植物生态学报 ›› 2011, Vol. 35 ›› Issue (4): 452-462.DOI: 10.3724/SP.J.1258.2011.00452

• 研究论文 • 上一篇    下一篇

东北主要树种光合作用可行的离体测定方法

唐艳, 王传宽*()   

  1. 东北林业大学林学院, 哈尔滨 150040
  • 收稿日期:2010-06-22 接受日期:2011-01-18 出版日期:2011-06-22 发布日期:2011-04-13
  • 通讯作者: 王传宽
  • 作者简介:*E-mail: wangck-cf@nefu.edu.cn

A feasible method for measuring photosynthesis in vitro for major tree species in northeastern China

TANG Yan, WANG Chuan-Kuan*()   

  1. College of Forestry, Northeast Forestry University, Harbin 150040, China
  • Received:2010-06-22 Accepted:2011-01-18 Online:2011-06-22 Published:2011-04-13
  • Contact: WANG Chuan-Kuan

摘要:

树木光合作用的测定常因植株高大而难以开展, 其中离体测定是解决途径之一。但离体测定的方法及其可靠性因树种而异。选取东北东部温带森林中特性各异的7种主要树种: 针叶树(红松(Pinus koraiensis)、长白落叶松(Larix olgensis))、散孔材(白桦(Betula platyphylla)、胡桃楸(Juglans mandshurica))和环孔材(水曲柳(Fraxinus mandshurica)、黄榆(Ulmus macrocarpa)、蒙古栎(Quercus mongolica)), 首先采用光合速率恢复到光合诱导前稳定值90%的时间(T90)长短和叶片蒸腾速率(E)的大小评估离体叶片水分供应状况及其光合活力, 以此确定较优的离体测定方案; 同时, 观测离体叶片的光合活力稳定时间; 最后通过比较原位测定和采用所确定的较优离体方案测定的各树种叶片气体交换参数, 论证采用离体测定光合作用的可靠性。结果表明: 除蒙古栎外的6个树种的离体叶片均具有较高、较稳定的水分供应和光合活力。离体枝条或复叶插入水中, 环剥去除切口处3 cm左右的韧皮部和剩余叶片的方法, 是这6个温带树种叶片光合能力的较优离体测定方法。6个树种叶片的T90受树木特性的影响而差异显著(p < 0.05), 其中环孔材树种的T90显著高于散孔材和针叶树种。6个树种离体叶片在1 h内均有较高、较稳定的水分供应和光合活力。在此期间离体所测得的绝大多数叶片的气体交换参数与其原位测定值之间的差异不显著。该研究提出了可行的树木叶片光合作用的离体测定方案, 适用于蒙古栎以外的其他6个温带树种。

关键词: 气体交换, 原位, 离体, 光合活力, 温带森林, 稳定时间

Abstract:

Aims Tree leaf photosynthesis is often difficult to measure in situ because of the physical inaccessibility of the tree canopy. One simple, inexpensive solution is to measure photosynthesis in vitro, but its validity and reliability for specific tree species need verification. Our goals were to determine (a) which in vitro measurement methods would result in detached leaves maintaining as high photosynthetic activity as in situ, (b) how long the photosynthetic activity of detached leaves can be sustained and (c) the reliability and feasibility of in vitro measurements.
Methods We selected seven major tree species with divergent ecophysiological characteristics in the temperate forest of northeastern China: coniferous (Pinus koraiensis and Larix olgensis), diffuse-porous (Betula platyphylla and Juglans mandshurica) and ring-porous (Fraxinus mandshurica, Ulmus macrocarpa and Quercus mongolica) species. We used the time for the photosynthetic rate to recover 90% of its pre-photoinducement value (T90) and leaf transpiration rate (E) to assess the water supply and photosynthetic activity of detached leaves. Based on this, we determined an optimal in vitro protocol for measuring photosynthesis of detached leaves. We simultaneously monitored the duration of relatively stable photosynthetic rates after leaves had been detached. We then compared the differences in gas exchange parameters between in situ and in vitro measurements with the chosen protocol to determine the reliability of the protocol for each tree species.
Important findings The detached leaves of all measured tree species except for Q. mongolica had the potential to maintain relatively high, stable water supply and photosynthetic activity. The optimal protocol of in vitro photosynthesis measurements for the other six tree species was to insert the twigs or compound leaves into water immediately following detaching, girdle phloem about 3 cm from the cut and remove all leaves except the target ones. T90 differed significantly among the six tree species (p < 0.05), and the ring-porous tree species had significantly greater T90 than the other species. The leaf water supply and photosynthetic activity for the six species was effectively maintained for one hour following detachment, during which most of the gas exchange parameters measured did not differ significantly between in situ and in vitro measurements. Therefore, this study provided a feasible protocol of in vitro measurement of leaf photosynthesis for the six temperate tree species.

Key words: gas exchange, in situ, in vitro, photosynthetic activity, stable time, temperate forest