植物生态学报 ›› 2012, Vol. 36 ›› Issue (7): 645-654.DOI: 10.3724/SP.J.1258.2012.00645
所属专题: 碳储量
刘运科, 范川, 李贤伟*(), 凌银花, 周义贵, 冯茂松, 黄从德
发布日期:
2012-07-10
通讯作者:
李贤伟
作者简介:
*E-mail: lxw@sicau.edu.cnLIU Yun-Ke, FAN Chuan, LI Xian-Wei*(), LING Yin-Hua, ZHOU Yi-Gui, FENG Mao-Song, HUANG Cong-De
Published:
2012-07-10
Contact:
LI Xian-Wei
摘要:
以川西亚高山50年生粗枝云杉(Picea asperata)人工林为研究对象, 探讨了间伐对粗枝云杉人工林1-5级细根生物量及碳储量的影响。结果表明: 粗枝云杉人工林细根生物量和碳储量随根序等级的增加而显著增加(p < 0.05), 5级根序中1级根生物量及碳储量最小, 5级根生物量及碳储量最大。与对照(间伐0%)相比, 间伐对粗枝云杉人工林林分细根生物量及碳储量有显著影响(p < 0.05); 而对单株细根生物量影响不一, 间伐10%和20%与对照没有显著性差异(p > 0.05)。间伐显著影响生物量在各根序中的分配, 随着间伐强度的增加, 1、2级细根中生物量分配比例增加, 1级细根的生物量增加幅度最大; 3-5级细根的生物量分配比例减小, 5级细根减少幅度最大。其中, 间伐50%显著减少了细根在下层(20-40 cm)土壤中的生物量比例(p < 0.05), 但与间伐20%和30%无显著差异(p > 0.05)。
刘运科, 范川, 李贤伟, 凌银花, 周义贵, 冯茂松, 黄从德. 间伐对川西亚高山粗枝云杉人工林细根生物量及碳储量的影响. 植物生态学报, 2012, 36(7): 645-654. DOI: 10.3724/SP.J.1258.2012.00645
LIU Yun-Ke, FAN Chuan, LI Xian-Wei, LING Yin-Hua, ZHOU Yi-Gui, FENG Mao-Song, HUANG Cong-De. Effects of thinning on fine root biomass and carbon storage of subalpine Picea asperata plantation in Western Sichuan Province, China. Chinese Journal of Plant Ecology, 2012, 36(7): 645-654. DOI: 10.3724/SP.J.1258.2012.00645
间伐强度 Thinning intensity | 林分密度 Stand density (plant·hm-2) | 平均树高Average height (m) | 平均胸径Average DBH (cm) | 海拔 Altitude (m) | 坡度 Slope | 坡向 Slope aspect | 土壤类型 Type of soil | 土层厚度 Thickness of soil (cm) | 植物种类 Plant species |
---|---|---|---|---|---|---|---|---|---|
0% | 4 500 | 12.54 | 19.00 | 3 190-3 210 | 18° | 西南 SW | DB | 30-40 | 12a |
10% | 4 050 | 13.28 | 22.91 | 3 190-3 210 | 20° | 西南 SW | DB | 30-40 | 16b |
20% | 3 600 | 13.39 | 23.02 | 3 190-3 210 | 20° | 西南 SW | DB | 30-40 | 18c |
30% | 3 150 | 13.79 | 23.31 | 3 190-3 210 | 20° | 西南 SW | DB | 30-40 | 25d |
50% | 2 250 | 13.22 | 23.97 | 3 190-3 210 | 19° | 西南 SW | DB | 30-40 | 28e |
表1 2011年8月样地的基本情况
Table 1 General status of sampling plots in August 2011
间伐强度 Thinning intensity | 林分密度 Stand density (plant·hm-2) | 平均树高Average height (m) | 平均胸径Average DBH (cm) | 海拔 Altitude (m) | 坡度 Slope | 坡向 Slope aspect | 土壤类型 Type of soil | 土层厚度 Thickness of soil (cm) | 植物种类 Plant species |
---|---|---|---|---|---|---|---|---|---|
0% | 4 500 | 12.54 | 19.00 | 3 190-3 210 | 18° | 西南 SW | DB | 30-40 | 12a |
10% | 4 050 | 13.28 | 22.91 | 3 190-3 210 | 20° | 西南 SW | DB | 30-40 | 16b |
20% | 3 600 | 13.39 | 23.02 | 3 190-3 210 | 20° | 西南 SW | DB | 30-40 | 18c |
30% | 3 150 | 13.79 | 23.31 | 3 190-3 210 | 20° | 西南 SW | DB | 30-40 | 25d |
50% | 2 250 | 13.22 | 23.97 | 3 190-3 210 | 19° | 西南 SW | DB | 30-40 | 28e |
