] | 姚杰, 闫琰, 张春雨, 邳田辉, 赵秀海. 吉林蛟河针阔混交林乔木幼苗组成与月际动态[J]. 植物生态学报, 2015, 39(7): 717-725. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19