植物生态学报 ›› 2019, Vol. 43 ›› Issue (1): 16-26.DOI: 10.17521/cjpe.2018.0119
所属专题: 植物功能性状
收稿日期:
2018-05-20
接受日期:
2018-12-08
出版日期:
2019-01-20
发布日期:
2019-04-25
通讯作者:
姜勇
基金资助:
LIANG Shi-Chu,LIU Run-Hong,RONG Chun-Yan,CHANG Bin,JIANG Yong()
Received:
2018-05-20
Accepted:
2018-12-08
Online:
2019-01-20
Published:
2019-04-25
Contact:
JIANG Yong
Supported by:
摘要:
研究植物功能性状随环境梯度的变异和关联格局, 对于认识不同环境梯度下群落构建和植物适应型具有重要意义。该研究以漓江河岸带不同河段植物群落为研究对象, 调查了研究区内36个样方的物种组成, 测量了样方内42种木本植物的叶面积(LA)、比叶面积(SLA)和木材密度(WD)的功能性状值, 并运用性状梯度分析法对3个功能性状进行群落内(α组分)和群落间(β组分)组分分解及相关性分析。结果表明: (1)群落平均LA表现为中游最小且和下游差异显著, 群落平均WD则表现为中上游显著高于下游, 群落平均SLA在两两河段间均差异显著。(2)不同河段的3个植物功能性状β组分差异显著且实际观测值均小于随机模拟的零模型分布, 但α组分在河岸带不同河段均差异不显著且3个功 能性状的α组分分布范围均小于β组分, 说明在河岸带不同河段的群落构建过程中环境筛选的作用要大于群落内种间的相互作用。(3)性状SLA与LA在群落间和群落内呈现出实际观测和随机模拟的相关性均较低, 暗示了LA和SLA各自代表了植物在不同生态策略上的维度; 但SLA和WD实际观测值和随机模拟值呈现出较强的负相关关系, 暗示这2个性状对于环境筛选表现出较高的整体趋同适应性, 体现了植物功能性状对群落间环境变异的依赖性大于群落内种间相互作用的依赖性。
梁士楚, 刘润红, 荣春艳, 常斌, 姜勇. 漓江河岸带植物功能性状变异与关联. 植物生态学报, 2019, 43(1): 16-26. DOI: 10.17521/cjpe.2018.0119
LIANG Shi-Chu, LIU Run-Hong, RONG Chun-Yan, CHANG Bin, JIANG Yong. Variation and correlation of plant functional traits in the riparian zone of the Lijiang River, Guilin, Southwest China. Chinese Journal of Plant Ecology, 2019, 43(1): 16-26. DOI: 10.17521/cjpe.2018.0119
河段 Reach | 样方数 Plot number | 海拔 Elevation (m) | 温度 Temperature (℃) | 降水量 Precipitation (mm) | 干扰强度 Disturbance intensity | 群落类型 Community type |
---|---|---|---|---|---|---|
上游 Upstream | 3 | 154 | 24.7 | 1 941 | 轻度 Light | 枫杨-石榕树群落 Pterocarya stenoptera-Ficus abelii communities |
3 | 148 | 23.0 | 1 941 | 轻度 Light | 枫杨+朴树-萝芙木群落 Pterocarya stenoptera + Celtis sinensis-?Rauvolfia verticillata communities | |
6 | 144 | 23.7 | 1 941 | 轻度 Light | 枫杨+阴香-石榕树群落 Pterocarya stenoptera + Cinnamomum burmannii-Ficus abelii communities | |
中游 Midstream | 4 | 138 | 26.0 | 1 900 | 重度 High | 枫杨+乌桕-细叶水团花群落 Pterocarya stenoptera + Sapium sebiferum-Adina rubella communities |
5 | 134 | 25.0 | 1 900 | 重度 High | 阴香群落 Cinnamomum burmannii communities | |
3 | 104 | 24.0 | 1 900 | 重度 High | 枫杨-萝芙木群落Pterocarya stenoptera-?Rauvolfia verticillata communities | |
下游 Downstream | 8 | 111 | 30.1 | 1 900 | 中度 Middle | 乌桕+朴树-牡荆群落Sapium sebiferum + Celtis sinensis-Vitex negundo var. cannabifolia communities |
4 | 105 | 26.8 | 1 900 | 中度 Middle | 乌桕-木槿群落 Sapium sebiferum + Hibiscus syriacus communities |
表1 漓江河岸带不同河段植物群落样方基本概况
Table 1 Basic information of the sampled plots in the riparian zone along the longitudinal gradient of the Lijiang River
河段 Reach | 样方数 Plot number | 海拔 Elevation (m) | 温度 Temperature (℃) | 降水量 Precipitation (mm) | 干扰强度 Disturbance intensity | 群落类型 Community type |
