• •    

菌根共生类型对森林养分内循环的调控作用

方迪, 马宁, 李胜功, 郑甲佳, 褚云馨, 杨锦昌, 杨赞明, 张龙宁, 孟盛旺, 高德才, 戴晓琴, 付晓莉, 王辉民, 寇亮   

  1. 中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 千烟洲亚热带森林生态系统观测研究站, 100101
    中国科学院大学资源与环境学院, 100190
    中国林业科学研究院热带林业研究所, 510520
    泰和县天湖山林场, 343700
    兴城市文家林场, 125100
  • 收稿日期:2025-07-03 修回日期:2025-09-18

The regulatory role of mycorrhizal types in the internal nutrient cycling of forest ecosystems

  1. , 100101,
    , 100190,
    , 510520,
    , 343700,
    , 125100,
  • Received:2025-07-03 Revised:2025-09-18

摘要: 森林作为陆地生态系统的主体,其养分内循环机制是维持植物个体发育和生态系统功能的核心驱动力。丛枝菌根(Arbuscular Mycorrhiza, AM)和外生菌根(Ectomycorrhiza, ECM)作为森林生态系统最常见的两种菌根共生类型,通过调控养分在“土壤—植物—凋落物”之间的循环路径,深刻影响森林养分循环与功能稳定性。尽管已有大量研究探讨了菌根类型对森林养分循环关键过程的影响,但大多聚焦单一过程,缺乏从整体视角探究菌根类型如何调控森林养分内循环。本文回顾了近30年来的相关研究,系统解析了AM植物与ECM植物在养分矿化与活化、菌-根系统养分吸收、衰老器官养分重吸收、凋落物分解驱动的养分归还等关键过程中的作用及相应机制,阐释了不同菌根类型树种主导的森林生态系统的养分自维持规律,以期为深入理解不同菌根类型树种养分内循环对森林经营与全球变化的响应与适应机制提供参考。最后,本文展望了未来研究趋势并建议:关注不同菌根类型(AM vs. ECM)主导的林分下共有菌根网络(Common mycorrhizal networks, CMNs)在养分内循环中的作用,以及特殊菌根类型(双菌根植物、固氮植物)与杜鹃花科菌根(Ericoid Mycorrhiza, ERM)在养分内循环中的作用;基于AM与ECM策略分异,开发“菌根—立地”匹配模型及“菌根类型—功能性状”数据库,以优化不同立地条件下人工林的树种配置和林分结构;在全球变化背景下,重视AM与ECM类型格局变化对养分内循环的调控作用;开展长期、多维监测,解析菌根类型—环境—微生物的协同演化对养分内循环的驱动作用。

关键词: 森林生态系统, 养分内循环, 全球变化, 丛枝菌根, 外生菌根

Abstract: Forest as the dominant component of terrestrial ecosystems, hinge on internal nutrient cycling mechanisms to support individual plant development and the maintenance of ecosystem functions. Arbuscular mycorrhizae (AM) and ectomycorrhizae (ECM), the two most widespread mycorrhizal symbioses in forest ecosystems, playing pivotal roles in regulating nutrient cycling and sustaining functional stability along the “soil-plant-litter continuum”. Although numerous efforts have explored the effects of mycorrhizal types on key nutrient cycling processes in forests, these studies focus more on isolated process, with limited attention to the holistic nutrient cycling mediated by mycorrhizal interactions. This review synthesizes research from the past three decades to systematically examine the roles and underlying mechanisms through which AM and ECM-associated plants influence key processes across the internal nutrient cycling, including nutrient mineralization and mobilization, nutrient uptake by mycorrhizal-root systems, nutrient resorption from senescent organs, and nutrient return through litter decomposition. It further elucidates the self-sustaining nutrient dynamics of forest ecosystems dominated by different mycorrhizal types, aiming to provide insights into how nutrient cycling strategies shaped by mycorrhizal symbioses respond and adapt to forest management and global environmental change. Finally, we propose future research directions: (1) investigating the role of Common Mycorrhizal Networks (CMNs) in nutrient internal cycling under AM- versus ECM-dominated stands, while focusing on less-studied mycorrhizal types (e.g., dual-mycorrhizal plants, legumes with rhizobia-AM/ECM symbiosis) and Ericoid Mycorrhiza (ERM); (2) developing “mycorrhiza-site” matching models and mycorrhizal trait databases based on AM and ECM strategic differentiation, to optimize tree species selection in reforestation and afforestation across different site conditions; (3) assessing the buffering capacity of shifts in AM and ECM distributions on nutrient cycling under global change and (4) integrating long-term and multidimensional monitoring to unravel the co-evolutionary dynamics among mycorrhizal types, soil environments, and microbial communities driving nutrient cycling.

Key words: forest ecosystem, internal nutrient cycling, global change, arbuscular mycorrhizae, ectomycorrhizae