间伐强度 Thinning intensity | 林分密度 Stand density (plant·hm-2) | 单株空间 Space of a single tree (m3·plant-1) | 单株根量 Fine root biomass of a single tree (kg·plant-1) | 林分细根生物量 Stand fine root biomass (kg·hm-2) | 根量密度 Root biomass density (kg·m-3) | ||
---|---|---|---|---|---|---|---|
活细根 Live fine root | 死细根 Dead fine root | 总生物量 Total biomass | |||||
0% | 4 500 | 0.888 9 | 0.759 0 (0.009 4)a | 2 875.473 3 (67.899 4)a | 540.176 7 (29.717 1)a | 3 415.650 0 (42.456 1)a | 0.853 9 (0.010 6)a |
10% | 4 050 | 0.987 7 | 0.772 3 (0.013 9)a | 2 657.320 0 (50.062 2)b | 470.363 3 (6.739 3)ab | 3 127.683 3 (56.529 8)b | 0.781 9 (0.014 1)b |
20% | 3 600 | 1.111 1 | 0.800 8 (0.086 4)a | 2 496.400 0 (63.770 1)c | 386.600 0 (33.139 4)bc | 2 883.000 0 (31.096 4)c | 0.720 7 (0.077 8)c |
30% | 3 150 | 1.269 8 | 0.853 7 (0.044 8)b | 2 383.850 0 (51.144 0)d | 305.210 0 (96.618 4)cd | 2 689.060 0 (91.009 1)d | 0.672 3 (0.035 2)d |
50% | 2 250 | 1.777 8 | 1.159 8 (0.035 2)c | 2 377.886 7 (44.008 5)d | 231.730 0 (40.824 5)d | 2 609.616 7 (79.248 4)d | 0.652 4 (0.019 8)d |
表2 不同间伐强度对粗枝云杉细根的生物量的影响
Table 2 Effects of different thinning intensity on fine root biomass in Picea asperata
间伐强度 Thinning intensity | 林分密度 Stand density (plant·hm-2) | 单株空间 Space of a single tree (m3·plant-1) | 单株根量 Fine root biomass of a single tree (kg·plant-1) | 林分细根生物量 Stand fine root biomass (kg·hm-2) | 根量密度 Root biomass density (kg·m-3) | ||
---|---|---|---|---|---|---|---|
活细根 Live fine root | 死细根 Dead fine root | 总生物量 Total biomass | |||||
0% | 4 500 | 0.888 9 | 0.759 0 (0.009 4)a | 2 875.473 3 (67.899 4)a | 540.176 7 (29.717 1)a | 3 415.650 0 (42.456 1)a | 0.853 9 (0.010 6)a |
10% | 4 050 | 0.987 7 | 0.772 3 (0.013 9)a | 2 657.320 0 (50.062 2)b | 470.363 3 (6.739 3)ab | 3 127.683 3 (56.529 8)b | 0.781 9 (0.014 1)b |
20% | 3 600 | 1.111 1 | 0.800 8 (0.086 4)a | 2 496.400 0 (63.770 1)c | 386.600 0 (33.139 4)bc | 2 883.000 0 (31.096 4)c | 0.720 7 (0.077 8)c |
30% | 3 150 | 1.269 8 | 0.853 7 (0.044 8)b | 2 383.850 0 (51.144 0)d | 305.210 0 (96.618 4)cd | 2 689.060 0 (91.009 1)d | 0.672 3 (0.035 2)d |
50% | 2 250 | 1.777 8 | 1.159 8 (0.035 2)c | 2 377.886 7 (44.008 5)d | 231.730 0 (40.824 5)d | 2 609.616 7 (79.248 4)d | 0.652 4 (0.019 8)d |
间伐强度 Thinning intensity | 1级根 First root order | 2级根 Second root order | 3级根 Third root order | 4级根 Fourth root order | 5级根 Fifth root order | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
生物量Biomass (kg·hm-2) | 百分比Percentage (%)1) | 生物量Biomass (kg·hm-2) | 百分比Percentage (%)1) | 生物量Biomass (kg·hm-2) | 百分比Percentage (%)1) | 生物量Biomass (kg·hm-2) | 百分比Percentage (%)1) | 生物量Biomass (kg·hm2) | 百分比Percentage (%)1) | |||||