---|---|---|---|---|---|---|
上游 Upstream | 3 | 154 | 24.7 | 1 941 | 轻度 Light | 枫杨-石榕树群落 Pterocarya stenoptera-Ficus abelii communities |
3 | 148 | 23.0 | 1 941 | 轻度 Light | 枫杨+朴树-萝芙木群落 Pterocarya stenoptera + Celtis sinensis-?Rauvolfia verticillata communities | |
6 | 144 | 23.7 | 1 941 | 轻度 Light | 枫杨+阴香-石榕树群落 Pterocarya stenoptera + Cinnamomum burmannii-Ficus abelii communities | |
中游 Midstream | 4 | 138 | 26.0 | 1 900 | 重度 High | 枫杨+乌桕-细叶水团花群落 Pterocarya stenoptera + Sapium sebiferum-Adina rubella communities |
5 | 134 | 25.0 | 1 900 | 重度 High | 阴香群落 Cinnamomum burmannii communities | |
3 | 104 | 24.0 | 1 900 | 重度 High | 枫杨-萝芙木群落Pterocarya stenoptera-?Rauvolfia verticillata communities | |
下游 Downstream | 8 | 111 | 30.1 | 1 900 | 中度 Middle | 乌桕+朴树-牡荆群落Sapium sebiferum + Celtis sinensis-Vitex negundo var. cannabifolia communities |
4 | 105 | 26.8 | 1 900 | 中度 Middle | 乌桕-木槿群落 Sapium sebiferum + Hibiscus syriacus communities |
图1 漓江河岸带植物阴香和牡荆物种平均比叶面积(lgSLAs)和群落平均比叶面积(lgSLAp)散点图。灰色圆点代表群落中的各个物种, 绿色实心圆点和橙色三角形分别表示阴香和牡荆, 在某pj处被矩形框起来的一列点表示群落j内所有共生物种。每个物种空心的图形点对应的横坐标代表该物种在样地中所处的平均位置(即该物种性状的β组分βi), 纵坐标是物种的平均性状值ti, 二者的差值即空心的图形点到y = x的距离(因为αi = ti - βi)就是物种功能性状的α组分αi, 代表群落中物种i平均比叶面积与共存物种平均比叶面积的差值, bi为物种i平均比叶面积(ti)对群落平均SLA (pj)的回归直线的斜率, 反映物种平均SLA沿群落平均性状梯度在种内的变化大小。
Fig. 1 The scatterplot between species mean specific leaf area (i.e. lgSLAs, cm2·g-1) vs. plot mean specific leaf area (i.e. lgSLAp, cm2·g-1) between Cinnamomum burmannii and Vitex negundo in the riparian zone of the Lijiang River. Each grey point represents a species in a specific plot; the green solid points and the orange solid triangles represent Cinnamomum burmannii and Vitex negundo respectively, and a column of grey points in a black rectangle represent all the species within community. For each species, the abscissa values of the large open point show the mean position of occupied plots (i.e., the beta component of the species trait value, βi), while the ordinate values of the solid symbols are their mean species trait value (ti). The difference between βi and ti, or the distance from the y = x line is αi (because αi = ti - βi ). Regression line shows abundance-weighted least squares regression of species trait values relative to plot mean trait values, with slope bi. bi is the slope of each species’ s regression line of species mean trait values (ti) relative to plot mean trait values (pj), it reflects the intraspecific variation of the species mean specific leaf area along a gradient defined by community-level mean trait values.
图2 漓江河岸带植物群落水平功能性状与环境因子的冗余分析(RDA)排序图。AN, 有效氮含量; DI, 干扰强度; Dis, 距离河岸距离; Ele, 海拔; LA, 叶面积; pH, 土壤pH值; Pre, 降水量; Rea, 河段; SLA, 比叶面积; SOM, 有机质含量; Tem, 温度; TN, 全氮含量; WD, 木材密度。plot 1-12, 上游; plot 12-24, 中游; plot 25-36, 下游。
Fig. 2 Redundancy analysis (RDA) ordination diagram showing the relationships between the three abundance weighted functional traits and 10 selected environmental factors of the riparian plant of the Lijiang River. AN, soil available nitrogen; DI, disturbance intensity; Dis, distance; Ele, elevation; LA, leaf area; pH, soil pH value; Pre, precipitation; Rea, reach; SLA, specific leaf area; SOM, soil organic matter content; Tem, temperature; TN, soil total nitrogen content; WD, wood density. plot 1-12, upstream; plot 12-24, midstream; plot 25-36, downstream.
环境因子 Environmental factor | RDA1 | RDA2 | R2 | p |
---|---|---|---|---|
有机质 Soil organic matter (g·kg-1) | 0.40 | 0.91 | 0.34 | 0.002** |
全氮 Soil total nitrogen (g·kg-1) | -0.45 | 0.88 | 0.19 | 0.032* |
有效氮 Soil available nitrogen (mg·kg-1) | -0.74 | -0.66 | 0.57 | 0.001*** |
pH | -0.26 | 0.96 | 0.21 | 0.015* |
干扰强度Disturbance intensity | -0.16 | 0.98 | 0.63 | 0.001*** |
距离河岸距离 Distance (m) | -0.85 | 0.51 | 0.29 | 0.004** |
降水量 Precipitation (mm) | -0.66 | 0.74 | 0.79 | 0.001*** |
温度 Temperature (℃) | -0.97 | 0.22 | 0.50 | 0.001*** |
海拔 Elevation (m) | 0.92 | -0.38 | 0.57 | 0.001*** |
河段 Reach | -0.90 | 0.41 | 0.88 | 0.001*** |
表2 漓江河岸带群落水平功能性状与环境因子冗余分析(RDA)中的前2轴环境变量解释方差和显著性检验
Table 2 The explained variance of environmental factors and their significant analysis in the first two axes in redundancy analysis (RDA) ordination
环境因子 Environmental factor | RDA1 | RDA2 | R2 | p |
---|---|---|---|---|
有机质 Soil organic matter (g·kg-1) | 0.40 | 0.91 | 0.34 | 0.002** |
全氮 Soil total nitrogen (g·kg-1) | -0.45 | 0.88 | 0.19 | 0.032* |
有效氮 Soil available nitrogen (mg·kg-1) | -0.74 | -0.66 | 0.57 | 0.001*** |
pH | -0.26 | 0.96 | 0.21 | 0.015* |
干扰强度Disturbance intensity | -0.16 | 0.98 | 0.63 | 0.001*** |
距离河岸距离 Distance (m) | -0.85 | 0.51 | 0.29 | 0.004** |
降水量 Precipitation (mm) | -0.66 | 0.74 | 0.79 | 0.001*** |
温度 Temperature (℃) | -0.97 | 0.22 | 0.50 | 0.001*** |
海拔 Elevation (m) | 0.92 | -0.38 | 0.57 | 0.001*** |
河段 Reach | -0.90 | 0.41 | 0.88 | 0.001*** |
河段 Reach | 功能性状 Functional trait | 性状参数 Functional trait parameter | |||
---|---|---|---|---|---|
物种性状值 ti | β 组分 βi | α 组分 αi | 群落性状值 pj | ||
上游 Upstream | 叶面积 LA (cm2) | 1.30 ± 0.35a | 1.36 ± 0.08a | -0.06 ± 0.34a | 1.34 ± 0.14ab |
比叶面积 SLA (cm2·g-1) | 2.40 ± 0.13a | 2.40 ± 0.02a | -0.00 ± 0.13a | 2.39 ± 0.03a | |
木材密度 WD (g·cm-3) | 0.47 ± 0.10a | 0.44 ± 0.02a | 0.03 ± 0.10a | 0.44 ± 0.04a | |