0 | 284.88 (5.58)a | 8.34 | 306.90 (6.01)a | 8.98 | 608.48 (6.31)a | 17.82 | 765.82 (4.51)a | 22.42 | 1 449.5 (20.16)a | 42.44 | ||||
10% | 276.96 (5.21)a | 8.86 | 309.27 (4.33)a | 9.89 | 564.05 (13.65)b | 18.03 | 692.39 (16.56)b | 22.14 | 1 284.9 (18.21)b | 41.09 | ||||
20% | 282.65 (2.84)a | 9.80 | 312.45 (3.65)ab | 10.84 | 526.62 (8.14)c | 18.27 | 622.99 (7.23)c | 21.61 | 1 138.7 (13.52)c | 39.48 | ||||
30% | 321.39 (16.86)b | 11.95 | 317.63 (2.29)b | 11.83 | 493.22 (26.27)d | 18.34 | 524.48 (22.60)d | 19.50 | 1 032.33 (61.59)d | 38.38 | ||||
50% | 340.39 (10.06)c | 13.04 | 317.48 (3.09)b | 12.17 | 478.49 (11.63)d | 18.34 | 494.42 (15.47)d | 18.95 | 978.82 (33.69)d | 37.50 |
表3 不同间伐强度下粗枝云杉1-5级细根生物量
Table 3 Fine root biomass of 1st-5th root orders of Picea asperata under different thinning intensity
间伐强度 Thinning intensity | 1级根 First root order | 2级根 Second root order | 3级根 Third root order | 4级根 Fourth root order | 5级根 Fifth root order | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
生物量Biomass (kg·hm-2) | 百分比Percentage (%)1) | 生物量Biomass (kg·hm-2) | 百分比Percentage (%)1) | 生物量Biomass (kg·hm-2) | 百分比Percentage (%)1) | 生物量Biomass (kg·hm-2) | 百分比Percentage (%)1) | 生物量Biomass (kg·hm2) | 百分比Percentage (%)1) | |||||
0 | 284.88 (5.58)a | 8.34 | 306.90 (6.01)a | 8.98 | 608.48 (6.31)a | 17.82 | 765.82 (4.51)a | 22.42 | 1 449.5 (20.16)a | 42.44 | ||||
10% | 276.96 (5.21)a | 8.86 | 309.27 (4.33)a | 9.89 | 564.05 (13.65)b | 18.03 | 692.39 (16.56)b | 22.14 | 1 284.9 (18.21)b | 41.09 | ||||
20% | 282.65 (2.84)a | 9.80 | 312.45 (3.65)ab | 10.84 | 526.62 (8.14)c | 18.27 | 622.99 (7.23)c | 21.61 | 1 138.7 (13.52)c | 39.48 | ||||
30% | 321.39 (16.86)b | 11.95 | 317.63 (2.29)b | 11.83 | 493.22 (26.27)d | 18.34 | 524.48 (22.60)d | 19.50 | 1 032.33 (61.59)d | 38.38 | ||||
50% | 340.39 (10.06)c | 13.04 | 317.48 (3.09)b | 12.17 | 478.49 (11.63)d | 18.34 | 494.42 (15.47)d | 18.95 | 978.82 (33.69)d | 37.50 |
图2 不同间伐强度细根生物量的垂直分布(平均值±标准偏差, n = 15)。不同小写字母表示上层细根生物量差异显著(p < 0.05); 不同大写字母表示下层细根生物量差异显著(p < 0.05)。
Fig. 2 Vertical distribution of fine root biomass under different thinning intensity (mean ± SD, n = 15). Different lowercase letters indicate significant difference between fine root biomass in upper soil layer (p < 0.05); different capital letters indicate significant difference between fine root biomass in lower soil layer (p < 0.05).
图3 不同间伐强度下各土层细根生物量占细根总生物量的比例。
Fig. 3 Proportion of fine root biomass in each soil layer to total fine root biomass under different thinning intensity.