中游 Midstream | 叶面积 LA (cm2) | 1.16 ± 0.32a | 1.24 ± 0.08b | -0.08 ± 0.27a | 1.26 ± 0.10a |
比叶面积 SLA (cm2·g-1) | 2.47 ± 0.21a | 2.47 ± 0.06b | 0.01 ± 0.21a | 2.46 ± 0.07b | |
木材密度 WD (g·cm-3) | 0.42 ± 0.12ab | 0.47 ± 0.01b | -0.04 ± 0.12a | 0.47 ± 0.02a | |
下游 Downstream | 叶面积 LA (cm2) | 1.24 ± 0.32a | 1.45 ± 0.05c | -0.20 ± 0.30a | 1.46 ± 0.07b |
比叶面积 SLA (cm2·g-1) | 2.48 ± 0.13a | 2.53 ± 0.02c | -0.06 ± 0.12a | 2.55 ± 0.03c | |
木材密度 WD (g·cm-3) | 0.36 ± 0.10b | 0.34 ± 0.01c | 0.02 ± 0.10a | 0.34 ± 0.02b |
表3 漓江不同河段功能性状参数值(平均值±标准偏差)
Table 3 Statistics of the three plant functional traits across the three reaches of Lijiang River (mean ± SD)
河段 Reach | 功能性状 Functional trait | 性状参数 Functional trait parameter | |||
---|---|---|---|---|---|
物种性状值 ti | β 组分 βi | α 组分 αi | 群落性状值 pj | ||
上游 Upstream | 叶面积 LA (cm2) | 1.30 ± 0.35a | 1.36 ± 0.08a | -0.06 ± 0.34a | 1.34 ± 0.14ab |
比叶面积 SLA (cm2·g-1) | 2.40 ± 0.13a | 2.40 ± 0.02a | -0.00 ± 0.13a | 2.39 ± 0.03a | |
木材密度 WD (g·cm-3) | 0.47 ± 0.10a | 0.44 ± 0.02a | 0.03 ± 0.10a | 0.44 ± 0.04a | |
中游 Midstream | 叶面积 LA (cm2) | 1.16 ± 0.32a | 1.24 ± 0.08b | -0.08 ± 0.27a | 1.26 ± 0.10a |
比叶面积 SLA (cm2·g-1) | 2.47 ± 0.21a | 2.47 ± 0.06b | 0.01 ± 0.21a | 2.46 ± 0.07b | |
木材密度 WD (g·cm-3) | 0.42 ± 0.12ab | 0.47 ± 0.01b | -0.04 ± 0.12a | 0.47 ± 0.02a | |
下游 Downstream | 叶面积 LA (cm2) | 1.24 ± 0.32a | 1.45 ± 0.05c | -0.20 ± 0.30a | 1.46 ± 0.07b |
比叶面积 SLA (cm2·g-1) | 2.48 ± 0.13a | 2.53 ± 0.02c | -0.06 ± 0.12a | 2.55 ± 0.03c | |
木材密度 WD (g·cm-3) | 0.36 ± 0.10b | 0.34 ± 0.01c | 0.02 ± 0.10a | 0.34 ± 0.02b |
图3 漓江河岸带植物叶面积(LA)、比叶面积(SLA)和木材密度(WD)在物种性状值(A)、β组分(B)、α组分(C)、样方平均性状值(D)水平上的相关性散点图以及Pearson相关系数(r)。黑色实心点和rm分别代表实际测量数据和实测相关系数, 黑色圆圈和rs分别代表零模型随机模拟999次数据和模拟相关系数。*, p < 0.05; **, p < 0.01。
Fig. 3 Scatterplots showing relationships between leaf area (LA), specific leaf area (SLA) and wood density (WD) for species trait values (A), beta components (B), alpha components (C), and plot mean trait values (D) of the riparian plant of the Lijiang River. The Pearson correlation coefficient (r) of these relationships are shown in each figure. Black solid dots and rm respectively represent observed values and observed correlation coefficient; black open circles and rs respectively represent random simulation values and simulation coefficient. *, p < 0.05; **, p < 0.01.
图4 漓江不同河段植物功能性状β组分的分布范围与零模型比较。圆圈代表零模型预测值; 空心正方形代表实际观测值; 实心正方形代表实际观测值与零模型存在显著差异(p < 0.05)。
Fig. 4 Difference on beta components ranges in the observed and simulated values of the three functional traits at the three reaches in Lijiang River. Circles and squares represent simulated and observed values respectively. Filled squares indicate that the observed values differ significantly from the simulated values.
图5 漓江河岸带植物种内、种间、群落间与河段间(A)及河段内和河段间(B)植物功能性状的方差分解。LA, 叶面积; SLA, 比叶面积; WD, 木材密度。
Fig. 5 Partitioning of the variance in plant functional traits explained by four scales (i.e. within-specie, among-species, communities and reaches) (A) and by two scales (i.e. within and among reaches) (B) of the riparian plant of the Lijiang River. LA, leaf area; SLA, specific leaf area; WD, wood density.
[1] |
Ackerly DD, Cornwell WK ( 2007). A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145.
DOI URL |
[2] |
Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP ( 2002). Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: Contrasting patterns in species level and community level analyses. Oecologia, 130, 449-457.
DOI URL PMID |
[3] | Agricultural Chemistry Committee of Soil Science Society of China ( 1983). Conventional Methods for the Agricultural Chemical Analysis of Soil. Science Press, Beijing. |
[ 中国土壤学会农业化学专业委员会 ( 1983). 土壤农业化学常规分析方法. 科学出版社, 北京.] | |
[4] |
Baraloto C, Timothy Paine CE, Poorter L ( 2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338-1347.
DOI URL PMID |
[5] |
Bu WS, Zang RG, Ding Y, Zhang JY, Ruan YZ ( 2013). Relationships between plant functional traits at the community level and environmental factors during succession in a tropical lowland rainforest on Hainan Island, South China. Biodiversity Science, 21, 278-287.
DOI URL |
[ 卜文圣, 臧润国, 丁易, 张俊艳, 阮云泽 ( 2013). 海南岛热带低地雨林群落水平植物功能性状与环境因子相关性随演替阶段的变化. 生物多样性, 21, 278-287.]
DOI URL |
|
[6] | Cao K ( 2014). The Phylogeny Signal of Functional Traits and Their Relationship between Each Other and Effects on Community Structure. Master degree dissertation, Zhejiang Normal University, Jinhua, Zhejiang. |
[ 曹科 ( 2014). 古田山植物功能性状的系统发育信号、不同性状之间的关系及其对群落结构的影响. 硕士学位论文, 浙江师范大学, 浙江金华.] | |
[7] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, Heijden MGA, Pausas JG, Poorter H ( 2003). A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[8] |
Cornwell WK, Schwilk DW, Ackerly DD ( 2006). A trait-based test for habitat filtering: Convex hull volume. Ecology, 87, 1465-1471.
DOI URL PMID |
[9] |
Craine JM, Lee WG ( 2003). Covariation in leaf and root traits for native and non-native grasses along an altitudinal gradient in New Zealand. Oecologia, 134, 471-478.
DOI URL PMID |
[10] |
Donovan LA, Maherali H, Caruso CM, Huber H, Kroom HD ( 2011). The evolution of the worldwide leaf economics spectrum. Trends in Ecology and Evolution, 26, 88-95.
DOI URL PMID |
[11] |
Duan WJ, Wang JY, Zhang LJ, Li HF, Huang HQ ( 2014). Characteristics of precipitation in Lijiang River Basin during 1960~2010. Journal of China Hydrology, 34(5), 88-93.
DOI URL |
[ 段文军, 王金叶, 张立杰, 李海防, 黄华乾 ( 2014). 1960~2010年漓江流域降水变化特征研究. 水文, 34(5), 88-93.]
DOI URL |
|
[12] |
Fonseca CR, Overton JM, Collins B, Westoby M ( 2000). Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology, 88, 964-977.
DOI URL |
[13] |
Gewin V ( 2006). Beyond neutrality—Ecology finds its niche. PLOS Biology, 4, 1306-1310.
DOI URL PMID |
[14] |
Grime JP ( 2006). Trait convergence and trait divergence in herbaceous plant communities: Mechanisms and consequences. Journal of Vegetation Science, 17, 255-260.
DOI URL |
[15] |
Grubb P ( 1998). A reassessment of the strategies of plants which cope with shortages of resources. Perspectives in Plant Ecology, Evolution and Systematics, 1, 3-31.
DOI URL |
[16] |
Han L, Wang HZ, Yu J ( 2013). Research progress and prospects on riparian zone ecology. Ecology and Environmental Sciences, 22, 879-886.
DOI URL |
[ 韩路, 王海珍, 于军 ( 2013). 河岸带生态学研究进展与展望. 生态环境学报, 22, 879-886.]