[1] | Chang WJ (常文静), Guo DL (郭大立) (2008). Variation in root diameter among 45 common tree species in temperate, subtropical and tropical forests in China. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 1248-1257. (in Chinese with English abstract) |
[2] | Cheng YH (程云环), Han YZ (韩有志), Wang QC (王庆成), Wang ZQ (王政权) (2005). Seasonal dynamics of fine root biomass, root length density, specific root length and soil resource availability in a Larix gmelinii plantation. Acta Phytoecologica Sinica (植物生态学报), 29, 403-410. (in Chinese with English abstract) |
[3] | Dong HX (董慧霞), Li XW (李贤伟), Zhang J (张健), Fan C (范川) (2007). Biomass of fine root and its relationship with water-stable aggregate in compound lands of triploid Populus tomentosa on lands converted from agricultural lands. Scientia Silvae Sinicae (林业科学), 43(5), 24-29. (in Chinese with English abstract) |
[4] | Fitter AH (1985). Functional significance of root morphology and root system architecture. Journal of Ecology, 4, 87-106. |
[5] | Fukuzawa K, Shibata H, Takagi K, Nomura M, Kurima N, Fukazawa T, Satoh F, Sasa K (2006). Effects of clear- cutting on nitrogen leaching and fine root dynamics in a cool-temperate forested watershed in northern Japan. Forest Ecology and Management, 225, 257-261. |
[6] | Guo DL, Mitchell RJ, Hendricks JJ (2004). Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest. Oecologia, 140, 450-457. |
[7] |
Guo DL, Mitchell RJ, Withington JM, Fan PP, Hendricks JJ (2008a). Endogenous and exogenous controls of root life span, mortality and nitrogen flux in a longleaf pine forest: root branch order predominates. Journal of Ecology, 96, 737-745.
URL PMID |
[8] | Guo DL, Xia MX, Wei X, Chang W, Liu Y, Wang ZQ (2008b). Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species. New Phytologist, 180, 673-683. |
[9] | Hao KJ (郝凯婕) (2011). Seasonal Dynamics of Soil Labile Organic Carbon in Spruce Plantation Different Structural Adjustment in Subalpine of Western Sichuan. (川西亚高山低效云杉人工林林分结构调控下土壤活性有机碳的季节变化) Master degree dissertation, Sichuan Agricultural University, Ya’an, Sichuan. (in Chinese with English abstract) |
[10] | Huang CD (黄从德), Zhang J (张健), Yang WQ (杨万勤), Tang X (唐宵), Zhang GQ (张国庆) (2009). Spatial differentiation characteristics of forest vegetation carbon stock in Sichuan Province. Acta Ecologica Sinica (生态学报), 29, 5115-5121. (in Chinese with English abstract) |
[11] | Li XW (李贤伟), Zhang J (张健), Chen WD (陈文德), Fan B (范冰), Dong HX (董慧霞) (2005). Study on the distribution and growth characteristics of the fine root of Triploid populus tomentosa and root of Lolium multiflorum under compound pattern in both cultivating land and forest. Acta Pratacultural Science (草业学报), 14(6), 73-78. (in Chinese with English abstract) |
[12] | Lin B (林波), Liu B (刘波) (2008). Plastic responses of 4 tree species of successional subalpine coniferous forest serals to different light regimes. Acta Ecologica Sinica (生态学报), 28, 4665-4675. (in Chinese with English abstract) |
[13] | Lin N (林娜), Liu Y (刘勇), Li GL (李国雷), Lü RH (吕瑞恒), Wang SH (王少华), Hou BZ (侯炳柱), Yin FJ (尹凤君) (2010). Research progress of impact of thinning on plantation litter decomposition. World Forestry Research (世界林业研究), 23(3), 44-47. (in Chinese with English abstract) |
[14] | Liu C (刘聪), Xiang WH (项文化), Tian DL (田大伦), Fang X (方晰), Peng CH (彭长辉) (2011). Overyielding of fine root biomass as increasing plant species richness in subtropical forests in central southern China. Chinese Journal of Plant Ecology (植物生态学报), 35, 539-550. (in Chinese with English abstract) |
[15] | Liu JL (刘金梁), Mei L (梅莉), Gu JC (谷加存), Quan XK (全先奎), Wang ZQ (王政权) (2009). Effects of nitrogen fertilization on fine root biomass and morphology of Fraxinus mandshurica and Larix gmelinii: a study with in-growth core approach. Chinese Journal of Ecology (生态学杂志), 28, 1-6. (in Chinese with English abstract) |
[16] |
López BC, Sabate S, Gracia CA (2003). Thinning effects on carbon allocation to fine roots in a Quercus ilex forest. Tree Physiology, 23, 1217-1224.