DOI URL |
|
[17] |
Hu YK, Pan X, Liu GF, Li WB, Dai WH, Tang SL, Zhang YL, Xiao T, Chen LY, Xiong W, Zhou MY, Song YB, Dong M ( 2015). Novel evidence for within-species leaf economics spectrum at multiple spatial scales. Frontiers in Plant Science, 6, 901. DOI: 10.3389/fpls.2015.00901.
DOI URL PMID |
[18] |
Huang D, Wang DM, Ren Y, Qin YB, Wu LC ( 2017). Responses of leaf traits to submergence stress and analysis of the economic spectrum of plant species in an aquatic-?terrestrial ecotone, the Li River. Acta Ecologica Sinica, 37, 750-759.
DOI URL |
[ 黄端, 王冬梅, 任远, 覃云斌, 吴林川 ( 2017). 漓江水陆交错带植物叶性状对水淹胁迫的响应及经济谱分析. 生态学报, 37, 750-759. ]
DOI URL |
|
[19] |
Huang Y, Que XX, Li CY ( 2013). Study on landscape ecological restoration technology of land/inland water ecotones along Li River. Journal of Southern Agriculture, 44, 1700-1704.
DOI URL |
[ 黄莹, 阙欣欣, 李彩云 ( 2013). 漓江沿岸水陆交错带景观调查与生态修复技术. 南方农业学报, 44, 1700-1704.]
DOI URL |
|
[20] |
Jung V, Violle C, Mondy C, Hoffmann L, Muller S ( 2010). Intraspecific variability and trait-based community assembly. Journal of Ecology, 98, 1134-1140.
DOI URL |
[21] |
Kraft NJB, Valencia R, Ackerly DD ( 2008). Functional traits and niche-based tree community, assembly in an Amazonian forest. Science, 322, 580-582.
DOI URL PMID |
[22] |
Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, Poorter L, Vanderwel M, Vieilledent G, Wright SJ, Aiba M, Baraloto C, Caspersen J, Cornelissen JHC, Gourlet-Fleury S, Hanewinkel M, Herault B, Kattge J, Kurokawa H, Onoda Y, Peñuelas J, Poorter H, Uriarte M, Richardson S, Ruiz-Benito P, Sun I-F, Ståhl G, Swenson NG, Thompson J, Westerlund B, Wirth C, Zavala MA, Zeng H, Zimmerman JK, Zimmermann NE, Westoby M ( 2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207.
DOI URL PMID |
[23] |
Li QS, Wang DM, Xin ZB, Li Y, Ren Y ( 2014). Root distribution in typical sites of Lijiang ecotone and their relationship to soil properties. Acta Ecologica Sinica, 34, 2003-2011.
DOI URL |
[ 李青山, 王冬梅, 信忠保, 李扬, 任远 ( 2014). 漓江水陆交错带典型立地根系分布与土壤性质的关系. 生态学报, 34, 2003-2011.]
DOI URL |
|
[24] |
Li Y, Wang DM, Xin ZB, Wang J, Ren Y, Li QS ( 2015). Plant diversity and soil characteristics of different inundation zones in an aquatic-terrestrial ecotone, Li River. Acta Ecologica Sinica, 35, 5121-5130.
DOI URL |
[ 李扬, 王冬梅, 信忠保, 王晶, 任远, 李青山 ( 2015). 漓江水陆交错带不同淹没区植物多样性与土壤特征. 生态学报, 35, 5121-5130.]
DOI URL |
|
[25] |
Liu JR, Feng H, Yu XL, Song GJ, Ye Q ( 2003). A preliminary discussion on the historic change of the name for the Lijiang River system. Carsologica Sinica, 22(1), 77-83.
DOI URL |
[ 刘金荣, 冯红, 俞秀兰, 宋桂金, 叶青 ( 2003). 历史上漓江(桂江)水系名称的变化浅议. 中国岩溶, 22(1), 77-83.]
DOI URL |
|
[26] |
Liu XJ, Ma KP ( 2015). Plant functional traits—Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339.
DOI URL |
[ 刘晓娟, 马克平 ( 2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.]
DOI URL |
|
[27] |
McGill BJ, Enquist BJ, Weiher E, Westoby M ( 2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185.
DOI URL PMID |
[28] |
Meng TT, Ni J, Wang GH ( 2007). Plant functional traits, environments and ecosystem functioning. Journal of Plant Ecology (Chinese Version), 31, 150-165.
DOI URL |
[ 孟婷婷, 倪健, 王国宏 ( 2007). 植物功能性状与环境和生态系统功能. 植物生态学报, 31, 150-165.]
DOI URL |
|
[29] |
Nilsson C, Berggren K ( 2000). Alterations of riparian ecosystems caused by river regulation. Bioscience, 50, 783-792.
DOI URL |
[30] |
Shipley B ( 1995). Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms. Functional Ecology, 9, 312-319.
DOI URL |
[31] |
Stubbs WJ, Wilson JB ( 2004). Evidence for limiting similarity in a sand dune community. Journal of Ecology, 92, 557-567.
DOI URL |
[32] |
Suding KN, Goldstein LJ ( 2008). Testing the Holy Grail framework: Using functional traits to predict ecosystem change. New Phytologist, 180, 559-562.
DOI URL PMID |
[33] |
Sun R, Yuan XZ, Chen ZL, Zhang YW, Liu H ( 2010). Patterns of plant community species richness in the fluctuating water level zone along the Pengxihe River of the Three Gorges Reservoir. Research of Environmental Sciences, 23, 1382-1389.
DOI URL |
[ 孙荣, 袁兴中, 陈忠礼, 张跃伟, 刘红 ( 2010). 三峡水库澎溪河消落带植物群落物种丰富度格局. 环境科学研究, 23, 1382-1389.]
DOI URL |
|
[34] |
Sun SC, Jin DM, Shi PL ( 2006). The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: An invariant allometric scaling relationship. Annals of Botany, 97, 97-107.
DOI URL PMID |
[35] |
Vannote RL, Minshall GW, Cumins KW, Sedell JR, Cushing CE ( 1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences, 37, 130-137.
DOI URL |
[36] |
Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra- Manriquez G, Martinez-Ramos M, Mazer SJ, Muller-Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendorp CF, Webb CO, Westoby M, Wright SJ ( 2007). Relationships among ecologically important dimensions of plant trait variation in seven Neotropical forests. Annals of Botany, 99, 1003-1015.
DOI URL PMID |
[37] |
Xi XQ, Zhao YJ, Liu YG, Wang X, Gao XM ( 2011). Variation and correlation of plant functional traits in karst area of central Guizhou Province, China. Chinese Journal of Plant Ecology, 35, 1000-1008.
DOI URL |
[ 习新强, 赵玉杰, 刘玉国, 王欣, 高贤明 ( 2011). 黔中喀斯特山区植物功能性状的变异与关联. 植物生态学报, 35, 1000-1008.]
DOI URL |
|
[38] | Xin ZB, Xiao YL, Wang DM, Li Y, Ren Y, Li QS ( 2014). Spatial patterns of riparian vegetations and its optimization in Lijiang River: An intensive tourism karsts river in the southern subtropical China. Ecological Science, 33, 631-641. |
[ 信忠保, 肖玉玲, 王冬梅, 李扬, 任远, 李青山 ( 2014). 广西桂林漓江河岸带植被配置类型与退化机制研究. 生态科学, 33, 631-641.] |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[4] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[5] | 范宏坤, 曾涛, 金光泽, 刘志理. 小兴安岭不同生长型阔叶植物叶性状变异及权衡[J]. 植物生态学报, 2024, 48(3): 364-376. |
[6] | 刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽. 宏观生态学中的植物功能性状研究: 历史与发展趋势[J]. 植物生态学报, 2024, 48(1): 21-40. |
[7] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[8] | 袁雅妮, 周哲, 陈彬洲, 郭垚鑫, 岳明. 基于功能性状的锐齿槲栎林共存树种生态策略差异[J]. 植物生态学报, 2023, 47(9): 1270-1277. |
[9] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[10] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[11] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[12] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[13] | 陈雪纯, 刘虹, 朱少琦, 孙铭遥, 宇振荣, 王庆刚. 漓江流域不同弃耕年限下4种常见草本植物功能性状种内变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 559-570. |
[14] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[15] | 安凡, 李宝银, 钟全林, 程栋梁, 徐朝斌, 邹宇星, 张雪, 邓兴宇, 林秋燕. 不同种源刨花楠苗木生长与主要功能性状对氮添加的响应[J]. 植物生态学报, 2023, 47(12): 1693-1707. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19