URL PMID |
[17] | Lü SX (吕士行), Yu XB (余雪标) (1990). Fir planting density and the relationship of root growth. Forest Science and Technology (林业科技通讯), 11, 1-3. (in Chinese) |
[18] | Ma LY (马履一), Li CY (李春义), Wang XQ (王希群) (2007). Effects of thinning on the growth and the diversity of undergrowth of Pinus tabulaeformis plantation in Beijing mountainous areas. Scientia Silvae Sinicae (林业科学), 5, 1-9. (in Chinese with English abstract) |
[19] | Makita N, Hirano Y, Mizoguchi T, Kominami Y, Dannoura M, Ishii H, Finér L, Kanazawa Y (2011). Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest. Ecological Research, 21, 1-10. |
[20] | Marshall JD, Waring RH (1985). Predicting fine root production and turnover by monitoring root starch and soil temperature. Canadian Journal of Forest Research, 15, 791-800. |
[21] | Noguchi K, Han QM, Araki MG, Kawasaki T, Kaneko S, Takahashi M, Chiba Y (2011). Fine-root dynamics in a young Hinoki cypress ( Chamaecyparis obtusa) stand for 3 years following thinning. Journal of Forest Research, 16, 284-291. |
[22] | Pei ZQ (裴智琴), Zhou Y (周勇), Zheng YR (郑元润), Xiao CW (肖春旺) (2011). Contribution of fine root turnover to the soil organic carbon cycling in a Reaumuria soongorica community in an arid ecosystem of Xinjiang Uygur Autonomous Region China. Chinese Journal of Plant Ecology (植物生态学报), 35, 1182-1191. (in Chinese with English abstract) |
[23] | Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309. |
[24] |
Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997). Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia, 111, 302-308.
URL PMID |
[25] | Shi JW (史建伟), Wang MB (王孟本), Chen JW (陈建文), Cao JT (曹建庭) (2011). The spatial distribution and seasonal dynamics of fine roots in a mature Caragana korshinskii plantation. Acta Ecologica Sinica (生态学报), 31, 726-733. (in Chinese with English abstract) |
[26] | Tan B (谭波), Zhang J (张健), Yang WQ (杨万勤), Wang M (汪明), Xue Q (薛樵), Dong SG (董生刚) (2008). The biomass and carbon stock of fine roots in the representative plantation in the ecotone between dry valleys and mountain forest in the Minjiang River Basin. Journal of Sichuan Forestry Science and Technology (四川林业科技), 29(2), 18-22. (in Chinese with English abstract) |
[27] | Vargas R, Allen EB, Allen MF (2009). Effects of vegetation thinning on above and belowground carbon in a seasonally dry tropical forest in Mexico . Biotropica, 41, 302-311. |
[28] | Vogt KA, Vogt DJ, Palmiotto PA, Boon P, O’Hara J, Asbjornsen H (1995). Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil, 187, 159-219. |
[29] | Wang C (王成), Pang XY (庞学勇), Bao WK (包维楷) (2010). Short term effects of low intensity thinning simulated by gap on ground microclimate and soil nutrients of pure spruce plantation. Chinese Journal of Applied Ecology (应用生态学报), 21, 541-548. (in Chinese with English abstract) |
[30] | Wang ZH (王祖华), Li RX (李瑞霞), Hao JP (郝俊鹏), Guan QW (关庆伟) (2011). Effects of thinning on fine root morphology in Chinese Fir plantations. Journal of Northeast Forestry University (东北林业大学学报), 39(6), 13-19. (in Chinese with English abstract) |
[31] | Xu CY (徐程扬), Zhang H (张华), Jia ZK (贾忠奎), Xue K (薛康), Du PZ (杜鹏志), Wang JG (王京国) (2007). Effects of stand density and site types on root characteristics of Platycladus orientalis plantations in Beijing mountainous area. Journal of Beijing Forestry University (北京林业大学学报), 29(4), 95-99. (in Chinese with English abstract) |
[32] | Yin X, Perry JA, Dixon RK (1989). Fine-root dynamics and biomass distribution in a Quercus ecosystem following harvesting. Forest Ecology and Management, 27, 159-177. |
[33] | Yuan WY (袁渭阳), Li XW (李贤伟), Zhang J (张健), Rong L (荣丽) (2009). Preliminary studies on carbon reserves of litterfall and fine root in an age series of Eucalyptus grandis plantation. Forest Research (林业科学研究), 22, 385-389. (in Chinese with English abstract) |
[34] | Yuan Z (袁喆), Luo CD (罗承德), Li XW (李贤伟), Gong YB (宫渊波), Liu B (刘彬), Fang JJ (房建佳) (2010). Soil readily oxidizable carbon and carbon pool management index in spruce plantation (Picea asperata) with different thinning intensity in western Sichuan. Journal of Soil and Water Conservation (水土保持学报), 24(6), 127-131. (in Chinese with English abstract) |
[35] | Zhang XQ (张小全), Wu KH (吴可红) (2001). Fine-root production and turnover for forest ecosystems. Scientia Silvae Sinicae (林业科学), 37, 126-138. (in Chinese with English abstract) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[4] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[5] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[6] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[7] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[8] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[9] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[10] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[11] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[12] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[13] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[14] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[15] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19